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General Data Model for Dataflow Languages

Data

Tuple t = (x1, ..., xn) where xi may be of a given type

Input/Output = list of tuples (like a table)

Typical Operators for Data-Flow Processing

Operations process individual tuples
Map/Foreach: process or transform data of individual tuples or group

transform a tuple: student.Map((matrikel, name) ⇒ (matrikel + 4, name))
count members for each group: groupedStudents.Map((year) ⇒ count())

Filter tuples by comparing a key to a value

Operations that require the complete input data

Group tuples by a key
Sort data according to a key
Join multiple relations together
Split tuples of a relation into multiple relations (based on a condition)
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Data Flow Programming Paradigm [68]

Focus: data movement and transformation

Compare to imperative programming: sequence of commands

Models program as directed graph of data flowing between operations

Input/output is illustrated as a node
Node is an operation, edges are dependencies

Operation is run once all inputs become valid

An operation might work on a single data element or on the complete data
Parallelism is inherently supported by data flow languages

States (in the program)

Dataflow works best with stateless programs
Stateful dataflow graphs support mutable state
Data related states, e.g., reductions, may be encoded as data

Programming

Functional declarative programming model is optimal
Example: read(“file.csv”).filter("word” == "big data").reduce(count)
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Pipe Diagrams1

Goal: Visualize the processing pipeline of data-flows with a schema
Optional: Add examples to illustrate processing

Elements and diagram concepts

Box: Operation

e.g., functions, filter, grouping, aggregating, mapping
Indicate also changes in schema

Arrows show processing order (DAG), joins have two inputs

Input (Matrikel, Firstname, Lastname, Female, Birthday)

Group by Female

Map (Female, count=Count())

Output ⇒(Female, count)

1We will use a variant from [11]
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Pipe Diagram with Examples

Matrikel Firstname Lastname Female Birthdate
22 "Fritz" "Musterman M." false 2000-01-01
23 "Nina" "Musterfrau F." true 2000-01-01
24 "Hans" "Im Glück" false 2001-01-01

Group by Female

Matrikel Firstname Lastname Female Birthdate

22 "Fritz" "Musterman M." false 2000-01-01
24 "Hans" "Im Glück" false 2001-01-01

23 "Nina" "Musterfrau F." true 2000-01-01

Map (Female, count=Count())

Female count
false 2
true 1
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Apache Pig [60, 61, 62]

Pig: Infrastructure (language, compiler) for executing big data programs

No server (services) required
Data is stored on HDFS
Uses MapReduce or TEZ execution engine

High-level scripting language Pig Latin

Describes processing as data flow
Compiler parallelizes data flow (into MapReduce / TEZ job)

Batch mode and interactive shell (pig)
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Data Model for Apache Pig [62]

Tuple: An ordered set of named fields (data)
A field can be a simple type or complex (tuple, bag or map)
Fields are referred by name or position ($0 to $n)

Bag: Collection of tuples (evtl. with duplicates)
Relation: Is a bag (like a table)

Data types of fields can be assigned with a schema
Not necessarily with a fixed schema

Each tuple may have different fields
Without defined type, data will be converted if necessary

Relations are referred to by name or alias (variable)

Example: Loading data with a schema

1 # table with student basic information
2 S = LOAD ’stud.csv’ as (matrikel:int, semester:int, feminine:boolean, name:chararray,

↪→ birthday:datetime);

stud.csv

1 4711 5 false "Max Mustermann" 2000-01-01
2 4712 4 true "Nina Musterfrau F." 2000-01-01
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Scripting Language Pig Latin [62]

Data-flow oriented imperative programming language

Declare execution plan vs. SQL (declare results)

Datatypes: basic types, tuples, bags and maps

Statement: operator with a named relation as input and output

LOAD and STORE operations are exceptions
Relations are referred to by name or alias (variable)

For computation, additional (arithmetic) operators are provided

They are applied to each tuple

Preprocessor with parameter substitution and macros (functions)

Lazy evaluation for interactive shell

Run commands only when output is requested by the user

Note: Intermediate relations are stored on temp files on HDFS

Julian M. Kunkel Lecture BigData Analytics, 2016 10 / 32



Overview Pig Latin Accessing Data Architecture Summary

Relational Operators [62]

Input/Output

DUMP: Output results on stdout

LOAD/STORE: Input/output relations to/from HDFS

Subsetting tuples from relations

DISTINCT: Removes duplicated tuples

FILTER: Select tuples by a a condition

SAMPLE: Select random tuples from the relation

LIMIT: Limit the number of tuples

SPLIT: Partition the relation into relations based on conditions

UNION: Merge multiple relations
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Relational Operators [62]

