
Performance Modeling
Ahmed Hassan by:

All brand names, product names and titles and copyrights used in this presentation are
trademarks or trade names or copyrights of their respective holders

Universität Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

What is Performance Modeling?

Agenda

Why Performance Modeling?

Prospective of Performance Modeling

Different Performance Models

Components of Performance

Roofline Model

Roofline in HPC Overview

Software Optimization

Application/Service Modeling

Introduction

Roofline Model

HPC

Software/Service
Optimization

Performance Modeling – Ahmed Hassan 2/37

Execution-Cache-Memory (ECM) ECM

Performance Modeling – Ahmed Hassan 3/37

What is Performance Modeling?

Performance modeling is a structured and repeatable approach by defining
an abstract architectural model.

Why Performance Modeling?

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

Performance Modeling – Ahmed Hassan 4/37

imagine

optimize

you are to optimize applications to run on a multi-hundred-million
dollar supercomputer that consumes as much energy as a small
European town to solve computational problems at an international
scale and advance science to the next level with “hero-runs” of
[inset verb here] scientific applications that cost $10 K and more
per run… [1]

then you better plan head
Trying to extrapolate the performance from small
machines to big machines.

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[1] National Center for Supercomputing Applications (NCSA), University of Illinois, USA, "Performance Modeling for Systematic Performance Tuning", ACM 978-1-4503-0771-0/11/11, pp. 1 - 5.

Performance Modeling – Ahmed Hassan 5/37

What is Performance Modeling?

Performance modeling is a structured and repeatable approach by defining
an abstract architectural model.

Why Performance Modeling?

• Guide optimization during application design.

• Evaluate tradeoffs before building the solution.

• Guiding future maintenance and expansion decisions.

• Avoid performance surprises during application execution.

• Provide a document of itemized scenarios for tracking performance goals.

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

Performance Modeling – Ahmed Hassan 6/37

People who are really serious about software should make their own hardware

Alan Kay
American Computer Scientist, MIT

“

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

Performance Modeling – Ahmed Hassan 6/37

Prospective of Performance Modeling

System/architectural

More focus on hardware optimization

Kernel (Application/Services)

More focus on software optimization

What?

Who?
Data Centers, System Administrator

User

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

Performance Modeling – Ahmed Hassan 7/37

Factors Affecting System Performance

CPU Clock Speed

I/O Devices

RAM

Cache Memory

Multi-Core

Data Bus

Transfer Rate

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

Performance Modeling – Ahmed Hassan 8/37

Principle Components of Performance[2]

• Computation
• Communication
• Locality

Each architecture has a different balance
between those components

Each kernel has a different balance between
those components[3]

Performance is a question of how well a kernel’s
characteristics map to architecture’s characteristics

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[2] S. Jarvis, S.Wright, Simon Hammond, High Performance Computing Systems: Performance Modeling, Benchmarking and Simulation, Springer, ISBN: 978-3-319-10213-9, pp. 19 - 26.
[3] Heike McCraw, Innovative Computing Laboratory, Departmanet of Electrical Engineering and Computer Science, "Performance Modeling", University of Tennessee, 2013, pp. 7 - 9.

Performance Modeling – Ahmed Hassan 9/37

 Computation[4]

Floating point performance (Gflop/s) is considered to be the main interest

Peak in-core performance can be achieved when:

• fully attainment ILP, DLP, FMA;

• non-FP instructions don’t deplete instruction Bandwidth;

• branch mis-predictions are not often;

• threads converge.

In-core parallelism is achieved when:

• Algorithm implements Inheritance;

• The generated code has explicit.

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[4] Samuel Williams, David Patterson, ParLab Summer Retreat, "The Roofline Model: A pedagogical tool for program analysis and optimization", Berkeley Par Lab

Performance Modeling – Ahmed Hassan 10/37

 Communication[4]

DRAM bandwidth (GB/s) is the main interest

Peak bandwidth can be achieved when specific optimizations are implemented:

• SW Prefetching;

• NUMA allocation;

• NUMA usage;

• Memory coalescing;

• Few unit stride streams.

