Big Data Analytics

Lecture BigData Analytics

Julian M. Kunkel

julian.kunkel@googlemail.com

University of Hamburg / German Climate Computing Center (DKRZ)

2017-10-20

Disclaimer: Big Data software is constantly updated, code samples may be outdated.

Outline

- 1 Lecture
- 2 Big Data Analytics
- 3 BigData Challenges
- 4 Gaining Insight with Analytics
- 5 Use Cases
- 6 Programming
- 7 Summary

About DKRZ

●000

German Climate Computing Center (DKRZ)

Partner for Climate Research Maximum Compute Performance. Sophisticated Data Management. Competent Service.

Scientific Computing

- Research Group of Prof. Ludwig at the University of Hamburg
- Embedded into DKRZ

Research

Lecture 0000

- Analysis of parallel I/O
- I/O & energy tracing tools
- Middleware optimization

- Alternative I/O interfaces
- Data reduction techniques
- Cost & energy efficiency

Lecture

Lecture

Concept of the lecture

- The lecture is focusing on applying technology and some theory
- Theory
 - Data models and data processing
 - Statistics and machine learning
 - System architectures
 - Algorithms and data structures
- Applying technology
 - Learning about various state-of-the art technology
 - Hands-on for understanding the key concepts
 - Languages: R and Python, (Java is important but not used)
- The domain of big data is overwhelming, especially technology
- It is a crash course for several topics such as statistics and databases
- ⇒ it is not the goal to learn and understand every aspect in this lecture

Lecture (2)

Slides

- Many openly accessible sources have been used
 - They are cited by a number
 - The reference slide provides the link to the sources
- For figures, a reference is indicated by Source: [Author]¹ [title]¹ [ref]
- In the title, an [ref] means that this reference has been used for the slide, some text may be taken literally

Exercise

- Unfortunately no student assistant found so corrections during exercise...
- Weekly delivery, processing time about 8 hours / per week estimated
- Teamwork of two people (groups are important to keep the time limit)

¹ If available

- **Big Data Analytics**

Scientific Method

Based on: The Scientific Method as an Ongoing Process, ArchonMagnus[22]

Pillars of the Scientific Method

Pillars of Science: Modern Perspective

Idea of Big Data Analytics

Big Data

- Vast amounts of data are available
- Many heterogene data sources
- Raw data is of low value (fine grained)

Analytics

- Analyzing data ⇒ Insight == value
 - For academia: knowledge
 - For industry: business advantage and money
- Levels of insight primary abstraction levels of analytics
 - **Exploration**: study data and identify properties of (subsets) of data
 - Induction/Inference: infer properties of the full population
- Big data tools allow to construct a theory/model and validate it with data
 - Statistics and machine learning provide algorithms and models
 - Visual methods support data exploration and analysis

Example Models

Similarity is a (very) simplistic model and predictor for the world

- Humans use this approach in their cognitive process
- Uses the advantage of BigData

Weather prediction

- You may develop and rely on complex models of physics
- Or use a simple model for a particular day; e.g., expect it to be similar to the weather of the typical day over the last X years
 - Used by humans: rule of thumb for farmers

Preferences of Humans

- Identify a set of people which liked items you like
- Predict you like also the items those people like but haven't rated

Relevance of Big Data

- Big Data Analytics is emerging
- Relevance increases compared to supercomputing

Google Search Trends, relative searches

Roles in the Big Data Business

Data scientist

Data science is a systematic method dedicated to knowledge discovery via data analysis [1]

- In business, optimize organizational processes for efficiency
- In science, analyze experimental/observational data to derive results

Data engineer

Data engineering is the domain that develops and provides systems for managing and analyzing big data

- Build modular and scalable data platforms for data scientists
- Deploy big data solutions

Typical Skills

Data scientist

- Statistics + (mathematics) background
- Computer science
 - Programming, e.g.: R, (SAS,) Java, Scala, Python
 - Machine learning
- Some domain knowledge for the problem to solve