Rearrange tuples

GROUP: Group the data based on the values

COGROUP: Like group but involves multiple relations

ORDER BY: Sort the relation based on fields

RANK: To each tuple add the position in the relation (can also apply sort
before ranking)

Data manipulation

FOREACH: Transform tuples of an relation

Supports nesting for processing of collections

JOIN: Join of multiple relations based on identical field keys

CROSS: Cross product of two or more relations

CUBE: Aggregates for all combinations of specified groups

For n dimensions, this creates 2n aggregates
ROLLUP creates n + 1 aggregates based on the hierarchical order

Execution of external functions

MAPREDUCE: Run MapReduce jobs inside pig

STREAM: Send data to an external script

DEFINE: Create user defined functions

REGISTER: Register UDFs of a JAR
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Non-relational Operators[62]

Arithmetic: +,-,*,/,%, ?:, CASE

Boolean: AND, OR, NOT, IN (for collections)

Casting: Conversion between data types

Comparison (includes regex support)

Flatten: Convert tuple elements and bags into tuples

Disambiguate: Specifies the relation field, e.g., RELATION_A::f

Functions

Evaluation functions (reduction):

AVG, MIN, MAX, SUM, COUNT, COUNT_STAR (also counts NULL)
CONCAT: concatenation
TOKENIZE: split string and returns bag

String, datetime handling

Conversion of strings to types

Math functions
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Accessing and Manipulating Data with Pig

The pig shell is convenient for interactive usage

Checks schema and certain language errors

Invoke code in other languages via user-defined functions (UDF)

Pig Latin can be embedded into, e.g., Python, JavaScript, Java
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Debugging [62]

For testing, run in local mode (pig -x local)

For performance analysis, some run statistics are provided

Add file names to tuples (e.g., using PigStorage(’,’, ’-tagsource’))

Some operators (with shortcuts) are provided to help debugging

Useful operators for debugging

ASSERT: Ensure a condition on data (or abort)

DUMP (\d): output results on stdout

DESCRIBE (\de): show the schema of a relation

EXPLAIN (\e): view the execution plans for computation

ILLUSTRATE (\i): step-by-step execution of statements
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Pig Examples: Our Student/Lecture Example

stud.csv

1 22,"Fritz","Musterman M.",false,2000-01-01
2 23,"Nina","Musterfrau F.",true,2000-01-01

lecture.csv

1 1;"Big Data";{(22),(23)}
2 2;"Hochleistungsrechnen";{(22)}

Pig schema and data loading

1 s = LOAD ’stud.csv’ USING PigStorage(’,’) AS (matrikel:int, name:chararray,
↪→ firstname:chararray, feminine:boolean, birthday:datetime);

2 l = LOAD ’lecture.csv’ USING PigStorage(’;’) AS (id:int, name:chararray, students:bag{T:
↪→ (matrikel:int)});

3 ASSERT s BY matrikel > 0, ’matrikel must be bigger than 1’;
4 describe s;
5 -- s: {matrikel: int, name: chararray, firstname: chararray, feminine: boolean,

↪→ birthday: datetime}
6 DUMP l; STORE l INTO ’result’ USING PigStorage (’;’);

Julian M. Kunkel Lecture BigData Analytics, 2016 17 / 32



Overview Pig Latin Accessing Data Architecture Summary

Pig Examples: Our Student/Lecture Example

Goal: Identify student names participating in the lecture

1 -- unroll the bag for a join
2 lflat = FOREACH l GENERATE id,name,FLATTEN(students) as matrikel;
3 spart = JOIN lflat by matrikel, s by matrikel;
4 describe spart;
5 -- spart: {lflat::id: int,lflat::name: chararray,lflat::matrikel: int,s::matrikel:

↪→ int,s::name: chararray,s::firstname: chararray,s::feminine:
↪→ boolean,s::birthday: datetime}

6 dump spart;
7 --(2,"Hochleistungsrechnen",22,22,"Fritz","Musterman M.",false,

↪→ 2000-01-01T00:00:00.000+01:00)
8 --(1,"Big Data",22,22,"Fritz","Musterman M.",false,2000-01-01T00:00:00.000+01:00)
9 --(1,"Big Data",23,23,"Nina","Musterfrau F.",true,2000-01-01T00:00:00.000+01:00)
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Pig Examples: Our Student/Lecture Example

Goal: Determine the number of students

1 t = GROUP s ALL; -- we generate only one group containing all tuples
2 c = FOREACH t GENERATE COUNT(s); -- we compute the count for each group
3 -- (2)

Goal: Determine the number of participants per lecture

1 c = FOREACH l GENERATE id,COUNT(students) AS participants;
2 -- (1,2)
3 -- (2,1)
4