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[4] Samuel Williams, David Patterson, ParLab Summer Retreat, "The Roofline Model: A pedagogical tool for program analysis and optimization", Berkeley Par Lab

Performance Modeling – Ahmed Hassan 11/37

 Locality[4]

Traffic: is the volume of data to/from memory
 It is not # of loads and stores

To reduce communication we have to increase the locality but there is still
what so called “Compulsory Traffic” which is the minimum needed amount
of communication.

Hardware modification helps reducing communication through:

• More cache associativities;

• Increasing non-allocating caches;

• Reduce capacity misses by increase cache capacities.

Software optimization helps reducing communication through:

• Avoid capacity misses through blocking;

• Avoiding conflict misses through Padding;

• Increasing non-allocating stores.

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[4] Samuel Williams, David Patterson, ParLab Summer Retreat, "The Roofline Model: A pedagogical tool for program analysis and optimization", Berkeley Par Lab

Performance Modeling – Ahmed Hassan 12/37

Integrating Performance Components

Goal

into a single understandable performance figure

Must graphically show the penalty associated with
not including certain software optimizations.

Coordinates of a kernel are quasi unique to each architecture
 Roofline model will be unique to each architecture

Flops:Bytes is the parameter that allows us to convert bandwidth (GB/s) to performance (GFlop/s).

How GFlop/s relates to GB/s?

Arithmetic Intensity
Incorporate all cache (total bytes) behaviors (Compulsory misses, Capacity misses, Conflict
misses) with Locality.

in-core performance memory bandwidth locality + +
Integrating …

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

Performance Modeling – Ahmed Hassan 13/37

Integrating Performance Components

Must graphically show the penalty associated with
not including certain software optimizations.

> command

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

Performance Modeling – Ahmed Hassan 13/37

Integrating Performance Components

Compulsory misses

those misses caused by the first reference to a location in
memory that a program has never requested before.

CPU

RAM

Harddisk

Cache

L3

L2

L1

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

Performance Modeling – Ahmed Hassan 13/37

Integrating Performance Components

Capacity misses

those misses that occur regardless of associativity or block
size, solely due to the finite size of the cache. (pencil and
paper or maybe performance counters).

CPU

RAM

Harddisk

Cache

L3

L2

L1

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

Performance Modeling – Ahmed Hassan 13/37

Integrating Performance Components

Conflict misses

those misses that could have been avoided, had the
cache not evicted an entry earlier.
(must use performance counters)

CPU

RAM

Harddisk

Cache

L3

L2

L1

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

Performance Modeling – Ahmed Hassan 14/37

Different Performance Models System/Architectural

Stochastic analytical models
Statistical performance models

Predict performance
on multiprocessors

Hardly to be used by
non-experts

Provide insight into
performance factors

Applicable to
heterogeneous
multicore computers

Ignore block size, block
allocation policy, and
block replacement policy

Roofline Modeling Bottleneck analysis

Easy-to-understand
used nearly for

20
Programmers

Compiler Writers
CPU architects

Years

by

Roofline Modeling

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

Performance Modeling – Ahmed Hassan 15/37

Roofline Model Modeling customer dispatch in a bank

Customers

Bank Employee

Revolvong door
throughput

Processing Capacity

Intensity

(tasks/customer)

b (customers/sec)
s

P (tasks/sec)
max

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[5]

[5] Samuel Williams, Andrew Waterman, David Patterson, "Simple performance modeling: The Roofline Model" Communications of the ACM, Vol. 52 No. 4, 10.1145/1498765.1498785, pp. 65 - 76.

Performance Modeling – Ahmed Hassan 16/37

Roofline Model Modeling customer dispatch in a bank

How fast can be processed? P (tasks/sec)

The bottleneck is either:

• The service desks (max. tasks/sec):

• The revolving door (max. customers/sec):

P max

I b s .

P = min () P
max

, I b
s

.

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

Roofline Model Modeling customer dispatch in a bank [5]

[5] Samuel Williams, Andrew Waterman, David Patterson, "Simple performance modeling: The Roofline Model" Communications of the ACM, Vol. 52 No. 4, 10.1145/1498765.1498785, pp. 65 - 76.