Data engineer

- Computer science background
 - Databases
 - Software engineering
 - Massively parallel processing
 - Real-time processing
- Languages: C++, Java, (Scala,) Python
- Understand performance factors and limitations of systems

- BigData Challenges

BigData Challenges & Characteristics

Source: MarianVesper [4]

Volume: The size of the Data

What is Big Data

Terrabytes to 10s of petabytes

What is not Big Data

A few gigabytes

Examples

- Wikipedia corpus with history ca. 10 TByte
- Wikimedia commons ca. 23 TByte
- Google search index ca. 46 Gigawebpages²
- YouTube per year 76 PByte (2012³)

²http://www.worldwidewebsize.com/

³https://sumanrs.wordpress.com/2012/04/14/youtube-yearly-costs-for-storagenetworking-estimate/

Velocity: Data Volume per Time

What is Big Data

30 KiB to 30 GiB per second (902 GiB/year to 902 PiB/year)

What is not Big Data

A never changing data set

Examples

- LHC (Cern) with all experiments about 25 GB/s ⁴
- Square Kilometre Array 700 TB/s (in 2018) 5
- 50k Google searches per s 6
- Facebook 30 Billion content pieces shared per month ⁷

⁴http://home.web.cern.ch/about/computing/processing-what-record

⁵http://venturebeat.com/2014/10/05/how-big-data-is-fueling-a-new-age-in-space-exploration/

⁶http://www.internetlivestats.com/google-search-statistics/

⁷https://blog.kissmetrics.com/facebook-statistics/

Data Sources

Enterprise data

- Serves business objectives, well defined
- Customer information
- Transactions, e.g., purchases

Experimental/Observational data (EOD)

- Created by machines from sensors/devices
- Trading systems, satellites
- Microscopes, video streams, smart meters

Social media

- Created by humans
- Messages, posts, blogs, Wikis

Variety: Types of Data

- Structured data
 - Like tables with fixed attributes
 - Traditionally handled by relational databases
- Unstructured data
 - Usually generated by humans
 - Examples: natural language, voice, Wikipedia, Twitter posts
 - Must be processed into (semi-structured) data to gain value
- Semi-structured data
 - Has some structure in tags but it changes with documents
 - Examples: HTML, XML, JSON files, server logs

What is Big Data

- Use data from multiple sources and in multiple forms
- Involve unstructured and semi-structured data

Veracity: Trustworthiness of Data

What is Big Data

- Data involves some uncertainty and ambiguities
- Mistakes can be introduced by humans and machines
- Examples
 - People sharing accounts
 - Like sth. today, dislike it tomorrorw
 - Wrong system timestamps

Data Quality is vital!

Analytics and conclusions rely on good data quality

- Garbage data + perfect model => garbage results
- Perfect data + garbage model => garbage results

GIGO paradigm: Garbage In – Garbage Out

Value of Data

What is Big Data

- Raw data of Big Data is of low value
 - For example, single observations
- Analytics and theory about the data increases the value
 - Analytics transform big data into smart (valuable) data!

Big Data Analytics Value Chain

■ There are many visualizations of the processing and value chain

Source: Andrew Stein [8]

From Big Data to the Data Lake [20]

- With cheap storage costs, people promote the concept of the data lake
- Combines data from many sources and of any type
- Allows for conducting future analysis and not miss any opportunity

Attributes of the data lake

- Collect everything: all time all data: raw sources and processed data
 - Decide during analysis which data is important, e.g., no "schema" until read
- Dive in anywhere: enable users across multiple business units to
 - Refine, explore and enrich data on their terms
- Flexible access: shared infrastructure supports various patterns
 - Batch, interactive, online, search

Data Science vs. Business Intelligence (BI)

Characteristics of BI

- Provides pre-created dashboards for management
 - Repeated visualization of well known analysis steps
- Deals with structured data
- Typically data is generated within the organization
- Central data storage (vs. multiple data silos)
- Handeled well by specialized database techniques

