
Bachelor’s Thesis
submitted in partial fulfillment of the

requirements for the course “Applied Computer Science”

A Quantitative and Qualitative
Comparison of Machine Learning

Inference Frameworks

Egi Brako

MatrNr: 21907203

First Supervisor: Prof. Dr. Julian Kunkel
Second Supervisor: Dr. Sven Bingert

Georg-August-Universität Göttingen
Institute of Computer Science

ISSN: 1612-6793

July 5, 2024

Georg-August-Universität Göttingen
Institute of Computer Science

Goldschmidtstraße 7
37077 Göttingen
Germany

T +49 (551) 39-172000
t +49 (551) 39-14403
B office@informatik.uni-goettingen.de
m www.informatik.uni-goettingen.de

mailto:office@informatik.uni-goettingen.de
www.informatik.uni-goettingen.de

Abstract
As Artificial Intelligence (AI) continues to advance and impact diverse fields, ensuring
universal access to its abilities becomes increasingly crucial. To access various AI models,
they must be deployed to process inference requests. We conducted qualitative and quanti-
tative analyses of popular open-source serving frameworks by evaluating their performance
on three common Machine Learning tasks. This research aims to shed more light on the
frameworks’ respective strengths and weaknesses, consequently addressing the challenges
posed by the process of selecting a method of serving the models. The qualitative compar-
ison is carried out by taking into account the subjective characteristics of each framework
and scoring them on a number scale. We then use Locust to run load-tests on these frame-
works, log their quantitative results, and compare them with each other. Our results find
that PyTorch TorchServe is the overall best-performing framework, consistently surpassing
the other two in our performance test. We also found that some platforms had signifi-
cant issues handling more complex models, showing incapabilities for handling specific
Machine Learning tasks. Our findings show significant differences among the frameworks,
contributing valuable insights for developers and researchers in selecting the most suitable
framework serving Machine Learning models.

Declaration on the use of ChatGPT and comparable tools
in the context of examinations

In this work I have used ChatGPT or another AI as follows:

□ Not at all

✓□ During brainstorming

□ When creating the outline

✓□ To write individual passages, altogether to the extent of 5-10% of the entire text

□ For the development of software source texts

□ For optimizing or restructuring software source texts

✓□ For proofreading or optimizing

✓□ Further, namely: making the graphs in the Results section prettier

I hereby declare that I have stated all uses completely.
Missing or incorrect information will be considered as an attempt to cheat.

Acknowledgements
I would like to thank my supervisors, Prof. Dr. Julian Kunkel and Jonathan Decker, for
answering any and all questions that I had. Without their help and invaluable advice this
thesis would not have been possible.

Additionally, I’d like to thank the GWDG, for providing me with access to their
computing cluster in order to carry out my experiments. Finally, I want to thank my
family, my girlfriend, and my friends for being very patient and supportive with me
during this time.

Contents
List of Tables vi

List of Figures vii

List of Listings viii

List of Abbreviations ix

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 1
1.3 Contribution . 2
1.4 Outline . 2

2 Background 4
2.1 Model Serving Frameworks . 4

2.1.1 TensorFlow Serving . 4
2.1.2 PyTorch TorchServe . 5
2.1.3 NVIDIA Triton Inference Server . 5
2.1.4 Summary . 6

2.2 High Performance Computing . 6
2.3 Containerization and SingularityCE . 7
2.4 Load Testing and Locust . 7

3 Related Work 9
3.1 General inference analysis . 9
3.2 Inference on custom serving systems . 10
3.3 Inference on edge devices . 10

4 Methodology 12
4.1 Research Question . 12
4.2 Performance . 12
4.3 Usability . 13
4.4 Machine Learning Tasks . 14

4.4.1 Image Classification . 14
4.4.2 Automatic Speech Recognition . 15
4.4.3 Text Summarization . 15

4.5 Setup . 15
4.6 Execution . 16
4.7 Method . 17

5 Results 18
5.1 Performance results . 18

5.1.1 ResNet50 . 19
5.1.2 Wav2Vec2 . 20
5.1.3 Wav2Vec2 truncated . 21
5.1.4 BART Large CNN . 23

iv

5.2 Usability Results . 23
5.2.1 User-Friendliness . 24
5.2.2 Documentation Quality . 24
5.2.3 Project Features . 25
5.2.4 Community Support . 25
5.2.5 Maintenance and Update Frequency 26

5.3 Evaluation . 26
5.3.1 Performance . 26
5.3.2 Usability . 27

6 Discussion 28
6.1 Challenges . 28

6.1.1 Challenges with Wav2Vec2 in TensorFlow 28
6.1.2 Challenges with serving BART . 28

6.2 Interpretation of the results . 29

7 Conclusion 31

References 32

A Appendix A1
A.1 Listings . A1
A.2 Figures . A1
A.3 Tables . A2

v

List of Tables
1 Characteristics of the serving frameworks 6
2 Throughput of the ResNet50 model . 20
3 Prediction latency of the Wav2Vec2 model 21
4 Prediction latency of the Wav2Vec2 (Truncated) model 22
5 Prediction latency of the BART model . 23
6 Frameworks’ performance (latency) . 26
7 Frameworks’ performance (throughput) . 27
8 Usability scores . 27
9 Prediction latency of the ResNet50 model A2
10 Throughput of the Wav2Vec2 model . A3
11 Throughput of the Wav2Vec2 (Truncated) A3
12 Throughput of the BART model . A3

vi

List of Figures
1 Latency results for 1 virtual user . 18
2 Throughput of the ResNet50 model . 19
3 Throughput of the Wav2Vec2 Truncated model 22
4 Throughput of the Wav2vec2 model . A1
5 Latency results for 100 virtual users . A2

vii

List of Listings
1 Exporting the (PyTorch) ResNet-50 model 16
2 Truncating of the inputs for the wav2vec2 model (Triton) A1

viii

List of Abbreviations
AI Artificial Intelligence

AIaaS AI as a Service

API Application Programming Interface

ASR Automatic Speech Recognition

AWS Amazon Web Services

BART Bidirectional Auto-Regressive Transformers

CNN Convolutional Neural Network

CPU Central Processing Unit

DL Deep Learning

DNN Deep Neural Network

GPU Graphical Processing Unit

gRPC gRPC Remote Procedure Calls

HPC High-Performance Computing

HTTP Hypertext Transfer Protocol

IoT Internet of Things

JIT Just In Time

JSON JavaScript Object Notation

ML Machine Learning

NLP Natural Language Processing

ONNX Open Neural Network Exchange

OS Operating System

REST Representational State Transfer

RPS Requests per Second

SIF Singularity Image Format

XLA Accelerated Linear Algebra

ix

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

1 Introduction
In this section, we will introduce the purpose and scope of the thesis, firstly in Section 1.1,
by outlining the motivation behind comparing Machine Learning (ML) inference frame-
works. We then detail the primary goals of the research in Section 1.2. In Section 1.3
we present the contributions made by this work to the field. Finally, in Section 1.4 we
give a short outline of the thesis structure, providing an overview of what to expect in the
following sections.

1.1 Motivation

In recent years ML has been acknowledged as a pivotal technology in many different
domains, revolutionizing areas such as transportation [BH22], healthcare [Jav+22], and
finance [DHB20]. With increasing reliance on ML models to make important decisions
as well as help us in everyday life, the need to offer these models to a larger, broader
audience is rising. A critical aspect of offering these ML solutions to users is serving
the specific models. Serving is the process of deploying, maintaining, and managing ML
models in production environments. This is normally accomplished with the help of
serving frameworks (also referred to as inference frameworks). These frameworks ensure
that the models are accessible, responsive, and capable of delivering accurate predictions
or results to end-users in real-time.

Despite (or perhaps due to) the advancement in technologies in the field, selecting the
appropriate serving framework remains a significant challenge. There are many inference
frameworks, each with its own characteristics for serving ML models, various techniques,
and addressing different needs. The performance of these frameworks can substantially
impact the overall effectiveness of deployed models. While several inference frameworks
exist, there is a gap in comprehensive comparisons that evaluate their performance and
usability in different scenarios. Understanding which framework performs best under
various conditions is paramount for developers and researchers aiming to optimize their
ML workflows.

Our research addresses this research gap by providing a quantitative and qualitative
comparison between three ML serving frameworks, namely: NVIDIA Triton Inference
Server,1 Pytorch TorchServe,2 and TensorFlow Serving.3 By assessing both performance
metrics as well as usability factors, this study aims to identify the most suitable frame-
works for diverse use cases. This will not only help in choosing the right framework based
on the specific use case, but also motivate additional work into further development of
the frameworks, to meet evolving requirements in the field of ML inference.

1.2 Goals

The overarching goal of this thesis is to understand how these frameworks compare to
each other from a performance and usability point of view. Our research will be based on

1Triton Inference Server URL: https://developer.nvidia.com/triton-inference-server (visited on
02/07/2024)

2TorchServe. URL: https://pytorch.org/serve/ (visited on 02/07/2024)
3Serving Models | TFX | TensorFlow URL: https://www.tensorflow.org/tfx/guide/serving (visited on

13/06/2024)

Section 1 Egi Brako 1

https://developer.nvidia.com/triton-inference-server
https://pytorch.org/serve/
https://www.tensorflow.org/tfx/guide/serving

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

the metrics chosen for both the quantitative and qualitative studies. Our methodology is
systematic, ensuring that our results are as accurate as possible and reproducible.

The metrics for the performance evaluation are the latency and the throughput of
each individual serving framework. By choosing latency as one of our metrics, we will be
able to see how quickly each individual request to the serving platforms gets processed.
Throughput, on the other hand, indicates the number of requests a framework can handle
within a given timeframe, reflecting its capacity to manage high workloads. These will
be measured through load-testing experiments with different virtual users, and showcase
which of the frameworks perform the best. By varying the number of virtual users for
the experiments, we can identify which framework delivers the best performance under
various conditions, providing clear insights into their operational efficiency.

Usability is of equal importance because it determines how practical the frameworks
are in real-world scenarios. High usability reduces the learning curve, minimizes devel-
opment time, and helps avoid problems that could arise from poorly designed interfaces
or insufficient documentation. We have chosen to evaluate the frameworks’ usability by
creating five metrics: user-friendliness, documentation quality, framework features, com-
munity support, and maintenance and update frequency. These are all useful in their
own ways, but together they contribute to identifying a good framework. Metrics like
user-friendliness and framework features are of the greatest importance. In the long run,
a user-friendly framework contributes to higher productivity, better maintainability, and
an easier development experience. All these metrics will help us understand which of the
serving frameworks have the best usability.

By addressing these specific goals, this thesis will determine the most suitable frame-
work for different ML tasks. This will help in understanding the strengths and weaknesses
of each framework in practical scenarios.

1.3 Contribution

The contributions of this thesis are as follows

• Development of performance and usability metrics to assess the usefulness of ML
inference frameworks.

• Results of experiments with regard to the developed metrics.

• Qualitative and quantitative comparison of three of the most popular ML inference
frameworks.

• Report on the current state of ML inference frameworks.