5 -- alternatively on our flattened table:
6 z = GROUP spart BY id;
7 c = FOREACH z GENERATE group AS id, COUNT(p) AS participants;
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Pig Examples: Our Student/Lecture Example

Goal: Identify female participants in lectures starting with “Big”

1 sf = FILTER s BY (feminine == true);
2 -- Filter the lectures
3 lf = FILTER l BY (name == ’Big.*’);
4 -- Flatten the filtered lectures
5 lfflat = FOREACH lf GENERATE name,FLATTEN(students) as matrikel;
6

7 -- Now join them
8 fp = JOIN lfflat by matrikel, sf by matrikel;
9 -- ("Big Data",23,23,"Nina","Musterfrau F.",true, 2000-01-01T00:00:00.000+01:00)

10 -- only print the name
11 fpn = FOREACH fp GENERATE sf::name;
12 -- ("Nina")
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Pig Examples: Our Student/Lecture Example

Goal: determine the average student age per lecture

1 sf = FOREACH s GENERATE name, birthday, matrikel;
2 spart = JOIN lflat by matrikel, sf by matrikel;
3 -- filter name of the lecture and birthday, we can also embed multiple operations here
4 f = FOREACH spart GENERATE lflat::name AS lecture, birthday;
5 -- group for the lecture name
6

7 z = GROUP f BY lecture;
8 -- ("Big Data",{("Big Data",2000-01-01T00:00:00.000+01:00),("Big Data",

↪→ 2000-01-01T00:00:00.000+01:00)})
9 -- ("Hochleistungsrechnen",{("Hochleistungsrechnen", 2000-01-01T00:00:00.000+01:00)})

10

11 -- Now we iterate over the bag f that is the result of the grouping
12 alj = FOREACH z {
13 tmp = FOREACH f GENERATE WeeksBetween(CurrentTime(), birthday);
14 GENERATE group as lecture, AVG(tmp)/52 as avgAge, COUNT(tmp) as students;
15 }
16 -- ("Big Data",15.75,2)
17 -- ("Hochleistungsrechnen",15.75,1)
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Pig Examples: Our Student/Lecture Example

Goal: for each student, identify the lectures s/he participates

1 sf = FOREACH s GENERATE name, matrikel;
2 lflat = FOREACH l GENERATE id,name,FLATTEN(students) as matrikel;
3 spart = JOIN lflat by matrikel, sf by matrikel;
4 z = GROUP spart BY sf::matrikel;
5 -- (22,{(1,"Big Data",22,"Fritz",22), (2,"Hochleistungsrechnen",22, "Fritz",22)})
6 -- (23,{(1,"Big Data",23,"Nina",23)})
7 al = FOREACH z {
8 lectures = FOREACH spart GENERATE lflat::name;
9 tmp = LIMIT spart 1;

10 name = FOREACH tmp GENERATE sf::name;
11 -- Apply flatten to remove the unneeded grouping of name
12 GENERATE group as matrikel, FLATTEN(name), lectures;
13 }
14 -- (22,"Fritz",{("Big Data"),("Hochleistungsrechnen")})
15 -- (23,"Nina",{("Big Data")})
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Preprocessor [67]
Parameter substitution

Substitute variables in a script with Pig command line arguments

Example: Use the matrikel as argument

1 -- in the pig script
2 %default MATRIKEL 23
3 s = FILTER students by matrikel = ’$MATRIKEL’
4 -- on the command line:
5 pig -p MATRIKEL=4711 studentLecture.pig

Macros

Modularize the Pig scripts

1 %declare searchMatrikel 23 -- define a constant
2
3 define studAttends (myMatrikel) returns attendedLectures {
4 s = LOAD ’stud.csv’ USING PigStorage(’,’) AS (matrikel:int, name:chararray, firstname:chararray);
5 l = LOAD ’lecture.csv’ USING PigStorage(’;’) AS (id:int, name:chararray, students:bag{T: (matrikel:int)});
6 i = FOREACH l {
7 S = FILTER students BY (matrikel == $myMatrikel);
8 GENERATE ( IsEmpty(S.$0) ? NULL: id ) AS lectureId;
9 }

10 $attendedLectures = FILTER i BY lectureId is not NULL;
11 }
12 dump studAttends($searchMatrikel);
13 -- Returns: (1)
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Embedding Pig into Python [62]

1 #!/usr/bin/python
2 # import the Pig class
3 from org.apache.pig.scripting import Pig
4

5 # Execution consists of three steps, compile, bind and run
6 # Compile returns a Pig object representing the data flow pipeline
7 # Variables can be used here and bind later
8 P = Pig.compile("""
9 a = load ’$in’;