Typical types of questions and insight

- Customer service data: "what business causes customer wait times"
- Sales and marketing data: "which marketing is most effective"
- Operational data: "efficiency of the help desk"
- Employee performance data: "who is most/least productive"

27/59

Privacy

- Privacy is a challenge for the big data business
- Be aware of privacy issues if you deal with personal/private information
- German privacy laws are more strict than those of other countries

7iel des Datenschutzes

Recht auf informationelle Selbstbestimmung

- Schutz des Einzelnen vor beeinträchtigung des Persönlichkeitsrechts durch den Umgang mit seinen personenbezogenen⁸ Daten
- Besonderer Schutz für Daten über Gesundheit, ethnische Herkunft. religiöse, gewerkschaftschliche oder sexuelle Orientierung

Iulian M. Kunkel Lecture BigData Analytics, WiSe 17/18

⁸§3 BDSG, Einzelangaben über persönliche oder sachliche Verhältnisse einer bestimmten oder bestimmbaren natürlichen Person

Wichtige Grundsätze des Gesetzes [10]

- Verbotsprinzip mit Erlaubsnisvorbehalt
 - Erhebung, Verarbeitung, Nutzung und Weitergabe von personenbezogenen
 Daten sind verboten
 - Nutzung nur mit Rechtsgrundlage oder mit Zustimmung der Person
- Unternehmen mit 10 Personen benötigen Datenschutzbeauftragten
- Verfahren zur automatischen Verarbeitung sind vom Datenschutzbeauftragten zu prüfen und anzeigepflichtig
- Sitz der verantwortlichen Stelle maßgeblich
 - Bei einer Niederlassung in D gilt BDSG
- Prinzipien: Datenvermeidung, -sparsamkeit
- Schutz vor Zugriffen, Änderungen und Weitergabe
- Betroffene haben Recht auf Auskunft, Löschung oder Sperrung
- Anonymisierung/Pseudonymisierung: Ist die Zuordnung zu Einzelpersonen (nahezu) ausgeschlossen, so können Daten verabeitet werden

- Gaining Insight with Analytics

Abstraction Levels of Analytics and the Value of Data

- Prescriptive analytics (Empfehlen)
 - "What should we do and why?"
- Predictive analytics (Vorhersagen)
 - "What will happen?"
- 3 Diagnostic analytics
 - "What went wrong?"
 - "Why did this happen"
- Descriptive analytics (Beschreiben)
 - "What happened?"
- 5 Raw (observed) data

For me, descriptive and diagnostic analysis is forensics!

Analytics Abstraction Level

Source: Forrester report. Understanding The Business Intelligence Growth Opportunity. 20-08-2011

Data Analysis Workflow

The traditional approach proceeds in phases:

Source: Gilbert Miller, Peter Mork From Data to Decisions: A Value Chain for Big Data.

- Analysis tools: machine learning, statistics, interactive visualization
- Limitation: Interactivity by browsing through prepared results
- Indirect feedback between visualization and analysis

Exploratory Data Analysis (EDA) [23]

Definition

The approach of analyzing data sets to **summarize** their main **characteristic**, often with visual methods

Objectives

- Suggest hypotheses about the causes of observed phenomena
- Identify assumptions about the data to drive statistical inference
- Support selection of appropriate statistical tools and techniques
- Provide a basis for further data collection through surveys or experiments

Methods from EDA can also be used for analyzing model results / outliers

- **Use Cases**

Use Cases •000000000

Advertisement for a Big Data Platform

TOP APPLICATION TYPES THAT BENEFIT FROM HADOOP

THE FUTURE OF HADOOP

This infographic is brought to you by StackIQ (www.stackig.com), makers of stack - the fastest open source bare metal installer. Download it at www.stacki.com.

Source: [21]

Why Use HADOOP?