1.4 Outline

This thesis begins with the introduction of common terms and concepts relevant to this
research in Section 2. Then, in Section 3 we explore previous works. We go through
papers and research, and talk about their relevance, as well as their advancements to the
field. Section 4 elaborates on our methodology, also outlining the steps taken in preparing
the frameworks and the experiments. In Section 5 we show the results of our experiments
and clarify which of the frameworks perform the best. Later on, in Section 6, we discuss
the implications of our results, as well as any substantial problems encountered during

Section 1 Egi Brako 2

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

our experimental set up and execution. Finally, in Section 7 we summarize our research
and talk about future work in this field.

Section Summary In this section we have set the stage for our comparative study
on ML inference frameworks by outlining the motivation, objectives, and scope of the
research. The main goal is to evaluate the performance and usability of TorchServe,
TensorFlow Serving, and Triton Inference Server in handling various ML models. Un-
derstanding these differences is paramount for researchers and developers in selecting the
best framework for their specific needs.

Section 1 Egi Brako 3

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

2 Background
Here, we will discuss the relevant technologies to this thesis. Firstly, in Section 2.1 we
offer a deeper understanding of the serving frameworks’ designs, configurations, specific
functions, and the unique features that played a part in our selection of them. In Section
2.2 we explain High Performance Computing, its differences and advantages to normal
computing. Section 2.3 goes into the concept of containerization and Singularity, our
containerization platform of choice for this research. Finally, Section 2.4 discusses the
concepts of load-testing and some of its well-known metrics, as well as our chosen solution
for this task, Locust.

2.1 Model Serving Frameworks

In essence, serving frameworks are software platforms that enable ML models to take in
inputs and return outputs, acting as a bridge between the model and real-world data.
These frameworks are important in handling multiple requests and making good utiliza-
tion of computational resources.

2.1.1 TensorFlow Serving

TensorFlow Serving4 is a system designed for the deployment of ML models in prac-
tical applications. First introduced in the research paper from Google [Ols+17], it is
part of the TFX5 ecosystem and is optimized for serving TensorFlow models. It allows
the integration of these models into production environments by providing an exten-
sive Application Programming Interface (API) for other software and users to access
the models’ capabilities. It supports API calls through both Hypertext Transfer Pro-
tocol (HTTP)/Representational State Transfer (REST) and gRPC Remote Procedure
Calls (gRPC) protocols. TensorFlow Serving is able to handle multiple requests concur-
rently and offering the possibility of having the inputs batched. It also enables unin-
terrupted updates of models without downtime to the system, allowing for continuous
availability.

TensorFlow Serving’s architecture revolves around Servables (the model abstraction),
which “are the underlying objects that clients use to perform computation (e.g., a lookup
or inference)”6. These are managed by Loaders that handle their lifecycle, including
loading and unloading into memory. The Manager handles the full lifecycle of Servables,
including loading, serving, and unloading Servables, as well as tracking all Servables’
versions. Clients interact via APIs to request servables, with TensorFlow Serving dy-
namically managing versions to allow seamless updates and high-performance inference
across different deployment scenarios.

Another important part of TensorFlow’s architecture is SavedModel Signatures.7 Sig-
natures are key components that define how a model’s functions can be accessed and

4GitHub - tensorflow/serving URL: https://github.com/tensorflow/serving/ (visited on 20/06/2024)
5TensorFlow Extended (TFX). URL: https://github.com/TensorFlow/tfx (visited on 13/06/2024)
6TensorFlow Serving Architecture. URL: https://www.TensorFlow.org/tfx/serving/architecture (vis-

ited on 13/06/2024)
7 A Tour of SavedModel Signatures. URL: https://blog.tensorflow.org/2021/03/a-tour-of-savedmodel-

signatures.html (visited on 18/06/2024)

Section 2 Egi Brako 4

https://github.com/tensorflow/serving/
https://github.com/TensorFlow/tfx
https://www.TensorFlow.org/tfx/serving/architecture
https://blog.tensorflow.org/2021/03/a-tour-of-savedmodel-signatures.html
https://blog.tensorflow.org/2021/03/a-tour-of-savedmodel-signatures.html

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

employed after deployment. Every SavedModel has a default signature, or a custom one
can be created. These serving signatures also constrain the allowed input sizes, ensuring
models work correctly across different applications without needing the original model
code.

2.1.2 PyTorch TorchServe

TorchServe8, developed by PyTorch, is a framework designed for deploying multiple ML
models efficiently. Its architecture consists of two main components: the frontend and the
backend. The frontend, implemented in Java, manages incoming requests from clients,
takes care of dynamic scaling, and provides APIs for inference requests. Key components
here include an API gateway for HTTP/gRPC request handling and response aggrega-
tion, and a model lifecycle manager, responsible for handling model lifecycles including
loading and unloading. On the backend, written in Python9, the Model Server com-
ponent initializes the framework and loads configurations, whereas the Model Loader
dynamically loads models from storage, including the model’s handler, which carries out
preprocessing and postprocessing of the input data. These components, in tandem, enable
TorchServe to scale models, integrate custom functionalities through plugins, and manage
resources efficiently.

Another important feature of TorchServe is inference handlers. The model applies
the handlers to preprocess the input data, customize the model invocation for inference
(if necessary), and post-process the model output before sending back a response. They
work with two main types of information: ’data’ from the incoming request, and ’context’
from the TorchServe environment, which includes such things as model name, model
directory, and Graphical Processing Unit (GPU) (or Central Processing Unit (CPU))
details. TorchServe provides default handlers10 for common tasks (e.g. image classification
or object detection). Typically, users only need to override preprocess or post-process
methods in the BaseHandler, which highlights the flexibility PyTorch provides in creating
custom handlers.

2.1.3 NVIDIA Triton Inference Server

NVIDIA Triton Inference Server11 is a powerful, flexible framework for deploying ML mod-
els in production environments. Its architecture revolves around a client API supporting
both HTTP/REST and gRPC endpoints, while the server manages model loading, and
optimization techniques, like dynamic batching, or TensorRT optimization. Triton can
run inference on both CPUs and GPUs, including NVIDIA accelerators which enable it
to deliver low latency and high throughput. Models are stored in the repository and
loaded into memory upon server startup, with each model being managed as a separate
instance by Triton’s backend handlers. The client takes care of the necessary pre-and
post-processing steps for the inference data, packaging it in a format that the Inference
Server can understand. It then sends this data to the server to perform the inference, and
afterward, collects the resulting output. This modular approach enables efficient model

8GitHub - pytorch/serve URL: https://github.com/PyTorch/serve (visited on 13/06/2024)
9Python. URL: https://www.python.org/about/ (visited on 30/06/2024)

10TorchServe default inference handlers. URL: https://PyTorch.org/serve/default_handlers.html (vis-
ited on 30/06/2024)

11GitHub - triton-inference-server/server URL: https://github.com/triton-inference-server/server/
(visited on 20/06/2024)

Section 2 Egi Brako 5

https://github.com/PyTorch/serve
https://www.python.org/about/
https://PyTorch.org/serve/default_handlers.html
https://github.com/triton-inference-server/server/

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

loading and inference processing, thus optimizing performance and resource utilization.
It enables models to be deployed both on-cloud and on-premises, making it flexible for
any requirement.

What sets Triton apart from other serving frameworks is its multi-framework support.
It serves models from most ML frameworks, including TensorFlow, PyTorch, and ONNX,
within a single server instance. This flexibility gets rid of the need for multiple serving
systems, making it simpler to deploy and manage the workflow. Another big advantage of
Triton Inference Server is that it can be deployed in containerized environments such as
Docker and Kubernetes, making the whole setup process much easier. By utilizing this,
Triton can be set up in a dockerized environment, pull in models, and let it handle the
optimization of the models for the best performance.

2.1.4 Summary

Although we gave a comprehensive introduction of each serving framework above, we could
not cover every detail. Below, Table 1 showcases some other differences and similarities
between our chosen serving frameworks.

Frameworks PyTorch
Torchserve

TensorFlow
Serving

NVIDIA
Triton

Model Format TorchScript,
ONNX

TensorFlow
SavedModel

ONNX, TensorFlow
SavedModel,

TorchScript, etc.
Release Date April 2020 December 2015 March 2019
Containerization Yes Yes Yes
Multiple Model Versions No Yes Yes
Input Data Format Binary (raw bytes) JSON Declared in config file
GPU support Yes Yes Yes

Table 1: Characteristics of the serving frameworks

2.2 High Performance Computing

High-Performance Computing (HPC) is a class of applications and workloads that solve
computationally intensive tasks12. These tasks often surpass the capacity of conven-
tional hardware due to their intensive computational requirements or unusually large
data volumes. The architecture of HPC systems supports both intra-node and inter-node
parallelization, allowing it to harness the power of multiple machines to solve intricate
problems. HPC proves invaluable in a range of areas, such as finance, medicine, engineer-
ing, scientific computing, and more, where its high-throughput, low-latency capabilities
can provide solutions that might otherwise be unattainable.

Beyond their raw computational power, HPC systems are characterized by their ad-
vanced hardware components and network infrastructures, offering high-speed data trans-
fers crucial for distributing tasks across compute nodes effectively. HPC systems often
incorporate GPUs to enhance their parallel computing capabilities, making them highly

12 What Is High Performance Computing - Intel URL: https://www.intel.com/content/www/us/en/
high-performance-computing/what-is-hpc.html (visited on 14/06/2024)

Section 2 Egi Brako 6

https://www.intel.com/content/www/us/en/high-performance-computing/what-is-hpc.html
https://www.intel.com/content/www/us/en/high-performance-computing/what-is-hpc.html

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

effective for compute-intensive tasks such as Deep Learning (DL). With direct access
to state-of-the-art processing architectures, accelerators, and optimized libraries, HPC
applications are designed to take full advantage of the underlying hardware capabilities.

2.3 Containerization and SingularityCE

Containerization is a method of packaging applications with all their necessary compo-
nents, such as libraries and dependencies, into isolated units called containers. These
containers ensure that the applications run the same way in any environment. Unlike vir-
tualization, which creates a full operating system, containers share and leverage the host
system’s Operating System (OS), making them more efficient and lightweight. Using the
same OS simplifies the deployment and management of applications, allowing them to be
easily moved from one system to another, or between different stages of development and
production without any compatibility issues. Containerization enables the consistency,
reproducibility, portability, as well as the security of software.

Singularity Community Edition13 is an open-source containerization platform, “created
to run complex applications on HPC clusters in a simple, portable, and reproducible way”.
Unlike other containerization tools (e.g. Docker14), Singularity is built to appease the
unique needs of scientific research communities. This means that Singularity containers
do not require administrative privileges to run, making it more secure for researchers who
work in a shared-resource environment. Singularity focuses on integration over isolation
by default, leveraging its design strategy to seamlessly connect with the host system’s
resources, such as GPUs, high-speed networks, or parallel filesystems, rather than keeping
them isolated. All Singularity containers are contained in a single Singularity Image
Format (SIF) file, making the containers easy to transport and share.