BEST resources
utilization

Performance Modeling – Ahmed Hassan 17/37

Roofline Model Modeling customer dispatch in a bank

Intensity

P
e
rf

o
rm

a
n
c
e

P max

Service
desk

tasks/sec

customer/sec

P max = I b s .

Knee Knee

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

Roofline Model Modeling customer dispatch in a bank [5] [6]

[5] Samuel Williams, Andrew Waterman, David Patterson, "Simple performance modeling: The Roofline Model" Communications of the ACM, Vol. 52 No. 4, 10.1145/1498765.1498785, pp. 65 - 76.
[6] W. Schönauer (2000), "Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers"

Performance Modeling – Ahmed Hassan 18/37

Roofline Model[5][7]

CPU0 CPU1

Memory0

Consider a simple kernel that:

1. Transfer Bytes of data from Memory0

2. Perform F/2 FLOPs on both CPUs

3. Memory can support PeakBandwidth Bytes/sec

4. The two CPUs combined can perform
PeakPerformance FLOPs/sec

Pmax: Loop peak performance taking in consideration the data transfer

 from L1 cache (not necessarily Ppeak)

Computational intensity (I): “work” per byte transferred through the
slowest data path (“the bottleneck”) (measured in flops/bytes)[6]

Code balance (Bc) = I-1

bs: Peak bandwidth of the slowest data path (byte/sec)

Expected Performance

P = min (Pmax, I
. bs)

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[5] Samuel Williams, Andrew Waterman, David Patterson, "Simple performance modeling: The Roofline Model" Communications of the ACM, Vol. 52 No. 4, 10.1145/1498765.1498785, pp. 65 - 76.
[7] S. Williams (2008), "Auto-tuning Performance on Multicore Computers", UCB Technical Report No. UCB/EECS-2008-164. PhD thesis

Performance Modeling – Ahmed Hassan 19/37

Roofline Model

• Bandwidth #’s collected via micro benchmarks

• Computation #’s derived from optimization manuals
(pencil and paper)

• Assume complete overlap of either:

• communication

• computation
or

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

Performance Modeling – Ahmed Hassan 20/37

Roofline Model Analysis (Pmax)

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

ALU ALU LOAD LOAD STORE ALU

FMUL FADD AGU AGU

JUMP

FSHUF

SandyBridge

16 b 16 b
16 b

Retire 4 uops

• Assumption: All instructions in a loop are maintained

 independently to different ports

• Complex cases: Sum number of penalty cycles for each cycle with AVX.

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[5], [8], [9]

[5] Samuel Williams, Andrew Waterman, David Patterson, "Simple performance modeling: The Roofline Model" Communications of the ACM, Vol. 52 No. 4, 10.1145/1498765.1498785, pp. 65 - 76.
[8] Datasheet Addendum, 2nd Generation Intel® Core™ Processor Family Mobile with ECC, May 2012
[9] Intel free Press, "Ron Friedman: The Man Behind Sandy Bridge", December 28, 2010. Retrieved November 11, 2011
http://www.intelfreepress.com/news/the-man-behind-sandy-bridge/

Performance Modeling – Ahmed Hassan 20/37

Roofline Model Analysis (Pmax)

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

ALU ALU LOAD LOAD STORE ALU

FMUL FADD AGU AGU

JUMP

FSHUF

SandyBridge

16 b 16 b
16 b

Retire 4 uops

• one load instruction + ½ store instruction
• one AVX MULT + one AVX ADD

Per cycle with SSE or scalar
• Two load instruction
• one MULT + one ADD instruction

Maximum of four micro-ops but three is more realistic

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[5], [8], [9]

[5] Samuel Williams, Andrew Waterman, David Patterson, "Simple performance modeling: The Roofline Model" Communications of the ACM, Vol. 52 No. 4, 10.1145/1498765.1498785, pp. 65 - 76.
[8] Datasheet Addendum, 2nd Generation Intel® Core™ Processor Family Mobile with ECC, May 2012
[9] Intel free Press, "Ron Friedman: The Man Behind Sandy Bridge", December 28, 2010. Retrieved November 11, 2011
http://www.intelfreepress.com/news/the-man-behind-sandy-bridge/