Use Cases for BigData Analytics

Increase efficiency of processes and systems

- Advertisement: Optimize for target audience
- Product: Acceptance (like/dislike) of buyer, dynamic pricing
- Decrease financial risks: fraud detection, account takeover
- Insurance policies: Modeling of catastrophes
- Recommendation engine: Stimulate purchase/consume
- Systems: Fault prediction and anomaly detection
- Monetization: Extract money from gamers [27]

Science

- Epidemiology research: Google searches indicate Flu spread
- Personalized Healthcare: Recommend good treatment
- Physics: Finding the Higgs-Boson, analyze telescope data
 - Enabler for social sciences: Analyze people's mood

Example Use Case: Deutschland Card [2]

Goals

- Customer bonus card which tracks purchases
- Increase scalability and flexibility
- Previous solution based on OLAP

Big Data Characteristics

- Volume: O(10) TB
- Variety: mostly structured data, schemes are extended steadily
- Velocity: data growth rate O(100) GB / month

- Much better scalability of the solution
- From dashboards to ad-hoc analysis within minutes

Example Use Case: DM [2]

Goals

- Predict required number of employees per day and store
- Prevent staff changes on short-notice

Big Data Characteristics

- Input data: Opening hours, incoming goods, empl. preferences, holidays, weather ...
- Model: NeuroBayes (Bayes + neuronal networks)
- Predictions: Sales, employee planning
- 450.000 predictions per week

- Daily updated sales per store
- Reliable predictions for staff planning
- Customer and employee satisfaction

Example Use Case: OTTO [2]

Goals

Optimize inventory and prevent out-of-stock situations

Big Data Characteristics

- Input data: product characteristics, advertisement
- Volume/Velocity: 135 GB/week, 300 million records
- Model: NeuroBayes (Bayes + neuronal networks)
- 1 billion predictions per year

- Better prognostics of product sales (up to 40%)
- Real time data analytics

Example Use Case: Smarter Cities (by KTH) [2]

Goals

- Improve traffic management in Stockholm
- Prediction of alternative routes

Big Data Characteristics

- Input data: Traffic videos/sensors, weather, GPS
- Volume/Velocity: 250k GPS-data/s + other data sources

- 20% less traffic
- 50% reduction in travel time
- 20% less emissions

Example Facebook Studies

"Insight" from [11] by exploring posts

- Young narcissists tweet more likely.
 Middle-aged narcissists update their status
- US students post more problematic information than German students
- US Government checks tweets/facebook messages for several reasons
- Human communication graph has an average diameter of 4.74

Manipulation of news feeds [13]

- News feeds have been changed to analysis people's behavior in subsequent posts
- Paper: "Experimental evidence of massive-scale emotional contagion through social networks"

Learning Behavior

Games

- DeepMind playing atari games [29]
- AlphaGo wins vs. humans in playing Go [26]
- Al beating world's best gamer in Dota 2 [28]

Motion

- Learning hand motion by human training [30]
- Robots learning to pick up items [31]

Systems: Fault Prediction and Anomaly Detection

Smart buildings [24]

- Predicting faults of heating and ventilation of an hospital
- Predicted 76 of 124 real faults and 41 of 44 exceptional temperatures
- May consider weather to control systems automatically

Google DeepMind AI [25]

- Controlling 120 variables in the data center (fans, ...)
- Saves 15% energy of the overall bill

Automatize Classification

Analysis of multimedia

- Voice, face, biometric recognition
- Speech recognition
- Counting (animal) species on pictures / videos
- Finding patterns on satellite images (e.g., damn, thunderstorms)
- Anomalies in behavior (depressed people)
- Anomalies in structures (operational condition)

- 6 Programming

Programming BigData Analytics

High-level concepts

- SQL and derivatives
- Domain-specific languages (Cypher, PigLatin)

Programming languages

- Java interfaces are widely available but low-level
- Scala language increases productivity over Java
- Python and R have connectors to popular BigData solutions