2.4 Load Testing and Locust

Load-testing is a process which evaluates the performance of a system under a specific
load. It involves simulating multiple virtual users accessing the system simultaneously
to determine how it behaves under stress. This helps identify potential bottlenecks and
performance issues, and ensures that the system can handle expected user traffic. Load-
testing is crucial for verifying the reliability, stability, and scalability of applications before
they are deployed in a production environment, ensuring they can maintain optimal per-
formance during peak usage times.

Load-testing can measure certain metrics when carried out. Specifically in our re-
search, we’re interested in two: prediction latency and throughput. Prediction latency is
“the time it takes to render a prediction given a query”[Cra+17]. It indicates the speed
at which individual requests are processed. Lower latency is desirable as it signifies faster
responsiveness to user actions. Throughput, on the other hand, “refers to the number
of classifications made per time quanta” [Cho18]. It represents the system’s capacity to
handle concurrent user interactions effectively. A higher throughput value is wanted as it
implies the system can process a larger number of requests simultaneously. Both latency
and throughput are crucial indicators of performance during load testing.

When focusing solely on latency and throughput in a straightforward manner, the two
13SingularityCE | Sylabs URL: https://sylabs.io/singularity/ (visited on 14/06/2024)
14Docker. URL: https://www.docker.com/ (visited on 14/06/2024)

Section 2 Egi Brako 7

https://sylabs.io/singularity/
https://www.docker.com/

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

metrics have an inverse relationship, usually meaning the lower the prediction latency,
the higher the throughput. This is not always true though, especially when we consider
such concepts as batching, which groups multiple requests in one batch, meaning they get
processed at the same time. Batching can improve throughput by reducing the overhead
needed for processing individual requests. However, it may increase latency for individual
requests within the batch due to the waiting time until the entire batch is processed.

Our chosen load-testing solution, Locust,15 is an open-source tool designed to help
developers assess the performance of their applications. It allows users to create custom
test scenarios in Python code, simulating millions of simultaneous virtual users to evaluate
how the system performs under heavy load. Locust also provides a web-based interface,
which offers real-time monitoring, as well as detailed reports and graphs, making it easy
to identify performance issues and bottlenecks. Locust can be utilized to test any system
by simply wrapping calls to REST APIs, or implementing bespoke load patterns to meet
specific testing needs. This adaptability makes Locust very "hackable", allowing it to be
an effective tool for ensuring that applications can handle high traffic and perform reliably
when they are deployed in production environments.

Section Summary In this section we have provided an overview of the key concepts
and technologies underlying ML inference frameworks. We have discussed the architec-
ture and functionalities of all relevant solutions, focusing on why they are useful to us.
This foundational knowledge is essential for understanding the comparative analysis that
follows.

15What is Locust. URL: https://docs.locust.io/en/stable/what-is-locust.html (visited on 30/06/2024)

Section 2 Egi Brako 8

https://docs.locust.io/en/stable/what-is-locust.html

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

3 Related Work
As the field of ML grows, the focus extends beyond individual models and their training to
include the efficient deployment and serving of these models to users. In this section, we
review the relevant literature to our own research. In Section 3.1 we look at research that
also employs open-source frameworks on ML serving. Section 3.2 gives an overview on
previous work where researchers have created their own serving frameworks, and compared
these with established solutions. Finally, in Section 3.3 we look at research in the field of
edge-computing. While significant work has been done on ML inference, the specific area
of serving platforms meant for general use has received less attention.

3.1 General inference analysis

Works such as [Red+19] offer a great approach to performance assessment, establishing
new benchmarks for measuring the efficiency of ML inference, covering different aspects of
ML like vision, language, and Natural Language Processing (NLP). They focus on three
main aspects, namely: performance metrics, accuracy/performance tradeoff, and evalua-
tion of AI inference accelerators. Although they make great strides for benchmarking ML
models, some aspects are not looked at. Due to limited resources and time constraints,
they were only able to look at a few models, and were forced to leave out models like
BERT [Dev+18] and transformers [Vas+17]. The authors were also unable to include
more applications such as speech recognition or recommendation.

Following up on the original MLPerf paper, the authors of ’The Vision Behind MLPerf:
Understanding AI Inference Performance’ [Red+21] extend the benchmarking suite to
cover a wider range of hardware and software systems, thus enhancing the scope of these
performance evaluations. This paper improves in defining evaluation scenarios which,
like our research, better reflect practical deployment environments. It also introduces a
modular design, ensuring the benchmarks can evolve with the rapidly changing landscape
of ML applications. Despite these advancements, there are still areas for improvement.
The ML hardware discussed in this paper is created and tested in a vacuum, without
taking into account the complete application setting. Successful AI applications heavily
rely on preprocessing and postprocessing stages, storage, and communication systems,
all of which must be factored in when evaluating the overall performance of AI systems.
Furthermore, this paper does not carry out a concrete comparison of serving frameworks
intended for general use.

The closest work to our research is the one done by researchers from the Biano-
based study [AI21]. They focus specifically on the effectiveness of different neural net-
work serving platforms intended for general use. They examined three prominent serv-
ing platforms- TensorFlow Serving, PyTorch TorchServe, and NVIDIA Triton Inference
Server- to analyze the efficiency and reliability of these platforms in deploying Deep Neu-
ral Network (DNN) models for production. However, it also has its limitations. The study
only focuses on an image classification task and leaves out many others, such as speech
recognition or text processing. Furthermore, the platforms being tested have continuously
evolved in the past three years, changing a lot since this research was carried out, meaning
the results obtained are bound to be outdated. Regardless, the study offers valuable data
on the speed, response times, and reliability of these platforms.

Section 3 Egi Brako 9

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

3.2 Inference on custom serving systems

Further work on comparisons of serving frameworks has been done by authors creating
their own serving solutions, and then comparing them with state-of-the-art existing solu-
tions. Chard et al. [Cha+19] present a platform called DLHub, designed to address the
specific needs of ML by offering scalable, low-latency model serving capabilities. Com-
parative tests demonstrate DLHub’s higher performance, especially taking advantage of
techniques like memoization and batching, against other serving frameworks like Ten-
sorFlow Serving or SageMaker16. The research paper, however, does not compare all
the available open-source frameworks available. Its performance analysis is also limited,
focusing only on small models within a single ML task.

Similar work comes by Crankshaw et al. Clipper: A Low-Latency online prediction
serving system [Cra+17] introduces a robust system for real-time ML predictions, em-
phasizing its modular architecture designed to enhance model deployment, accuracy, and
performance. Clipper, like DLHub, implements various techniques such as caching, adap-
tive batching, and model composition, which optimize prediction latency and throughput.
It achieves performance comparable to TensorFlow Serving while offering functionalities
like dynamic model selection. Clipper’s evaluation primarily focuses on specific bench-
marks, while broader, real-world applicability is not explored that thoroughly. The paper
is no longer being maintained, which means the data it has gathered is very outdated,
seeing as its counterpart, TensorFlow Serving, is continuously updated. Even so, this pa-
per is important as it provides foundational insights, techniques, and ideas that influence
current research and development in ML serving systems.

3.3 Inference on edge devices

DL is extensively applied in various fields like computer vision, NLP, autonomous driving,
and many others. However, processing data on end devices like smartphones and Internet
of Things (IoT) sensors requires a lot of computational resources [Shi+16]. Edge com-
puting, where a fine mesh of compute nodes are placed close to end devices, is incredibly
valuable for DL because it brings processing power closer to where data is generated. This
approach not only meets the demand for high throughput and low inference latency, but
also offers advantages in privacy, bandwidth efficiency, and scalability [Shi+16]. There
has already been a lot of research into bringing DNN computation to edge devices for
numerous tasks, such as computer vision [DGN17] [Ran+18], or NLP [Jia+20].

Furthermore, the scientific community has been researching and carrying out perfor-
mance analysis on ML inference on edge-class devices. Most notably, Chen et al. [CR19]
provides a detailed review of the latest developments in DL and edge computing. It covers
how DL is applied at the network edge, methods for quickly running DL tasks on end
devices, edge servers, and the cloud, and how to train models across multiple edge devices.
It also discusses ongoing challenges related to system performance, network management,
benchmarks, and privacy. Although it gives an extensive, comprehensive overview of DL
inference, its scope is focuses on edge devices, leaving out broader inference frameworks
designed for general use.

16Amazon SageMaker. URL: https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html (visited
on 10/06/2024)

Section 3 Egi Brako 10

https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

Section Summary In this section we have gone over existing literature on the perfor-
mance of ML inference frameworks. The review has shown that while significant work has
been done, there is still a need for a comprehensive, up-to-date comparison incorporating
the latest versions of these frameworks. By examining past studies and their methodolo-
gies, we have identified gaps in the field, as well as opportunities for our research.

Section 3 Egi Brako 11

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

4 Methodology
This section outlines the methodology for evaluating the inference frameworks. We start
Section 4.1 by formally presenting our research questions. Section 4.2 and 4.3 dictate
our formal performance and usability metrics, respectively. In Section 4.4 we outline the
methods of our experiments, detailing the specific ML tasks and models chosen for our
experiments. Section 4.5 descripes the setup of our experiments, discussing our configura-
tions to ensure replicability and accuracy in the results. In Section 4.6 we detail how our
experiments were executed, along with the hardware and software choices. Finally, Section
4.7 summarizes our methodology, and shows why it is systematic and research-worthy.

4.1 Research Question

Our aim in this research is to perform both a qualitative and quantitative analysis of
the aforementioned ML frameworks. The challenge here lays in merging these aspects to
form a comprehensive research question. The common part that stands out is this broad
concept of "usefulness". Both performance metrics and the practical, user-oriented aspects
contribute to determining how useful these frameworks are, under various conditions, for
different users. Thus, we can consider the general research question as containing two
parts:

RQ1: Which of these frameworks have the highest performance? Here, we analyse the
quantitative performance of the ML inference frameworks.

RQ2: Which of these frameworks have the best usability? Here we will analyse the quali-
tative characteristics of these frameworks.

Because we are only talking about the serving platforms of each framework, we will
ignore the comparison of training, or fine-tuning methods on the respective frameworks,
and assume that the official implementations in the model zoos of the respective frame-
works are the exact models that are required in our scenario. We wanted to choose a
(real-life) use case and a testing method that answered the research questions as best as
possible. We choose to look at two use cases:

UC1: A user with limited technical skills looking for a straightforward solution for model
deployment, without delving into intricate details. The concept of usefulness would
be most appreciated in this use case. The user can select one of the frameworks,
pick a respective model that best suits their task, and serve it without encountering
setbacks.

UC2: A user planning to incorporate AI models into a broader model serving infrastruc-
ture, offering AI as a Service (AIaaS). The most important aspect here would be
the platforms’ performance in terms of speed and resource utilization and how these
scale with the simultaneous handling of multiple models. Secondary aspects here
would be things such as the features and customization of the serving frameworks.

4.2 Performance

In order to answer RQ1, we would need to define formal methods and metrics to find
out the best-performing framework. For this, we chose two different methods of load-

Section 4 Egi Brako 12

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

testing (scenarios) for each serving framework: multi-stream load test, and single-stream
throughput test. The former works by regularly querying the serving platform, and firing
the next request as soon as the previous one completes. This, coupled with a variable
amount of virtual users, are going to keep the platform under constant heavy load, thus
simulating a worst-case scenario. Although most systems will never be under constant
load for long periods of time, simulating a worst-case scenario helps ensure the system is
reliable, even under heavily demanding circumstances.