Performance Modeling – Ahmed Hassan 21/37

Roofline Model Analysis (Pmax)

Double *A, *B, *C, *D;

For (int i=0; i<N; i++) {
 A[i] = B[i] + C[i] * D[i]}

Number of cycles to process one AVX-vectorized iteration

 Cycle 1: LOAD + ½ STORE + MULT + ADD
Cycle 2: LOAD + ½ STORE
Cycle 3: LOAD

One AVX iteration (3 cycles) performs 4 x 2 = 8 Flops -> 8 Flops / 3 cy
3 Gcy/s * 8 F / 3 cy = 8 GFlops/s

Bandwidth:
8 GFlops/s * 32 Byte / 2 Flops = 128 GBytes/s

Assume 3 GHz 8-core Sandy Bridge chip
bs = 40 GB/s

Example

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[5], [8], [9]

[5] Samuel Williams, Andrew Waterman, David Patterson, "Simple performance modeling: The Roofline Model" Communications of the ACM, Vol. 52 No. 4, 10.1145/1498765.1498785, pp. 65 - 76.
[8] Datasheet Addendum, 2nd Generation Intel® Core™ Processor Family Mobile with ECC, May 2012
[9] Intel free Press, "Ron Friedman: The Man Behind Sandy Bridge", December 28, 2010. Retrieved November 11, 2011
http://www.intelfreepress.com/news/the-man-behind-sandy-bridge/

Performance Modeling – Ahmed Hassan 21/37

Roofline Model Analysis (Pmax)

Double *A, *B, *C, *D;

For (int i=0; i<N; i++) {
 A[i] = B[i] + C[i] * D[i]}

Number of cycles to process one AVX-vectorized iteration

 Cycle 1: LOAD + ½ STORE + MULT + ADD
Cycle 2: LOAD + ½ STORE
Cycle 3: LOAD

Bc = (4+1) Words / 2 Flops = 2.5 W/F
 I = 0.4 F/W = 0.05 F/B

 I ∙ bs = 2.0 GF/s (1.04 % of peak performance)
Ppeak = 192 Gflop/s (8 cores x (4+4) Flops/cy x 3.0 GHz)

Pmax = 8 x 8 Gflop/s = 64 Gflop/s (33% peak)

 P = min(Pmax, I
.bs) = min (64,2.0) GFlop/s = 2.0 Gflop/s

Example

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[5], [8], [9]

[5] Samuel Williams, Andrew Waterman, David Patterson, "Simple performance modeling: The Roofline Model" Communications of the ACM, Vol. 52 No. 4, 10.1145/1498765.1498785, pp. 65 - 76.
[8] Datasheet Addendum, 2nd Generation Intel® Core™ Processor Family Mobile with ECC, May 2012
[9] Intel free Press, "Ron Friedman: The Man Behind Sandy Bridge", December 28, 2010. Retrieved November 11, 2011
http://www.intelfreepress.com/news/the-man-behind-sandy-bridge/

Performance Modeling – Ahmed Hassan 22/37

Roofline Model [10] Graph

Intensity (flops/byte)

P
e
rf

o
rm

a
n
c
e
 (

G
fl
o
p
/s

)

1/32 1/16 1/8 1/4 1/2 1 2 4

1

2

4

8

16

32

64
Pmax

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[10] Samuel Williams, Lawrence Berkeley National Laboratory, "The Roofline Model", , Berkeley Par Lab

Performance Modeling – Ahmed Hassan 22/37

Roofline Model [10] Graph Analysis

Intensity (flops/byte)

P
e
rf

o
rm

a
n
c
e
 (

G
fl
o
p
/s

)

1/8 1/4 1/2 1 2 4

1

2

4

8

16

32

64

8 16

Opteron 2356
L
o
g
 S

c
a
le

Peak SP

Peak roofline
performance based
on manuel single
percision peak and a
hand tuned stream
read for bandwidth

Log Scale

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[10] Samuel Williams, Lawrence Berkeley National Laboratory, "The Roofline Model", , Berkeley Par Lab