In the exercises, we'll learn and use Python and R

Tools for Data Exploration

Mandatory features

- Interactive
- Rich set: visualization, data manipulations, algorithms
- Real-time processing of big data

Tools (excerpt)

- Closed source: SAS, Spotfire, Domo, Tableau
- Open source: R, Python/Jupyter/Bokeh, GoogleVis
- Other open source tools, see [19]

Requirements

- Usability
- Flexible
- Performance

Productivity

Productivity is a very important metric for Big Data tools

Development environments

- Text editor; workflow: edit, save, (compile), run on a server
 - Notepad, gedit
- Interactive shell; type code and execute it
 - Python, SQL frontent
- IDE; optimized workflow of the text editor, may run code on a server
 - NetBeans, Eclipse, VisualStudio
- 4 Interactive lab notebook; type code and store it together with results
 - Examples: Jupyter, Apache Zeppelin
 - Embedded in GitHub:
- $https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/code_listings/03.11-Working-with-Time-Series.ipynbulled with the properties of the proper$
- 5 Lab notebook + IDE;
 - Examples: Spyder

Introduction to Python

- Open source
- Position 5 on TIOBE index
- Interpreted language
- Weak type system (errors at runtime)
- Development tools: any editor, interactive shell, Spyder
- Many useful libraries: matplotlib⁹, NumPy, SciPy, Pandas
- Note: Use and learn Python 3

Specialties

- Strong text processing
- Simple to use
- Support for object oriented programming
- Indentation is relevant for code blocks

⁹http://matplotlib.org/gallery.html

```
1 #!/bin/env python
2 import re # use the module 're'
3
  # function reading a file
  def readFile(filename):
     with open(filename, 'r') as f:
        data = f.readlines()
7
        f.close()
8
        return data
9
     return [] # return an empty array/list
10
11
12 # the main function
  if __name__ == "__main__":
     data = readFile('intro.py')
14
     # iterate over the array
     for x in data:
16
        # extract imports from a python file using a regex
17
        m = re.match("import[ \t]+(?P<WHAT>[^# ]*)", x)
18
        if m:
19
            print(m.group("WHAT"))
20
            # dictionary (key value pair)
21
            dic = m.groupdict()
22
            dic.update( {"FILE" : 'intro.py'}) # append a new dict. with one key
23
            # use format string with dictionary
24
            print("Found import '%(WHAT)s' in file %(FILE)s" % dic )
25
            # Prints: Found import 're' in file intro.py
26
```

Example Python Classes

```
1 from abc import abstractmethod
 2
  class Animal():
     # constructor, self are instance methods, else class methods
     def __init__(self, weight):
         self.__weight = weight # private variables start with __
     # decorator
 8
     @abstractmethod
 9
      def name(self):
10
         return self. class . name # reflection like
11
12
     def __str__(self):
13
         return "I'm a %s with weight %f" % (self.name(), self.__weight)
14
15
  class Rabbit(Animal):
      def __init__(self):
17
         # super() is available with python 3
18
         super().__init__(2.5)
19
20
     def name(self):
21
         return "Small Rabbit" # override name
22
23
  if __name__ == "__main__":
25
      r = Rabbit()
      print(r) # print: I'm a Small Rabbit with weight 2.500000
```

Introduction to R

- Based on S language for statisticians
- Open source
- Position 19 on TIOBE index (but rising)
- Interpreter with C modules (packages)
- Libraries: Easy installation of packages via CRAN¹⁰
- Popular language for data analytics
- Development tools: RStudio (or any editor), interactive shell
- Recommended plotting library: ggplot2¹¹

Specialties

- Vector/matrix operations. Note: Loops are slow, so avoid them
- Table data structure (data frames)