The single-stream test measures how well the platform handles a continuous flow of
requests, one at a time, as quickly as possible. It helps determine the maximum rate at
which the platform can process inference requests without any delays or slowdowns. This
is simulated by utilizing Locust’s event-based approach. We test the platform with only
one virtual user, waiting until the request is processed, before sending another one.

After defining the methods, we need to define the metrics that we can evaluate perfor-
mance with. In both of these scenarios, three different metrics will be measured, namely:
Throughput (in Requests per Second (RPS)), Latency (in milliseconds needed per re-
sponse), and Failures (in failures per second). These measurements helped us understand
how well the systems work in different situations. By evaluating these metrics, we pro-
vide a comprehensive analysis of how well various ML serving frameworks can handle high
demand and deliver fast responses. This directly supports the needs of UC2, ensuring
that the chosen framework will maintain high performance, reliability, and responsiveness,
which are essential for an AIaaS platform’s success.

4.3 Usability

A usability assessment is difficult to conduct without set criteria. In order to answer RQ1,
we must define formal metrics, and then strictly evaluate the serving frameworks. Our
usability analysis focuses on how effortlessly a user can set up and serve the chosen models,
along with the complexity of the serving process. Given that all of the frameworks under
review are considerably sized projects, it is reasonable to expect a high level of support
for users, both in the documentation and through the community. It is difficult to judge
qualitative characteristics in a specific way, therefore we have written the following loose
criteria, which will serve as our reference parameters throughout our analysis.

1. User-Friendliness:

• How difficult was it to set up and deploy the framework?

2. Documentation Quality:

• Does the documentation assist with common issues?

• Is the documentation kept up-to-date?

• Is the documentation understandable by new users?

3. Project features:

• Can the framework accommodate and serve models generated from various
popular ML libraries?

• Is it possible to define a custom preprocessing or postprocessing step?

Section 4 Egi Brako 13

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

4. Community support:

• How many active users or contributors does the project have on GitHub?

• What is the usual response time for an issue resolution?

• Are online forum discussions or help resources widely available?

5. Maintenance and Update Frequency:

• What is the regular release cycle for updates and major releases?

The criteria listed above will be used to make a usability comparison between the
different frameworks. The main points will all receive a score ranging from one to five.
Through this, a systematic comparison can be made based on the observations and find-
ings made throughout this research project. By conducting such a detailed analysis, we
can present a comparison that highlights the strengths and weaknesses of each framework.
Not only this, but we can directly apply this analysis to the needs of UC1. For this use
case, the primary concern is the user-friendliness of the serving framework. Key factors
such as the availability of understandable documentation, or helpful framework features
are crucial for a user needing a quick and easy experience with the framework. Thus, the
comprehensive usability analysis directly informs which framework would best suit a user
focused on minimizing setup complexity and maximizing support and ease of use.

4.4 Machine Learning Tasks

When choosing the models, we refrained from changing too much in the configurations
of the specific serving platforms to ensure our methodology remains true to the use case
scenario introduced earlier. As we will see further on in this thesis, there were certain
exceptions to this, where it was necessary to change configurations of some frameworks
for the serving to be possible at all. When choosing the ML tasks, we focused on ones that
are relevant to the field, and are different in nature from each other. We decided on three
important ones, namely: Image Classification, Automatic Speech Recognition (ASR), and
Text Summarization.

4.4.1 Image Classification

Image classification is the task of analyzing a picture and automatically identifying and
labeling the objects or subjects it contains. It is applied in many areas like healthcare,
self-driving cars, and social media. There are many well-known benchmarks and datasets
in this field that allow us to compare performance. These benchmarks provide widely
accepted metrics, making it easier to compare the different models.

For this task we chose the ResNet50 [He+15] model. It is a variant of a Convolutional
Neural Network (CNN), explicitly designed for image classification tasks. It contains 50
layers with Residual connections. The architecture is well-suited for processing image
data and extracting hierarchical visual features. Due to its popularity in both research
and industry, ResNet50 serves as a dependable standard for assessing the effectiveness of
new algorithms or techniques in image classification.

Section 4 Egi Brako 14

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

4.4.2 Automatic Speech Recognition

ASR is the task of transforming a spoken language into written text. This involves ana-
lyzing the sound waves in a voice file and transcribing them to text. ASR can be applied
to a variety of tasks such as speech-to-text, controlling software by voice command, and
aiding language translation systems. Voice recognition models have a different architec-
ture from image classification models. They deal with high-dimensional data and require
continuous learning to adapt to different accents and speech patterns.

For this task we have chosen the Wav2Vec2 [Bae+20] model, specifically Wav2Vec2-
base-960h, which is a model pre-trained and fine-tuned on 16kHz sampled speech audio
taken from the LibriSpeech [Pan+15] dataset. It is a state-of-the-art model, designed for
ASR. It outperforms other speech recognition models on several benchmarks. Wav2Vec2
is a good choice due to its self-supervised learning being able to directly find useful rep-
resentations from raw audio inputs and provides a fair ground to investigate different ML
inference frameworks’ capabilities without the influence of feature extraction techniques.
Comparatively, other models might require extensive preprocessing or feature extraction
techniques, which adds complexity and may introduce biases.

4.4.3 Text Summarization

Text summarization is a task in NLP that involves shortening a text in a way that captures
the main points or themes of the original text. It processes large amounts of textual
information quickly, helping users to understand the content without having to read it
in its entirety. It is a sequence-to-sequence task, which can shed light on how different
frameworks handle and perform with high-dimensional, textual data.

The Bidirectional Auto-Regressive Transformers (BART) [Lew+19] model is a sequence-
to-sequence model developed by Facebook AI, and the model we have chosen for this task.
It is designed for several NLP tasks, such as text generation, translation, and summa-
rization. BART functions by first corrupting the text and then learning to reconstruct
it, working bi-directionally. The "-large-CNN" variation is specifically trained on article
and summary pairs from the CNN and Daily Mail dataset, first introduced in the work by
Hermann et al.[Her+15]. This model tackles the challenges of language understanding,
context preservation, and summarization in the broad field of NLP.

4.5 Setup

In this subsection, we describe the hardware and software configurations that ensure the
replicability of our results. All the model implementations are taken as-is, directly from
the respective model zoos, such as the Torchvision and the Keras packages. In some
cases, the pre-trained model weights were not available in the model zoos, in which case
we took their official implementations in Huggingface. Both PyTorch and TensorFlow
have different formats for the pre-trained model weights, meaning they had to be saved
separately. Usefully, NVIDIA Triton Inference Server serves models from both these
frameworks and accepts any format of model weights that are accepted by the individual
frameworks.

Section 4 Egi Brako 15

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

1 import torch
2 from torchvision.models.resnet import resnet50 , ResNet50_Weights
3

4 model = resnet50(weights=ResNet50_Weights.DEFAULT).to("cuda:0")
5 model.eval()
6 example_input = torch.randn (1 ,3 ,224 ,224).to("cuda:0")
7 traced_model = torch.jit.trace(model , example_input)
8 torch.jit.save(traced_model , "model.pt")

Listing 1: Exporting the (PyTorch) ResNet-50 model

The saving of the models was different for both frameworks. On the PyTorch model
seen above, we take advantage of PyTorch’s Just In Time (JIT) compiler to export the
model and prepare it for serving. The chosen method is tracing. Tracing records oper-
ations performed on a given input, which is useful for straightforward models (such as
ResNet-50). Saving of the TensorFlow was similar, also only requiring a few lines of code.
The main difference is that, unless the model weights are available in the TensorFlow Hub
(currently fully integrated with Kaggle)17, the weights have to be downloaded manually.
This, however, was not a factor in our research.

Locust was our load-testing platform of choice for multiple reasons. It offers distributed
load generation, meaning that all the events and virtual users can scale to multiple pro-
cesses, and even multiple processors. This is very important in our case since we do not
want to overload the model serving platform by running hundreds of virtual users in the
same processor, as this might lead to inconsistent data. We can take advantage of this
since we have plenty of available resources in the HPC. Locust’s event-based approach
can handle a large number of users more efficiently, because it does not create a separate
thread or process for each user (unlike other load-testing tools such as Apache JMeter18).
Instead, it leverages asynchronous I/O operations and event loops to manage tasks, thus
reducing resource usage and improving scalability. Finally, Locust is very small and flex-
ible, which we take advantage of to write tests in pure Python. This simplified the entire
process because apart from the SLURM files, the rest of our code is written in Python.

4.6 Execution

After choosing our serving frameworks, models, and load-testing method, we have to
consider putting all of these together in systematic, reproducible experiments. Due to
the fact that we are running all the tests in an HPC environment, we chose Singularity
to containerize our frameworks. In every experiment, one container serves the model,
and another runs our load-tests. All of the containers of the frameworks have their own
configuration, which are easily reproducible due to the Singularity definition files. For
TensorFlow and NVIDIA Triton Inference Server, we have created the definition files
stemming from their official Docker Hub implementation, only binding extra files and
folders as needed for serving. The PyTorch container, on the other hand, is a bit different.
It was implemented from an official base Python container from Docker Hub, after which
we installed the necessary packages to serve the respective models.

All experiments were conducted on a NVIDIA Quadro RTX 5000 GPU,19. They
17Kaggle Models. URL: https://www.kaggle.com/discussions/product-feedback/448425 (visited on

10/06/2024)
18Apache JMeter. URL: https://jmeter.apache.org/
19NVIDIA Quadro RTX 5000. URL: https://www.nvidia.com/content/dam/en-zz/Solutions/design-

Section 4 Egi Brako 16

https://www.kaggle.com/discussions/product-feedback/448425
https://jmeter.apache.org/
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

include a consistent range of user counts: 1, 10, 25, 50, 75, and 100. Also, every test was
run 5 times, and the average of all runs was taken. We chose this to increase the reliability
and reproducibility of the results, minimizing the impact of outliers and background noise.

The load-tests were run on the HPC with pre-written SLURM batch files, so that we
could always request and utilize the same resources. The testing approach is as follows:

1. Load Singularity container with model on the GPU

2. Run model warm-up tests

3. Run test with x number of users, log and save results to csv format

4. Redo identical test 5 times in total

5. Increase x until 100, go to step 2

6. Stop Singularity container

4.7 Method

Our chosen methodology is research-worthy for a few distinct reasons. Firstly, it is
grounded in clearly defined research questions that guide the entire study. Section 4.1
presents two main research questions that focus on the performance and usability of dif-
ferent ML inference frameworks, guaranteeing that the study addresses both quantitative
and qualitative aspects comprehensively .

The evaluation is systematic, and clearly structured around two main aspects: per-
formance and usability. These aspects are broken down into measurable criteria, such
as throughput, latency, and failure rates for performance, and user-friendliness, docu-
mentation quality, project features, community support, and maintenance frequency for
usability. This comprehensive set of criteria ensures a thorough and balanced evaluation
of the frameworks.