10 store a into ’$out’;
11 """)
12

13 input = ’stud.csv’
14 output = ’out.csv’
15

16 # bind variables and run the script, output is stored on HDFS
17 result = P.bind({’in’:input, ’out’:output}).runSingle()
18

19 if result.isSuccessful() : # Check if the job runs successful
20 print ’Pig job succeeded’
21 else :
22 raise ’Pig job failed’

To run the python script type pig testpy.py
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Writing UDFs in Python [62]
Definition of the Python UDF

1 import md5
2

3 @outputSchema("as:int")
4 def square(num):
5 if num == None:
6 return None
7 return ((num) * (num))
8

9 @outputSchema("word:chararray")
10 def concat(word):
11 return word + word
12

13 @outputSchema("anonym:chararray")
14 def anonymize(word):
15 m = md5.new()
16 m.update(str(word))
17 return m.hexdigest()

Using the UDF in Pig
1 Register ’test.py’ using jython as my;
2 -- Alternatively: streaming_python is another method, but code is different
3 b = FOREACH s GENERATE my.anonymize(matrikel),my.concat(’test’),my.square(2);
4 -- (b6d767d2f8ed5d21a44b0e5886680cb9,testtest,4)
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File Formats

Support for Avro, CSV, RCFile, SequenceFile, JSONStorage, Binary

Support for Hive’s tables via HCatalog using the HCatLoader

Internally BinStorage formats is used for intermediate files

The schema can be part of the file to be loaded or explicitly given

External schema can be written/read to/from .pig-schema file [65]

CSV (the default) via PigStorage class

Supports compression bzip2, gzip, lzo

Automatically de/compressed if directory ends with .bz2/.gz

Examples

1 A = LOAD ’stud.gz’ USING PigStorage( \ t ,’-schema’); -- load the external schema
2 A = LOAD ’stud.gz’ USING PigStorage( \ t ) AS (matrikel:int, ...);
3 A = LOAD ’stud.bin’ USING BinStorage();
4 A = LOAD ’stud.json’ USING JsonLoader();
5 A = LOAD ’data.txt’ USING TextLoader(); -- load unstructured text as it is
6 A = LOAD ’stud.avro’ USING AvroStorage (); -- contains elements, see [64]
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Execution of Pig Queries on MapReduce and TEZ

Source: H. Shah [20]
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Performance Advises and Parallelism [62]

Lazy evaluation applies several optimizations automatically

Rearrange work (run filters first) and merge operations if possible
Filter early in the pipeline

Flexible number of reducers for the parallelism

By default a heuristics sets them based on the size of input data
The default number of reducers can be set

1 SET default_parallel 10; -- 10 reducers

PARALLEL clause can be used to set reducers for an operator

1 O = GROUP input BY key PARALLEL 10;

Use TEZ instead of MapReduce (start shell via pig -x tez)

Use schemas for numeric data (otherwise floating point (double) is used)
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Performance Advises and Parallelism [62]

Choose the key for the Hadoop partitioner [66]

Maps keys to reducers
By default a HashPartitioner is used on the group

1 O = GROUP input BY key PARTITION BY org.apache.hadoop.mapred.lib.BinaryPartitioner;

Intermediate relations can be compressed via properties:

1 SET pig.tmpfilecompression (true, false)
2 SET pig.tmpfilecompression.codec (gz, lzo)

If you have many small input files: aggregate them before using Pig

A cache is used (automatically) for storing JARs of user-defined functions
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Optimization of Joins [62]

Drop NULL keys before join

NULL keys are sent to a single reducer and may be overwhelming

The last relation in a join operator is streamed by Pig

The largest relation should be listed last

There are join strategies for optimization that have to be chosen [69]

replicated joins multiple small relations
merge joins relations already sorted by key
merge-sparse joins when the output is expected to be sparse
skewed distributes popular items across several reducers

Example

Assume input is small and input2 is a large relation

1 f = FILTER input BY $0 is not null;
2 f2 = FILTER input2 BY $0 is not null;
3 O = JOIN f BY $0, f2 BY $0 USING ’merge-sparse’;
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Summary

Data flow programming paradigm is easy parallelizable

Pipe diagrams visualize data flow programs

Pig provides a data flow oriented programming infrastructure

Input/Output from/to HDFS
Utilizes MapReduce and Tez
No additional server(s) needed

PigLatin is a domain-specific programming language

Only a few basic operations are necessary
FOREACH: Iteration over tuples and nested attributes
Beware: PigLatin details are complex; may indroduce complex errors

Pig can be called from Python to script complex workflows

User-defined functions can be integrated into PigLatin
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