
Automatic Instrumentation and PGO Optimization of HPC Compute Dwarfs
Anja Gerbes1, Panagiotis Adamidis2, Julian Kunkel1

1Georg-August-Universität Göttingen 2Deutsches Klimarechenzentrum (DKRZ)

PASCIT WORKFLOW

Yes

No

select further select

values

Results

visualize

execute

command

?

Measurements

function

start

Measurement

finish

Analysis

finish
Measurement

start

Analysis

measured

Profiler

select

Option
Compiler

oprofile

code

instrumentation

likwid

select
profiler

perf

no

instrumentation

Performance Analysis Evaluation

Configuration Transformation Compiling

3 types of data:

• fixed data
→ configuration variables stored
in different files related to their
issues, like general benchmark
data stored in nested dictionary

• additional data per benchmark
→ the user wants to report on,
like the function names coming
from source code scan

• user environment data
→ user determines, like working
directory where benchmarks
are downloaded & intermediate
results are kept

Profile

Instrumentation

only if likwid is chosen as a profiler
→ instrumentation step is necessary where start & stop

directives of LIKWID API are automated integrated to code

likwid

3. after settings are set, benchmarks are downloaded
→ user can choose compiler options with which

optimization flags the chosen benchmark should be compiled

Compile

4. benchmarks are compiled
→ profiling starts

2. download benchmark
→ check dependencies
→ compile benchmark

Download

user decide to run the process in docker container

Benchmark
Configuration

Analysis

1. analysis starts with configuration settings
→ user can choose several options

Configuration

Docker

- Profiler (perf, likwid, oprofile)
- LLVM/Clang 10
- Python Installation
- Ubuntu 20.04

Docker Container with

INTRODUCTION
Optimizing code for performance is essential in high-performance computing (HPC) to fully utilize
modern processors. LLVM, an open-source compiler, facilitates Profile-Guided Optimization (PGO)
and enables integration with profiling tools like LIKWID, which measures hardware performance
metrics such as cache usage and CPU cycles. By combining LLVM’s optimization capabilities with
LIKWID’s profiling, developers can automatically instrument source code to collect runtime data,
allowing for optimizations that align with real-world application behavior. This approach enhances
the performance of computationally intensive applications, though challenges remain in scaling it for
large applications and reducing the overhead of automatic instrumentation.

ABSTRACT
Profile-guided optimization (PGO) is an effective technique for enhancing program performance by
utilizing runtime profiling data to guide optimizations. This poster explores the integration of PGO
with the LLVM compiler infrastructure, focusing on the use of LLVM and Clang for source code in-
strumentation and optimization. Through source-level instrumentation, we capture detailed profiling
information that is later used to optimize execution paths, enhance branch prediction, and refine func-
tion inlining decisions. The process begins with the compilation of the source code using Clang with
appropriate instrumentation flags, which produce profiling data during program execution. This data
is subsequently fed back into the LLVM compilation pipeline for further optimization during sub-
sequent builds. We discuss the steps involved in this workflow, challenges encountered, and the
impact of various optimizations on application performance. The study demonstrates the potential of
LLVM’s toolchain in efficiently applying profile-guided transformations, as well as the advantages of
fine-tuned performance through data-driven decisions enabled by Clang’s instrumentation capabili-
ties.

TODAY’S CHALLENGES IN HPC
High-Performance Computing (HPC) is an integral part of today’s science in order to solve in-
creasingly complex mathematical calculations. The use of supercomputers has become much more
widespread. Gone are these days of niche experimentation, as we are in the realm of utilizing HPC
for immediate needs. Out from a niche to a useful and important tool to extract insight from big data.
Challenges and today’s requirements in modern HPC are the ever-increasing complexity of computer
architectures towards the exascale computing era. Gordon Moore’s law predicted that the number
of transistors would double in less than two years and has already reached its fundamental physical
limit.

MOTIVATION AND GOALS
Studying the compiler’s deficits in terms of performance for relevant HPC motifs in order to identify
optimization potential is a major task to identify why compilers can not make necessary optimizations
when compiling HPC applications. The key aspects are:

1. Study the compiler’s deficits by utilizing HPC motifs

2. Theoretical analysis by utilizing CPU counters

3. Identification of optimization potential by manual code optimization

4. Automatisation of optimization process

LLVM CHALLENGES
The LLVM compiler faces several challenges in its design and implementation, including:
• Complexity of Language Support

• Maintaining Portability

• Performance Tuning

• Optimizing for Modern Heterogeneous
Architectures

• Optimization Across Multiple Computer
Architectures

LLVM INSIGHTS
Abstract Syntax Tree (AST) LLVM uses AST to analyze and optimize the source code.

Intermediate Representation (IR) LLVM uses IR to translate the source code into an intermediate
representation that can be used by various optimizers and generators.

Compiler is used to read the source code and translate it to machine level instructions.

Optimizer LLVM uses a variety of optimizers, eg. constant factorization, loop shortening and register
optimization, to optimize the source code.

Linker is used by LLVM to connect the objects and generate the binary code.

Profile-guided optimization (PGO) - compiler technique for improving the compilation process,
where ones collects a profile, through instrumentation or sampling, then uses that information
to guide the compilation process.

INSTRUMENTATION AND PGO INSIGHTS
Clang is a powerful and library-friendly C++-compiler, which makes a source-to-source instrumenta-
tion of C/C++ code possible. The goal is to set up the Clang libraries to parse some source code into
an AST and then traverse the AST and modify the source code. The aim is to instrument the likwid
profiler with the help of clang.

LibAstMatchers match interesting nodes of the AST and execute code that uses the matched nodes

RecursiveASTVisitor enables you to traverse the entire Clang AST and visits each node in a depth-
first manner. (Figure 1)

TraverseDecl(Decl *x) traverse the AST and going to each node
WalkUpFrom_ (_ *x)) will walk up the class hierarchy, starting from the node’s dynamic type,

until the top-most class (e.g. Stmt, Decl or Type) is reached.
Visit_ (_ *x) will visit the node.
_ can be statements (Stmt), declarations (Decl) or types (Type)

Rewriter manage the code rewriting task

InsertText() insert the specified string at the specified location

ASTConsumer gives you fine grained control over the parsing, read ASTs and will call the Recur-
siveASTVisitor

LLVM IR-level instructions enriched by the profiling hooks are embedded into the program to track
hotspots, execution paths, and other performance metrics during runtime. (Figure 3)

CONCEPT & METHODOLOGY

Automatic Source-Code
Instrumentation via LLVM/Clang

The green boxes are the ones that should
be automatically added to the source code.

RecursiveASTVisitor

VisitFunctionDecl

→ insert Text

LIKWID MARKER INIT;
LIKWID MARKER THREADINIT;

VisitStmt

if ForStmt

→ insert Text before For Statement

LIKWID MARKER START(’Compute’);

if ForStmt

→ insert Text after For Statement

LIKWID MARKER STOP(’Compute’);

if ReturnStmt

→ insert Text

LIKWID MARKER CLOSE;

Source Code is automatically instrumented

//your code to measure

Fig. 1: Clang libraries workflow

Applying the automatic
source code profiling

build your own llvm compiler

compile the automatic source code

instrumentation framework

executable

run the executable (from second step)

on the application file

performance optimization with

likwid profiler

pgo optimization

Fig. 2: Steps

Profile-Guided Optimization
via LLVM/Clang

compile

source instruction levelLLVM IR level

instrumented executables

run instrumented executable

PGO compile

optimized executable

Fig. 3: PGO workflow