The ML tasks chosen in Section 4.4 represent a wide range of applications in the
field of ML. By selecting different types of tasks, the research covers a broad spectrum
of potential applications, making the findings more generalizable and relevant to various
scenarios.

Throughout our experiments, we maintained the integrity of the evaluations. In order
to ensure this, in Section 4.5 and 4.6 we show that the configurations of the serving
frameworks were kept as consistent as possible. Not only this, but the experimental setup,
including hardware and software configurations, is meticulously described to ensure that
the results can be replicated. This approach minimizes variability due to configuration
differences and ensures that the performance comparisons are fair and accurate.

Section Summary In this section we have described the experimental setup and proce-
dures used to evaluate the chosen frameworks. This includes the selection of models, per-
formance metrics, and testing environment. The consistency of our methodology ensures
that the results are reliable and reproducible, allowing us to proceed with the upcoming
analysis.
visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf (vis-
ited on 17/06/2024)

Section 4 Egi Brako 17

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

5 Results
This section will showcase the results received from our experiments, as well as conduct
some comparisons between the frameworks. Section 6 In Section 5.1 we show the perfor-
mance results of our tests, going through each of the models and comparing them with
their respective counterparts. Later, in Section 5.2 we talk about the usability results of
our experiments. Finally, in Section 5.3, we give our evaluation on each of the serving
frameworks, both concerning performance as well as usability.

5.1 Performance results

Our chosen method not only increases reproducibility of our results, but also provides more
data for statistical analysis, allowing us to understand the range and standard deviation
of the results, thus strengthening the conclusions drawn from the study.

We used tools such as nvitop20 to observe the resource utilization of our HPC node.
We noticed that the utilization of the CPU constantly remained around 30% for all models.
This is actually a design choice, coming from the distributed load generation feature of
Locust, which ensures balanced distribution of load across all worker nodes, preventing any
single node from becoming a bottleneck. In addition, we noticed that the GPU utilization
remained around 30-50% for smaller models such as ResNet50 and the truncated version of
Wav2Vec2. Even though the BART and Wav2Vec2 models are quite large, the GPU usage
never exceeded 90%, showing that all of the frameworks deal very well with increasing
demand. All of these measures that we have taken prove that the results received from
our experiments are consistent and replicable.

Figure 1: Latency results for 1 virtual user (in milliseconds)
20Github - XuehaiPan/nvitop URL: https://github.com/XuehaiPan/nvitop (visited on 03/07/2024)

Section 5 Egi Brako 18

https://github.com/XuehaiPan/nvitop

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

As we show in Figures 1 (and Table 5 in the Appendix), the range of the results
was small, with the only exception of this being the Wav2Vec2 model running on the
Triton (TensorFlow) framework (as shown in Figure 1). This small range shows that
our experimental results were consistent, suggesting that variations in the results can be
attributed to actual performance differences rather than methodological inconsistencies
or random errors.

In Figure 1 we can see the prediction latency for all the models when testing the
framework performance with only one virtual user (our single-stream test). We have
chosen to show only the graphics of the tests with 1 and 100 users (found in Appendix
Figure 5), since the prediction latency is more or less similar for a specific model and
framework combination, no matter the user load. The reason why the value of the latency
increases when raising the user count is because all submitted requests must wait in the
queue until all others before it have finished. Since the throughput stays constant, raising
the number of incoming requests (user count) will raise the amount of time that a request
waits in the queue. This phenomenon can easily be verified by taking a look at the internal
logs of the serving frameworks, which show the precise inference time.

5.1.1 ResNet50

As we can see in Table 2, for ResNet50, PyTorch consistently outperformed other frame-
works in terms of throughput across all user counts. In the test with one virtual user,
PyTorch achieved the highest throughput of 79.79RPS, while Triton (PyTorch) and Tri-
ton (TensorFlow) reached 74.26 and 57.33RPS, respectively. And although PyTorch has
the highest throughput, Figure 2 shows that Triton’s (PyTorch) performance is trailing
not too far behind. TensorFlow Serving is in this case definitively slower, reaching only
5.56RPS.

Figure 2: Throughput of the ResNet50 model (in requests per second)

Section 5 Egi Brako 19

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

User Count 1 10 25 50 75 100
Framework

PyTorch 79.79 103.03 100.06 101.74 102.08 104.10
TensorFlow 5.56 44.85 43.04 42.91 41.20 40.59
Triton (PyTorch) 74.26 93.69 103.17 100.47 99.86 99.74
Triton (TensorFlow) 57.33 75.78 75.50 74.93 75.04 74.53

Table 2: Throughput of the ResNet50 model (in requests per second)

When considering all of the frameworks, the reported throughputs for the ResNet50
model are generally good. Apart from TensorFlow Serving, the fact that the other frame-
works’ throughputs are (consistently) around the 100RPS mark is really good. It shows
that they are able to handle a very large number of requests at the same time without
any slowing down.

Similar to the throughput, Table 9 in the Appendix shows us that PyTorch exhibited
a higher performance compared to the other frameworks when considering latency, with
an average response time of 11.29ms in the test with one virtual user, followed closely
once again by Triton (PyTorch), at 12.87ms. Triton (TensorFlow) had 16.89 ms, and
TensorFlow showed the highest latency of all the frameworks, at 21.43ms. The same
relationship between the frameworks can be seen in Figure 5 in the test with 100 users,
although the numbers change slightly in user counts 10-75.

These latency scores, although they differ from each other, show that the frameworks’
general performance is excellent. With Pytorch and Triton, the average processing time
for any request is (at worst) under one second, even when considering 100 concurrent users.
TensorFlow and Triton (TensorFlow) also offer a worst-case response time of around 1.3
seconds. In a realistic scenario, even if the system were under the heaviest load, this
would be a very short time to wait for a response. This can be attributed to the speed
and efficiency of the frameworks, but also to the small size of the model, as we will see
with the other models.

5.1.2 Wav2Vec2

Due to the imposed usability constraints, it was impossible for us to get the base Wav2Vec2
model running in TensorFlow. Therefore, the performance analysis for this model will not
feature the TensorFlow Serving framework. When it comes to throughput, we can tell
from Figure 4 and Table 10 that Triton and PyTorch displayed comparable performance
at lower user counts, but Triton excelled as the load increased. In the test with one user,
PyTorch had a very small performance advantage over Triton (PyTorch) with 34.16RPS
and 33.14RPS, respectively. From 10 users and higher, Table 10 in the Appendix shows
us that all three frameworks’ throughputs stay constant, implying that this is caused by
the models themselves, and not by the user count.

It should be mentioned that although we are comparing the frameworks to each other,
we should also consider the absolute values of the throughputs. Triton (TensorFlow)
being able to concurrently process 24RPS consistently no matter how many users are firing
requests at the framework is no small feat. This is much more significant when considering
the performance of Triton (PyTorch), which processes almost double the requests. Overall,

Section 5 Egi Brako 20

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

we can say that the throughput of the frameworks when observing them individually is
excellent.

User Count 1 10 25 50 75 100
Framework

PyTorch 28.51 280.14 685.04 1370.44 2045.64 2696.93
Triton (PyTorch) 29.62 224.50 556.97 1112.66 1676.74 2190.66
Triton (TensorFlow) 92.43 465.68 1159.55 2287.42 3415.39 4541.18

Table 3: Prediction latency of the Wav2Vec2 model (in milliseconds)

An interesting observation is that Triton’s (TensorFlow) prediction latency is (in com-
parison) quite high, starting from the test with only one virtual user. This gets consid-
erably worse the more users are added to the load test, peaking at almost double that of
Triton’s (PyTorch) prediction latency in the test with 100 concurrent users.

This being said, in the test with one user, all frameworks show a very small response
time for most requests (under 100ms). This makes it quite applicable to the task of real-
time text-to-speech transcription. However, as the concurrent users requesting the ASR
service increase, we can see the latency dramatically increasing. Although the processing
time for each individual request remains relatively similar, the latency is higher due to
their waiting time in the queue. This shows that under heavy user load, performance may
degrade to the extent that the service becomes unusable. Although this should be taken
with a grain of salt, since in a real-world scenario, the platform is not going to constantly
be under the heaviest load.

5.1.3 Wav2Vec2 truncated

The truncated version of Wav2Vec2 was implemented to accommodate the limitations
of the official TensorFlow implementation of the Wav2Vec2 model. This workaround
involved truncating (or padding) the inputs for all frameworks to be able to continue our
performance evaluation across all four frameworks. This approach results in incomplete
outputs, as the truncated inputs do not provide the full context necessary for full model
predictions, resulting in sentences seemingly cutting off, sometimes mid-word. Despite
these obstacles, we believe the analysis offers interesting results into the performances of
the different frameworks.

Figure 3 gives an overview of the throughput results for the Wav2Vec2 truncated
model. This model exhibits the same behavior as was observed in the original Wav2Vec2
model. Triton (PyTorch) consistently outperforms all other frameworks in both through-
put and latency. The truncated inputs, which are significantly shorter than the normal
Wav2Vec2 model inputs, reinforce the evidence from the normal Wav2Vec2 model that
NVIDIA Triton provides much better performance. Here we can see the same concept as
was seen in the original Wav2Vec2 model above, namely the throughput plateauing in the
tests with more than 10 users. This time, however, due to the input being significantly
shorter, this value is higher. Interestingly though, we can observe that TensorFlow per-
forms slightly better than PyTorch and much better than Triton (TensorFlow), which is
quite a difference from the behavior observed in the ResNet50 test.

When considering the throughput values for each framework individually, we can see

Section 5 Egi Brako 21

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

that the values are 1.5 to 2 times better than their respective values from the original
Wav2Vec2 model. However, we believe it is impossible to reach a consensus of whether
these values would be useful for any real-world application. We make this claim due to
the fact that all the inputs were truncated in order to fit this model, meaning a large
number of them were incomplete.

Figure 3: Throughput of the Wav2Vec2 Truncated model (in requests per second)

Moving on to latency, the graphs in Table 4 shows us that when considering only one
user, TensorFlow has the worst latency, although this improves considerably, jumping to
second-best when the system is under load at 100 virtual users. Triton (PyTorch) once
again has the shortest request time throughout all user tests.

User Count 1 10 25 50 75 100
Framework

PyTorch 18.33 195.26 484.33 965.58 1430.13 1885.84
TensorFlow 54.20 130.30 305.57 673.08 1019.39 1358.25
Triton (PyTorch) 16.92 110.44 276.10 551.70 823.64 1100.21
Triton (TensorFlow) 28.87 215.43 536.20 1068.26 1596.83 2133.12

Table 4: Prediction latency of the Wav2Vec2 (Truncated) model (in milliseconds)

The latency values here show nearly a two-fold improvement from the original Wav2Vec2
model, although this is to be expected due to the inputs’ size. However, since the inputs
are truncated and incomplete, we believe that there are no realistic applications suited for
them. The obtained results are very good for comparing the frameworks to each other,
but we cannot tie the results to any of our defined use cases.

