hps-header.jpg

Infinite Storage
Infinite Possibilities

High-Performance Storage

The research group High-Performance Storage improves the capabilities of storage landscapes applying smart concepts. We speak big data analytics and high-performance computing and apply our knowledge to meet the needs of environmental modeling.

Further information about our mission.

The HPS group is tightly integrated into the GWDG AG Computing group with more than 25 people.

Explore our research using the power of machine learning, click on a keyword to see relevant documents.

  • Protein Ai “A Platform for Predicting Protein Structures based on the Molecule's Sequence with ChatBot Interface for Analysis” (Hasan Marwan Mahmood Aldhahi), Industry Internship (M.Inf.2802) at GWDG on Applied Data Science, M.Sc., GWDG, 2025-03-31 Presentation
  • Data at Scale in ESiWACE: Progress of WP4 (Bryan Lawrence, Dr. Julian Kunkel), ESiWACE Annual General Assembly, Virtual, 2021-09-27 Presentation
  • Input/Output and Middleware (Dr. Julian Kunkel), Summer School on Effective HPC for Climate and Weathe, Virtual, 2021-08-23 Presentation Video
  • Lifting the user I/O abstraction to workflow level a possibility or in vain? (Dr. Julian Kunkel), Dagstuhl Seminar, Schloß Dagstuhl, 2021-08-16 Presentation
  • Data Systems at Scale in Climate and Weather (Dr. Julian Kunkel), Hidalgo Workshop, Virtual, 2021-07-09 Presentation

  • AI-Powered Smart Cities (Michael Bidollahkhani), 2026 BibTeX URL
  • Design and Implementation of Integrated AI Scheduler for Dynamic Cloud Workloads Allocation in Kubernetes Environments (Michael Bidollahkhani, Aasish K. Sharma, Sachin P. Nanavati, Mohsen Seyedkazemi Ardebili, Giorgi Mamulashvili, Mirac Aydin, Felix Stein, Mojtaba Akbari, Julian M. Kunkel), 2026 BibTeX DOI
  • Poster: Heterogeneous HPC Compute Continuum: A Roadmap for Workflow Mapping and Scheduling From Sensor to Supercomputer (Aasish Sharma), 2025-11-20 BibTeX URL PDF
  • Factors Impacting I/O Time Proportion in AI Workloads (Zoya Masih, Radita Liem, Julian Kunkel), 2025-09-09 BibTeX URL DOI
  • Poster: Optimizing Workload in Heterogeneous HPC Workflows with Constraints (Aasish Kumar Sharma, Christian Boehme, Patrick Gelß, Julian Kunkel), 2025-06-11 BibTeX PDF

  • HPC-native 5-Safe Trusted Research Environment for Scalable Medical Data Science, Lars Quentin (Master's Thesis), Advisors: Dr. Julian Kunkel, Ulrich Sax, 2025-09-09, BibTeX URL
  • Comparative Analysis of Software Provisioning Technologies for High-Performance Computing Environments, Henrik Jonathan Seeliger (Master's Thesis), Advisors: Dr. Julian Kunkel, Patrick Höhn, 2025-09-08, Thesis BibTeX
  • Towards Improving Reasoning Capabilities of Open Source LLMs through an Agentic Reasoning Framework, Xiaotian Lu (Bachelor's Thesis), Advisors: Dr. Julian Kunkel, Patrick Höhn, 2025-06-24, Thesis BibTeX
  • Optimizing I/O Performance of Scalable ML Workflows in HPC Systems, Abdullah Amawi (Master's Thesis), Advisors: Dr. Julian Kunkel, Patrick Höhn, 2025-06-30, Thesis BibTeX
  • Optimierung von Speicherlebenszyklus und Nutzbarkeit eines HPC-Systems durch Data-Governance-Richtlinien, Sarafina Maame Essel (Bachelor's Thesis), Advisors: Dr. Julian Kunkel, Hendrik Nolte, 2025-04-24, Thesis BibTeX

  • start.txt
  • Last modified: 2025-08-16 11:15
  • by Julian Kunkel