¹⁰Comprehensive R Archive Network

¹¹ http://docs.gaplot2.org/current/

Course for Learning R Programming

```
1 # Run with "Rscript intro.R" or run "R" and copy&paste into interactive shell
2 # Installing a new package is as easy as:
3 install.packages("swirl")
4 # Note: sometimes packages are not available on all mirrors!
5 library(swirl) # load the package
6
  help(swirl) # read help about the function swirl
8
  swirl() # start an interactive course to learn R
10
  # a simple for loop
  for (x in 1:10){
     if (x < 5){
13
        print(x)
14
15
     }else{
        print(x * 2)
16
17
18 }
```

Example R Program

```
1 # create an array
_{2}|_{x}=c(1, 2, 10:12)
 3
4 # apply an operator on the full vector and output it
5 print( x*2 ) # prints: 2 4 20 22 24
6
7 # slice arrays, i.e., create subsets based on row numbers/names
8 print (x[3:5]) # prints: 10 11 12
9 print( x[c(1,4,8)] ) # prints: 1 11 NA
1Θ
11 r = runif(100, min=0, max=100) # create array with random numbers
12 m = matrix(r. ncol=4. byrow = TRUE) # create a matrix
13
# slice matrix rows "m[row(s), column(s)]"
15 print( m[10:12, ] ) # Output:
            [.1]
                       [.2]
                                  [.3]
16 #
17 #[1.] 85.46609 60.749703 10.5062183 7.449173
18 #[2.] 79.76042 52.199321 96.9699856 97.877946
19 #[3,] 37.34286 8.266282 0.3398741 1.957607
20
21 # slice rows & columns
22 print ( m[10, c(1.4)] ) # Output: [1] 85,466085 7,449173
23
# subset the 2D table based on a mask
25 | set = m[ (m[,1] < 20 \& m[,2] > 2) , ]
```

2 createTable = function (size){

```
ı∥# function to create a table (data frame) and fill it with random data
     tbl = read.table(text="", col.names = c("Type", "Time"))
 3
     tbl[1:size, ] = 0 # initialize size times a full rows
     tbl$Time = runif(size, min=0, max=100) # address by column name
     # create random types, factor() for nominal data and
     # ordered() for ordinal data
 7
8
     tbl$Type = factor(round(runif(size, min=0.5, max=3.49)).
        levels=1:3. # three categories
        labels=c("unknown", "good", "bad"))
10
     tbl$Type[size] = "bad" # assign last element to be bad
11
12
     return (tbl)
13 }
14 # change column names
15 colnames(tbl) = c("Typ", "Duration")
16
17 d = createTable(5)
18 # Assign the column with the name
19 print(d)
20 print( summary (d) ) # some statistics about d
21 # Write CSV incl. header
22| write.table(d, file = "mydata.csv", sep=",", row.names=FALSE)
23 # reread table
24 d = read.table("mydata.csv", header = TRUE, sep = ",")
```

Introduction to Java

- Developed by Sun Microsystems in 1995
- Object oriented programming language
- OpenJDK implementation is open source
 - Source code \Rightarrow byte code \Rightarrow just-in-time compiler
 - Byte code is portable & platform independent
 - Virtual machine abstracts from systems
- Strong and static type system
- Popular language for Enterprise & Big Data applications
 - Most popular programming language (Pos. 1 on the TIOBE index)
- Development tools: Eclipse

Specialties

- Good runtime and compile time error reporting
- Generic data types (vs. templates of C++)
- Introspection via. Reflection

Example Java Program

```
import java.util.Scanner;
  import java.io.FileReader;
  import java.io.FileNotFoundException;
  // compile with javac program.java
  // run with java program
  public class program{
     // the main method is part of a class
7
     public static void main(String [ ] args) throws FileNotFoundException{
8
        try{
           // read from file "program.java" and create simple tokens
10
           Scanner data = new Scanner(new FileReader("program.java"));
11
           while(data.hasNext()){
12
              System.out.println(data.next());
13
14
        }catch(Exception e){
15
           // handle error here, we'll just rethrow the error
16
           throw(e);
17
18
19
20
```