Section 5 Egi Brako 22

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

5.1.4 BART Large CNN

For BART Large CNN, only PyTorch was able to be evaluated. The results for both
throughput and latency were significantly worse compared to other models, which is
expected given the model’s larger size. Due to TorchServe’s working queue that can handle
up to 100 requests, the experiments with BART showed no failure rate. Unsurprisingly,
additional tests show that any user count above 100 means that all other requests get
immediately rejected by TorchServe. Because it cannot keep more than 100 requests in
the queue, and the inference takes a long time, we see that every single request receives
a response with code 503, telling us that there are no more available workers for the
model.21

The performance of PyTorch here was constant. Throughout all the tests, the frame-
work maintained a throughput of around 1.42RPS, with variations only within the range
of ±0.02RPS. We can, however, discern that the latency immensely increases the more
we raise the number of users submitting requests. As we can see in Table 5, the average
latency for the test with only one virtual user is 695ms.

User Count 1 10 25 50 75 100
Framework

PyTorch 695.00 6795.64 14962.30 24651.70 29340.88 29842.83

Table 5: Prediction latency of the BART model (in milliseconds)

The throughput remaining constant is a very good sign for TorchServe, showing that
this is due to the performance of the model, and not only the framework’s performance.
When considering real-world use cases, such as UC2, we must also look at the latency.
At the heaviest load, each individual request takes averagely half a minute to receive a
response. This is simply unviable for any realistic system, since the long waiting time
would be unacceptable for any user. We should once again mention that realistically,
most systems will not constantly be under the heaviest load.

5.2 Usability Results

This study used specific measures to assess the usability of the three chosen DL frame-
works. Each system got a score from 1 to 5 in these areas. The ratings were based on
our experience with the framework, and observations to give a detailed look at what each
system does well, as well as where they could improve when used in real situations.

Getting some models running was quite tricky, due to the fact that all of the frame-
works have different methods of serving their models. As we saw in the previous section,
not all of the chosen models were able to be run in all frameworks, although all of them
had official implementations in their respective frameworks.

21Troubleshooting guide - PyTorch/Serve master documentation. URL: https://pytorch.org/serve/
Troubleshooting.html#inference-request-failed-with-exception-serviceunavailableexception-error-code-503
(visited on 21/06/2024)

Section 5 Egi Brako 23

https://pytorch.org/serve/Troubleshooting.html#inference-request-failed-with-exception-serviceunavailableexception-error-code-503
https://pytorch.org/serve/Troubleshooting.html#inference-request-failed-with-exception-serviceunavailableexception-error-code-503

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

5.2.1 User-Friendliness

TorchServe Each of the frameworks has a different method of serving. TorchServe
expects binary data, meaning the user can run inference on the framework via an HTTP
or gRPC request. Its management API allows users to easily manage models, including
registering, updating, and unregistering models on the fly.

Triton Inference Server Triton Inference server requires its own client to be set up to
run inference on the models. It also needs a particular model repository22 layout, which
requires precise file paths of the model files, as well as a configuration file. This is necessary
due to the fact that Triton can serve models from multiple frameworks, although it does
complicate the serving process.

TensorFlow Serving TensorFlow Serving expects the user to download the Serving
docker container23, and serve the models with it. As a consequence, most of the docu-
mentation focuses on this default serving method, which makes the process of running
TensorFlow Serving natively quite difficult. It expects its inputs for the model to be in
a serializable JavaScript Object Notation (JSON) format, such as NumPy arrays. As
a result, additional preprocessing time is needed for data deserialization once the input
arrives.

5.2.2 Documentation Quality

TorchServe The documentation quality of TorchServe is quite good. It includes pages
ranging from a quick setup guide to more complex topics, along with a Frequently Asked
Questions section. The documentation is updated weekly, with recent updates reflecting
the latest features and compatibility improvements, along with detailed configuration
options.

Triton Inference Server Triton Inference Server, in comparison, delves even deeper
than TorchServe. Its documentation provides an extensive insight into the inner workings
of the Triton architecture and the functionality of each component. The documentation is
also up-to-date, with new entries bi-weekly. providing comprehensive guides and tutorials
that reflect recent updates and new features in the Triton ecosystem.

TensorFlow Serving TensorFlow Serving caused a few issues that stem from the
unclarity of the documentation. Firstly, the documentation is split into multiple sources.
The main documentation is on the TensorFlow website,24 however, there are also tutorials
and guides on the Keras website.25 We think this is because some official model imple-
mentations come from Keras, and others from Kaggle Models (formerly TF Hub)17. The
content of its documentation is also not very extensive, although it contains articles on

22Model Repository - NVIDIA Triton Inference Server. URL: https://docs.nvidia.com/deeplearning/
triton-inference-server/user-guide/docs/user_guide/model_repository.html (visited on 20/06/2024)

23tensorflow/serving - Docker Image | Docker Hub. URL: https://hub.docker.com/r/tensorflow/
serving

24Serving Models | TFX | TensorFlow. URL: https://www.tensorflow.org/tfx/guide/serving (visited
on 20/06/2024)

25Serving TensorFlow models with TF Serving URL: https://keras.io/examples/keras_recipes/tf_
serving/ (visited on 20/06/2024)

Section 5 Egi Brako 24

https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/model_repository.html
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/model_repository.html
https://hub.docker.com/r/tensorflow/serving
https://hub.docker.com/r/tensorflow/serving
https://www.tensorflow.org/tfx/guide/serving
https://keras.io/examples/keras_recipes/tf_serving/
https://keras.io/examples/keras_recipes/tf_serving/

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

specific use cases. It is also unclear how often the TensorFlow Serving documentation is
updated.

5.2.3 Project Features

TorchServe TorchServe provides two very useful features, namely its reliance on binary
inference data, and custom model handlers. They provide a higher degree of customization
which is absent from the other two frameworks. This combination allows users to connect
with the APIs to interact with the model server and keep the work required to a minimum.
It reduced the effort required to set up and debug issues.

Triton Inference Server Triton Inference Server stands out in this regard, since it is
able to serve models of different frameworks. Other than PyTorch and TensorFlow, Triton
also serves models that have been converted to Open Neural Network Exchange (ONNX)
format, TensorRT models, Caffe2, and others. Furthermore, Triton implements model
ensembling, a feature it shares with TorchServe. Model ensembling involves chaining
together multiple models or pre-/postprocessing steps into a single pipeline for creating
predictions.

TensorFlow Serving TensorFlow Serving offers features like versioning for simultane-
ous model testing, deployment through containerization via Docker and Kubernetes, and
optimization options such as batching and caching for efficient inference handling. It also
includes built-in monitoring capabilities to track model performance and server health
metrics.

5.2.4 Community Support

TorchServe TorchServe is built and maintained by Amazon Web Services (AWS) in
collaboration with Facebook/Meta26. In the PyTorch Github repository, issues are gen-
erally responded to in a week, with some issues getting attention within a few days. As
of 20/06/2024, 21 out of 59 total issues are resolved.

Triton Inference Server Triton Inference Server, being an official project from NVIDIA,
likely benefits from dedicated full-time employees working on its development and main-
tenance. Although it has a smaller community compared to TensorFlow and PyTorch,
there are still discussions available on forums and GitHub. There are a lot more issues on
the GitHub page, with 56 out of 187 of them being resolved.

TensorFlow Serving TensorFlow Serving has the largest number of contributors (214)
and a large amount of resources available for support. It is a framework created by Google,
however, the extent to which Google maintains the project remains unclear. The issue
response time varies, but recent issues indicate that the maintainers are quite responsive,
with many issues addressed within days. As of 20/06/2024, only 10 issues have been
opened, with two of them being resolved.

26Introducing TorchServe: a PyTorch model serving framework URL: https://aws.amazon.com/
about-aws/whats-new/2020/04/introducing-torchserve/ (visited on 24/06/2024)

Section 5 Egi Brako 25

https://aws.amazon.com/about-aws/whats-new/2020/04/introducing-torchserve/
https://aws.amazon.com/about-aws/whats-new/2020/04/introducing-torchserve/

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

5.2.5 Maintenance and Update Frequency

TorchServe PyTorch TorchServe is currently still on major release 0. It follows a
quarterly release cycle with about 4 releases in the last year, aligning major updates with
PyTorch releases.

Triton Inference Server NVIDIA Triton Inference Server has the most constant re-
leases, with around 12 of them in the past year, maintaining a regular schedule towards
the end of the month.

TensorFlow Serving TensorFlow Serving follows a less predictable release cycle, due
to the fact that it is aligned with the releases of TensorFlow itself. There have been ap-
proximately 15 releases in the past year, including minor updates and consistent activity.
Minor and patch updates are released as needed to address specific issues or dependencies,
often first solved in the nightly builds. Overall, TensorFlow Serving and Triton Inference
Server exhibit more frequent updates compared to PyTorch Serve.

5.3 Evaluation

5.3.1 Performance

In Table 6, we clearly show the latency performance of all the frameworks, and highlight
the best performing frameworks. We can see that PyTorch is overall the best when
measuring prediction latency. Also referring to Figure 1 and 5, we can show that the
range of the latency results for all (but one) frameworks was quite stable, thus proving
that the results are accurate.

Frameworks PyTorch
Torchserve

TensorFlow
Serving

Triton
(PyTorch)

Triton
(TensorFlow)

ResNet50 11.29 21.43 12.87 16.89
Wav2Vec2 28.51 - 29.62 92.43
Wav2Vec2 (truncated) 18.33 54.20 16.92 28.87
BART 695.00 - - -

Table 6: Frameworks’ performance, based on latency at 1 user (in milliseconds)

Regarding the throughput, the results were consistent across different user counts,
with PyTorch and Triton (PyTorch) competing closely for first place. The throughput
performance table in Table 7 also points to the fact that the performance of TensorFlow
and Triton (TensorFlow) is consistently the worst, in most cases performing around 2x
worse than the best framework. Nevertheless, Triton Inference Server showed a good
capability to increase the prediction speed for TensorFlow models, bringing it closer to
that of PyTorch.

Considering these performance evaluations, the clear contenders for addressing RQ1
would be either PyTorch or Triton (PyTorch). PyTorch consistently shows the lowest
latency in the chosen models, making it ideal for real-time applications, with Triton (Py-
Torch) following closely. Whereas PyTorch excels in low latency, Triton (PyTorch) stands
out for high throughput across all models, only trailing behind the former framework.

Section 5 Egi Brako 26

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

Frameworks PyTorch
Torchserve

TensorFlow
Serving

Triton
(PyTorch)

Triton
(TensorFlow)

ResNet50 104.10 40.59 99.74 74.53
Wav2Vec2 35.16 - 41.43 24.51
Wav2Vec2 (truncated) 51.24 69.34 83.14 41.14
BART 1.4412 - - -

Table 7: Frameworks’ performance, based on throughput at 100 users (in RPS)

5.3.2 Usability

Usability scores ranging from 1-5 were assigned to each serving framework based on our
personal experience and observations. The scores align with the usability criteria detailed
in Section 4.3. A higher score indicates better usability, with a score of 5 given to a
framework that is intuitive to set up and deploy, with comprehensive and understandable
documentation, active community support, helpful features for model customization, and
frequent updates. Conversely, a score of 1 would indicate significant problems in usabil-
ity, such as convoluted setup processes, incompatibility with specific models, outdated
documentation, no community engagement, or infrequent updates.

Frameworks PyTorch
Torchserve

TensorFlow
Serving

NVIDIA
Triton

User-Friendliness 5 3 4
Documentation Quality 5 3 5
Project Features 5 4 5
Community support 4 5 4
Maintenance and Update Frequency 4 5 5

Table 8: Usability scores (1-5). Higher scores indicate better usability.

The scores shown in Table 8 are crucial for adressing RQ2. PyTorch emerges as the
most usable framework, scoring nearly perfect across all criteria. Its relatively easy setup,
comprehensive documentation, and features set it apart from the other frameworks.

Section Summary This section has presented the findings from our performance tests
and our usability analysis. PyTorch consistently outperforms TensorFlow and Triton,
although TensorFlow shows significant improvement over past benchmarks. In terms of
usability, PyTorch’s key takeaway is its great user-friendliness, TensorFlow’s is its larger
community support, whereas Triton has the most unique project features. This two-step
analysis provides a holistic view of each framework, further helping our understanding of
their respective strengths and weaknesses.

Section 5 Egi Brako 27

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

6 Discussion
This section discusses the main findings of this research. Firstly, Section 6.1 addresses
the challenges faced during the set up and execution of the experiments. In Section 6.2, it
delves into the interpretation of the results obtained from the experiments by tying them
back to our earlier defined use cases, showing how the different inference frameworks
impact practical scenarios and real-world applications.

6.1 Challenges

6.1.1 Challenges with Wav2Vec2 in TensorFlow

As mentioned above, TensorFlow could not serve Wav2Vec2 due to its implementation in
TensorFlow Hub27, it violated our usability constraints because the SavedModel’s serving
signature is constrained, and does not allow inputs of a larger size. Specifically, the
model requires an input tensor with dimensions (-1, 50000), meaning each audio input
sequence must have 50,000 samples. Initially, we tried defining our own input format,
but it did not work. We are unsure why, but our investigation suggests it might be
due to a specific operation in the TensorFlow graph of the Wav2Vec2 model. This issue
seems to occur during the convolutional layer in the positional convolutional embedding
(pos_conv_embed) of the Wav2Vec2 encoder.

After numerous unsuccessful attempts, we decided to stop pursuing this approach. Our
solution is to ensure all frameworks adhere to the constraint of the TensorFlow model,
which we defined in Section 5.1.3. Since we are only feeding the model inputs of batch size
1, all we have to do to fit the required size of (-1, 50000) is truncate or pad the processed
audio). Although this workaround allows for performance evaluation across frameworks,
it introduces certain inaccuracies. This (unusual) truncation process itself should ideally
not be included in the performance metrics, as it is part of preprocessing rather than
model inference. However, since we are looking for an overall comparison of the entire
model inference pipeline, and since as shown in Listing 2, all of the inputs are being
truncated in the same method, we are considering this step part of the preprocessing.

6.1.2 Challenges with serving BART

Triton typically requires models to be converted to TorchScript via tracing to be able
to process a model’s inputs and outputs in a static, predictable way. To achieve this,
PyTorch leverages its JIT compiler to translate a subset of Python programs into a repre-
sentation that can have optimizations run on it and can get interpreted by the TorchScript
interpreter at runtime.

However, tracing dynamic operations, such as the .generate() function of the BART
model, may be difficult or even impossible due to the nature of the JIT compiler in
PyTorch. The problem here lies with the .generate() method itself, which has loops of
variable length and control flows that are not handled well by torch.jit.trace. This
method of tracing essentially captures the operations executed over a single forward pass

27Kaggle | Wav2Vec2. URL: https://www.kaggle.com/models/kaggle/wav2vec2/tensorFlow2/960h/1?
tfhub-redirect=true (visited on 18/06/2024)

Section 6 Egi Brako 28

https://www.kaggle.com/models/kaggle/wav2vec2/tensorFlow2/960h/1?tfhub-redirect=true
https://www.kaggle.com/models/kaggle/wav2vec2/tensorFlow2/960h/1?tfhub-redirect=true

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

to create a static graph, hence failing to correctly trace operations with dynamic control
flow.

Tracing only correctly records functions and modules that are not data-dependent
(e.g., do not have conditionals on data in tensors) and do not have any un-
tracked external dependencies (e.g., perform input/output or access global vari-
ables). Tracing only records operations done when the given function is run
on the given tensors. Therefore, the returned ScriptModule will always run the
same traced graph on any input. This has some important implications when
your module is expected to run different sets of operations, depending on the
input and/or the module state. [Dev24]

Serving the BART model via TensorFlow gave us challenges similar to those encoun-
tered with the Wav2Vec2 model. The main difficulty arose when trying to serve the BART
model in SavedModel format with a custom signature that utilized the .generate()
method from HuggingFace’s implementation.

TensorFlow Serving requires models to be saved in the SavedModel format, which
includes defined signatures for serving. However, as we mentioned above, the .generate()
method in BART involves loops and conditionals that are not easily captured in a static
graph format. After exporting the model with a custom serving signature, TensorFlow
Serving encountered issues with serving it. Based on the TensorFlow Serving logs, and
the issue we created on GitHub28, we believe the problem stems from the creation of
dynamic tensors within the method itself. This poses challenges for Accelerated Linear
Algebra (XLA)29, the compiler that optimizes the runtime of TensorFlow models.

The inability to serve BART with TensorFlow shows an important limitation: The
static graph requirements imposed by these frameworks limit their ability to handle models
with complex control flows, such as generative models. In the end, we were only able to
serve the BART model with PyTorch, as TorchServe does not require the model to be
explicitly compiled with JIT. It also provides the ability to write custom model handlers,
allowing us to call the .generate() method during the handling step, after preprocessing.

6.2 Interpretation of the results

Our results suggest that, although there have been quite a few differences from the Biano-
AI research [AI21], the best-performing framework is still PyTorch. Nevertheless, we
can see that none of the tests showed any failed requests, different from the preceding
research. The individual performance of all frameworks has also improved considerably,
with TensorFlow Serving improving the most. This suggests that ongoing updates and
community contributions are improving its capabilities, even though it still lags behind
PyTorch in some aspects.

Based on the results in Tables 6 and 7, it is evident that the performance of the ML
inference frameworks varies significantly, with each framework exhibiting strengths and
weaknesses in different areas.

PyTorch consistently demonstrates lower latency compared to other frameworks. This
28Issue #2217 · tensorflow/serving · GitHub URL:https://github.com/tensorflow/serving/issues/2217

(visited on 19/06/2024)
29OpenXLA Project. URL: https://openxla.org/xla (visited on 19/06/2024)

Section 6 Egi Brako 29

https://github.com/tensorflow/serving/issues/2217
https://openxla.org/xla

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

lower latency makes PyTorch a highly suitable choice for applications where real-time pre-
dictions are crucial, such as in ASR tasks. Additionally, PyTorch exhibits high through-
put, meaning it can handle a large number of requests per second without significant
performance degradation. This makes PyTorch ideal for high-demand applications where
both low latency and high throughput are required.

TensorFlow, on the other hand, generally shows higher latency compared to PyTorch
and Triton (PyTorch). This higher latency might be a limiting factor for applications that
require immediate responses. However, TensorFlow’s throughput is competitive in the
ASR task, especially in scenarios with high user counts. This indicates that TensorFlow
can still be effective in applications where throughput is prioritized over latency, making
it a viable option for certain types of high-demand environments.

Triton Inference Server, when using PyTorch models, shows competitive latency simi-
lar to native PyTorch. This makes it another strong contender for real-time applications.
Triton’s throughput, particularly with PyTorch models, is the highest among the frame-
works evaluated. This high throughput makes Triton highly suitable for applications that
need to handle very high demand. Even when using TensorFlow models, Triton shows
improved latency and throughput compared to native TensorFlow, making it a better
choice for TensorFlow-based applications that require higher performance.

To apply the results, we must also understand the metrics. Our use cases pertain
more to the relationship with the results, rather than the results proper. This is why we
discuss them in this section, rather than Section 5. Let us consider UC2. For this use
case, the important aspect would be to offer the users that want AIaaS a response from
the model as soon as possible. When considering a real scenario like this, the serving
framework might not be under load constantly, which means one of the main goals would
be to offer as low of a latency as possible. This is why when we look at the results, we
consider the latency concerning the test with a single virtual user. This is also why we
would recommend the choice of either PyTorch or Triton (PyTorch), instead of the (much)
slower TensorFlow Serving. However, for applications where TensorFlow’s ecosystem and
tools are needed, its performance may still be acceptable, especially given the significant
community support and documentation available.

In UC1, where usability is paramount for users with limited technical expertise, the
choice of serving framework extends beyond performance metrics alone. Ease of setup, de-
ployment, and maintenance are critical factors influencing usability. We saw PyTorch be-
ing the best option here, scoring the highest in our usability scores (see Table 8). Its com-
prehensive documentation and community support ensure that users can deploy models
with minimal issues and easily troubleshoot problems that arise. It should be mentioned
that Triton also performs well, particularly in serving models from other frameworks and
offering many features for optimization.

Section Summary In this section, we have brought attention to the major problems
plaguing TensorFlow Serving and Triton Inference Server, namely their problems with
Serving Signatures and static graph requirements, respectively. We have also interpreted
the results, discussing their implications for the selection of inference frameworks. Py-
Torch’s superior performance and user-friendliness make it the preferred choice, though
Triton’s flexibility and TensorFlow’s extensive ecosystem are also valuable. This section
emphasizes the importance of aligning framework choice with specific requirements.

Section 6 Egi Brako 30

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

7 Conclusion
This thesis has provided a quantitative and qualitative comparison of various ML inference
frameworks. The research question aimed to identify the most suitable framework for
different use cases based on performance and usability metrics.

The methodology involved a carefully constructed approach to ensure the reliability
of our findings. We selected representative models for three distinct tasks. Each model
was deployed and tested on the respective frameworks under controlled conditions. Our
experiments included two different types of load-tests: single-stream and multi-stream.
Both performance and usability were assessed based on clear, concise criteria that we
constructed.

Our performance evaluation revealed that PyTorch consistently outperformed the
other frameworks in terms of latency and throughput across different models, although
Triton followed closely behind. Specifically, PyTorch demonstrated the lowest latency
for the image classification and ASR tasks, making it an excellent choice for real-time
applications.

Moving on from the performance evaluation, the usability scores show that PyTorch
came out on top, although once again Triton came in close second. Its setup process, broad
documentation, and active community support contributed to this high score. When
considering TensorFlow’s usability, however, we can see that it was hindered by vague
setup procedures and unclear documentation.

This study’s contribution lies in its in-depth analysis of the ML serving frameworks,
providing valuable insights for different use cases and applications. By evaluating both
performance and usability, this research shows that the choice of serving framework is as
critical as the selection of the model for ML tasks, proving that the serving framework
can significantly impact the overall effectiveness and efficiency of the deployed model.