Example Java Classes

```
1 // Run: javac classes1.java and java Rabbit
2 // An abstract class is not completely implemented
  abstract class Animal{
      // instance member
     private float weight;
      // not-implemented instance function
      public abstract String name();
     // constructor
 8
      public Animal(float weight){ this.weight = weight; }
 9
      public String toString(){ return "I'm a " + name() + " with " +
10
11
        weight + " kg": }
12 }
13
  class Rabbit extends Animal{
15
     // invoke the constructor of the parent
      public String name(){ return "Rabbit": }
16
      public Rabbit(){ super(2.5f); }
17
18
19
      // the main method is part of a class
      public static void main(String [ ] args){
20
         Animal a = new Rabbit():
21
         System.out.println(a); // I'm a Rabbit with 2.5 kg
22
23
24
  }
25
26
```

Summary

- Big data analytics is a pillar of science
 - Supports building of hypothesis and experimentation
 - Challenges: 5 Vs Volume, velocity, variety, veracity, value
- Data sources: Enterprise, humans, Exp./Observational data (EOD)
- Types of data: Structured, unstructured and semi-structured
- Roles in big data business: Data scientist and engineer
- Data science != business intelligence
- Analytics: Descriptive, diagnostic; predictive, prescriptive

Bibliography

- 1 Book: Lillian Pierson. Data Science for Dummies. John Wiley & Sons
- 2 Report: Jürgen Urbanski et.al. Big Data im Praxiseinsatz Szenarien, Beispiele, Effekte. BITKOM
- 3 http://winfwiki.wi-fom.de/
- 4 Forrester Big Data Webinar, Holger Kisker, Martha Bennet, Big Data; Gold Rush Or Illusion?
- 5 http://blog.eoda.de/2013/10/10/veracity-sinnhaftigkeit-und-vertrauenswuerdigkeit-von-bigdata-als-kernherausforderung-iminformationszeitalter/
- 6 http://lehrerfortbildung-bw.de/kompetenzen/projektkompetenz/methoden/erkenntnis.htm
- 7 Gilbert Miller, Peter Mork From Data to Decisions: A Value Chain for Big Data. http://www.fh-schmalkalden.de/Englmeier-p-790/ /ValueChainBigData.pdf
- 8 Andrew Stein. The Analytics Value Chain. http://steinvox.com/blog/big-data-and-analytics-the-analytics-value-chain/
- 9 Dursun Delen, Haluk Demirkan,. Decision Support Systems, Data, information and analytics as services.http://j.mp/11bl9b9
- 10 Wikipedia
- 11 Kashmir Hill. 46 Things We've Learned From Facebook Studies. Forbe. http://www.forbes.com/sites/kashmirhill/2013/06/21/46-things-weve-learned-from-facebook-studies/
- 12 Hortonworks http://hortonworks.com/
- 13 http://www.huffingtonpost.com/2014/12/10/facebook-most-popular-paper_n_6302034.html
- 20 http://hortonworks.com/blog/enterprise-hadoop-journey-data-lake/
- ${\tt 21 http://www.stacki.com/hadoop/?utm_campaign=Stacki+Hadoop+Infographic}$
- 22 https://en.wikipedia.org/wiki/Scientific_method
- 23 https://en.wikipedia.org/wiki/Exploratory_data_analysis
- $24 \quad https://www.newscientist.com/article/2118499-smart-buildings-predict-when-critical-systems-are-about-to-fail/system$
- 25 https://www.theverge.com/2016/7/21/12246258/google-deepmind-ai-data-center-cooling
- 26 https://deepmind.com/research/alphago/
- 27 https://www.ibm.com/developerworks/library/ba-big-data-gaming/index.html
- 28 http://money.cnn.com/2017/08/12/technology/future/elon-musk-ai-dota-2/index.html
- 29 http://www.wired.co.uk/article/google-deepmind-atari
- 30 https://arxiv.org/abs/1603.06348
- 31 https://spectrum.ieee.org/automaton/robotics/artificial-intelligence/google-large-scale-robotic-grasping-project