Our study was limited to the default configurations of the frameworks and models,
therefore future work should include testing the ML models without any constraints, and
exploring which frameworks would be the most effective at running the different models.
Other than that, expanding the scope of future work to investigate performance across
more diverse use cases, or to include novel frameworks, such as in edge computing, could
provide valuable insights into the field of ML.

In conclusion, this thesis has provided a thorough comparison of TensorFlow Serving,
PyTorch TorchServe, and NVIDIA Triton Inference Server, showcasing their strengths
and weaknesses in different scenarios. The insights gained from this research can guide
users to select the most suitable framework based on particular requirements.

Section 7 Egi Brako 31

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

References
[AI21] Biano AI. Quantitative Comparison of Serving Platforms for Neural Networks.

Website. Accessed: 2024-06-20. Aug. 2021. url: https://biano-ai.github.io/
research/2021/08/16/quantitative - comparison - of - serving - platforms- for -
neural-networks.html.

[Bae+20] Alexei Baevski et al. “wav2vec 2.0: A Framework for Self-Supervised Learning
of Speech Representations”. In: CoRR abs/2006.11477 (2020). arXiv: 2006.
11477. url: https://arxiv.org/abs/2006.11477.

[BH22] Hojat Behrooz and Yeganeh M. Hayeri. “Machine Learning Applications in
Surface Transportation Systems: A Literature Review”. In: Applied Sciences
12.18 (2022). issn: 2076-3417. doi: 10.3390/app12189156. url: https://www.
mdpi.com/2076-3417/12/18/9156.

[Cha+19] Ryan Chard et al. “DLHub: Model and Data Serving for Science”. In: 2019
IEEE International Parallel and Distributed Processing Symposium (IPDPS).
2019, pp. 283–292. doi: 10.1109/IPDPS.2019.00038.

[Cho18] Aditya Chopra. “Exploring Novel Architectures For Serving Machine Learning
Models”. In: 2018. url: https://api.semanticscholar.org/CorpusID:51932875.

[CR19] Jiasi Chen and Xukan Ran. “Deep Learning With Edge Computing: A Re-
view”. In: Proceedings of the IEEE 107.8 (2019), pp. 1655–1674. doi: 10.1109/
JPROC.2019.2921977.

[Cra+17] Daniel Crankshaw et al. “Clipper: A {Low-Latency} online prediction serv-
ing system”. In: 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). 2017, p. 615.

[Dev+18] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding”. In: CoRR abs/1810.04805 (2018). arXiv: 1810.
04805. url: http://arxiv.org/abs/1810.04805.

[Dev24] PyTorch Developers. torch.jit.trace | PyTorch 2.3 documentation. Accessed:
19-June-2024. 2024. url: https://pytorch.org/docs/stable/generated/torch.
jit.trace.html.

[DGN17] Utsav Drolia, Katherine Guo, and Priya Narasimhan. “Precog: prefetching
for image recognition applications at the edge”. In: Proceedings of the Second
ACM/IEEE Symposium on Edge Computing. SEC ’17. San Jose, California:
Association for Computing Machinery, 2017. isbn: 9781450350877. doi: 10.
1145/3132211.3134456.

[DHB20] Matthew F. Dixon, Igor Halperin, and Paul Bilokon. Machine Learning in
Finance: From Theory to Practice. Springer International Publishing, 2020.
Chap. 1. Introduction, pp. 3–40. isbn: 9783030410681. doi: 10.1007/978-3-
030-41068-1. url: http://dx.doi.org/10.1007/978-3-030-41068-1.

[He+15] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: CoRR
abs/1512.03385 (2015). arXiv: 1512.03385. url: http://arxiv.org/abs/1512.
03385.

Section 7 Egi Brako 32

https://biano-ai.github.io/research/2021/08/16/quantitative-comparison-of-serving-platforms-for-neural-networks.html
https://biano-ai.github.io/research/2021/08/16/quantitative-comparison-of-serving-platforms-for-neural-networks.html
https://biano-ai.github.io/research/2021/08/16/quantitative-comparison-of-serving-platforms-for-neural-networks.html
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2006.11477
https://doi.org/10.3390/app12189156
https://www.mdpi.com/2076-3417/12/18/9156
https://www.mdpi.com/2076-3417/12/18/9156
https://doi.org/10.1109/IPDPS.2019.00038
https://api.semanticscholar.org/CorpusID:51932875
https://doi.org/10.1109/JPROC.2019.2921977
https://doi.org/10.1109/JPROC.2019.2921977
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://pytorch.org/docs/stable/generated/torch.jit.trace.html
https://pytorch.org/docs/stable/generated/torch.jit.trace.html
https://doi.org/10.1145/3132211.3134456
https://doi.org/10.1145/3132211.3134456
https://doi.org/10.1007/978-3-030-41068-1
https://doi.org/10.1007/978-3-030-41068-1
http://dx.doi.org/10.1007/978-3-030-41068-1
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

[Her+15] Karl Moritz Hermann et al. “Teaching Machines to Read and Comprehend”.
In: CoRR abs/1506.03340 (2015). arXiv: 1506.03340. url: http://arxiv.org/
abs/1506.03340.

[Jav+22] Mohd Javaid et al. “Significance of machine learning in healthcare: Features,
pillars and applications”. In: International Journal of Intelligent Networks 3
(2022), pp. 58–73. issn: 2666-6030. doi: https ://doi . org/10 .1016/ j . ijin .
2022 . 05 . 002. url: https : / /www . sciencedirect . com/ science / article / pii /
S2666603022000069.

[Jia+20] Xiaoqi Jiao et al. “TinyBERT: Distilling BERT for Natural Language Un-
derstanding”. In: Findings of the Association for Computational Linguistics:
EMNLP 2020. Ed. by Trevor Cohn, Yulan He, and Yang Liu. Online: Associa-
tion for Computational Linguistics, Nov. 2020, pp. 4163–4174. doi: 10.18653/
v1/2020.findings-emnlp.372. url: https://aclanthology.org/2020.findings-
emnlp.372.

[Lew+19] Mike Lewis et al. “BART: Denoising Sequence-to-Sequence Pre-training for
Natural Language Generation, Translation, and Comprehension”. In: CoRR
abs/1910.13461 (2019). arXiv: 1910.13461. url: http://arxiv.org/abs/1910.
13461.

[Ols+17] Christopher Olston et al. “TensorFlow-Serving: Flexible, High-Performance
ML Serving”. In: CoRR abs/1712.06139 (2017). arXiv: 1712.06139. url: http:
//arxiv.org/abs/1712.06139.

[Pan+15] Vassil Panayotov et al. “Librispeech: An ASR corpus based on public domain
audio books”. In: 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2015, pp. 5206–5210. doi: 10.1109/ICASSP.
2015.7178964.

[Ran+18] Xukan Ran et al. “DeepDecision: A Mobile Deep Learning Framework for
Edge Video Analytics”. In: IEEE INFOCOM 2018 - IEEE Conference on
Computer Communications. 2018, pp. 1421–1429. doi: 10.1109/INFOCOM.
2018.8485905.

[Red+19] Vijay Janapa Reddi et al. “MLPerf Inference Benchmark”. In: Computing Re-
search Repository (CoRR) abs/1911.02549 (2019). arXiv: 1911.02549. url:
http://arxiv.org/abs/1911.02549.

[Red+21] Vijay Janapa Reddi et al. “The Vision Behind MLPerf: Understanding AI
Inference Performance”. In: IEEE Micro 41.3 (2021), pp. 10–18. doi: 10.1109/
MM.2021.3066343.

[Shi+16] Weisong Shi et al. “Edge Computing: Vision and Challenges”. In: IEEE In-
ternet of Things Journal 3.5 (2016), pp. 637–638. doi: 10.1109/JIOT.2016.
2579198.

[Vas+17] Ashish Vaswani et al. “Attention Is All You Need”. In: CoRR abs/1706.03762
(2017). arXiv: 1706.03762. url: http://arxiv.org/abs/1706.03762.

Section Egi Brako 33

https://arxiv.org/abs/1506.03340
http://arxiv.org/abs/1506.03340
http://arxiv.org/abs/1506.03340
https://doi.org/https://doi.org/10.1016/j.ijin.2022.05.002
https://doi.org/https://doi.org/10.1016/j.ijin.2022.05.002
https://www.sciencedirect.com/science/article/pii/S2666603022000069
https://www.sciencedirect.com/science/article/pii/S2666603022000069
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://aclanthology.org/2020.findings-emnlp.372
https://aclanthology.org/2020.findings-emnlp.372
https://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1712.06139
http://arxiv.org/abs/1712.06139
http://arxiv.org/abs/1712.06139
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/INFOCOM.2018.8485905
https://doi.org/10.1109/INFOCOM.2018.8485905
https://arxiv.org/abs/1911.02549
http://arxiv.org/abs/1911.02549
https://doi.org/10.1109/MM.2021.3066343
https://doi.org/10.1109/MM.2021.3066343
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/JIOT.2016.2579198
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

A Appendix
A.1 Listings

1 desired_length = 50000
2 current_length = triton_inputs.shape [1]
3 padding_length = max(0, desired_length - current_length)
4 truncation_length = max(0, current_length - desired_length)
5 if padding_length > 0:
6 triton_inputs = np.pad(triton_inputs , ((0, 0), (0, padding_length)))
7 elif truncation_length > 0:
8 triton_inputs = triton_inputs [:, :desired_length]

Listing 2: Truncating of the inputs for the wav2vec2 model (Triton)

A.2 Figures

Figure 4: Throughput of the Wav2vec2 model

Section A Egi Brako A1

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

Figure 5: Latency results for 100 virtual users

A.3 Tables

User Count 1 10 25 50 75 100
Framework

PyTorch 11.29 95.37 242.59 477.26 709.51 793.68
TensorFlow 21.43 32.26 77.37 575.80 983.26 1367.72
Triton (PyTorch) 12.87 82.76 197.41 431.56 681.01 928.29
Triton (TensorFlow) 16.89 130.93 328.86 660.60 985.50 1317.58

Table 9: Prediction latency of the ResNet50 model

Section A Egi Brako A2

A Quantitative and Qualitative Comparison of Machine Learning Inference Frameworks

User Count 1 10 25 50 75 100
Framework

PyTorch 34.16 35.38 35.34 35.07 34.97 35.16
Triton (PyTorch) 33.14 41.40 41.47 41.28 40.79 41.43
Triton (TensorFlow) 6.55 21.85 24.62 24.34 24.45 24.51

Table 10: Throughput of the Wav2Vec2 model

User Count 1 10 25 50 75 100
Framework

PyTorch 51.84 50.67 49.69 49.67 50.41 51.24
TensorFlow 10.60 57.10 65.50 68.77 68.82 69.34
Triton (PyTorch) 57.26 84.00 83.73 83.47 83.66 83.14
Triton (TensorFlow) 33.98 43.13 43.05 42.96 42.83 41.14

Table 11: Throughput of the Wav2Vec2 (Truncated) model

User Count 1 10 25 50 75 100
Framework

PyTorch 1.3942 1.4142 1.4139 1.4433 1.4465 1.4412

Table 12: Throughput of the BART model (in requests per second)

Section A Egi Brako A3