Performance Modeling – Ahmed Hassan 22/37

Roofline Model [10] Graph Analysis

Intensity (flops/byte)

P
e
rf

o
rm

a
n
c
e
 (

G
fl
o
p
/s

)

1/8 1/4 1/2 1 2 4

1

2

4

8

16

32

64

8 16

Opteron 2356

Peak SP

Opteron has separate
multipliers as well as
adders and a functional
unit paralleism

Mul/add imbalance

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[10] Samuel Williams, Lawrence Berkeley National Laboratory, "The Roofline Model", , Berkeley Par Lab

Performance Modeling – Ahmed Hassan 22/37

Roofline Model [10] Graph Analysis

Intensity (flops/byte)

P
e
rf

o
rm

a
n
c
e
 (

G
fl
o
p
/s

)

1/8 1/4 1/2 1 2 4

1

2

4

8

16

32

64

8 16

Opteron 2356
Peak SP

Mul/add imbalance

Without SIMD

In single precision, SIMD
is 4x32b, if only the _ss
versions are used,
performance is 1/4

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[10] Samuel Williams, Lawrence Berkeley National Laboratory, "The Roofline Model", , Berkeley Par Lab

Performance Modeling – Ahmed Hassan 22/37

Roofline Model [10] Graph Analysis

Intensity (flops/byte)

P
e
rf

o
rm

a
n
c
e
 (

G
fl
o
p
/s

)

1/8 1/4 1/2 1 2 4

1

2

4

8

16

32

64

8 16

Opteron 2356
Peak SP

Mul/add imbalance

Without SIMD

Without ILP
When execution thread
falls short of expressing
this degree of parallelism,
functional units will go
idle, and performance will
drop-down

Instruction-Level parallelism: measure of
the number of operations that in a program
can be performed simultaneously

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[10] Samuel Williams, Lawrence Berkeley National Laboratory, "The Roofline Model", , Berkeley Par Lab

Performance Modeling – Ahmed Hassan 22/37

Roofline Model [10] Graph Analysis

Intensity (flops/byte)

P
e
rf

o
rm

a
n
c
e
 (

G
fl
o
p
/s

)

1/8 1/4 1/2 1 2 4

1

2

4

8

16

32

64

8 16

Opteron 2356
Peak SP

Mul/add imbalance

Without SIMD

Without ILP

When Software
prefetching is not utilized
the performance will
drop-down. This is
considered the ceiling of
the bandwidth roofline

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[10] Samuel Williams, Lawrence Berkeley National Laboratory, "The Roofline Model", , Berkeley Par Lab

Performance Modeling – Ahmed Hassan 22/37

Roofline Model [10] Graph Analysis

Intensity (flops/byte)

P
e
rf

o
rm

a
n
c
e
 (

G
fl
o
p
/s

)

1/8 1/4 1/2 1 2 4

1

2

4

8

16

32

64

8 16

Opteron 2356
Peak SP

Mul/add imbalance

Without SIMD

Without ILP

When there is no
NUMA optimizations,
the memory controllers
on the second socket
cannot be utilized

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[10] Samuel Williams, Lawrence Berkeley National Laboratory, "The Roofline Model", , Berkeley Par Lab

Performance Modeling – Ahmed Hassan 22/37

Roofline Model [10] Graph Analysis

Intensity (flops/byte)

P
e
rf

o
rm

a
n
c
e
 (

G
fl
o
p
/s

)

1/8 1/4 1/2 1 2 4

1

2

4

8

16

32

64

8 16

Opteron 2356
Peak SP

Mul/add imbalance

Without SIMD

Without ILP

With no unit stride streams,
bandwidth drops down

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[10] Samuel Williams, Lawrence Berkeley National Laboratory, "The Roofline Model", , Berkeley Par Lab

Performance Modeling – Ahmed Hassan 23/37

• There is no standard/single ordering or roofline model.

• The ceiling order is generally bottom up.

• Addition, Multiplication and FMA are balanced inherent in many
linear algebra routines.

• Addition is the most dominant operation thus the multipliers and
FMA go underutilized.

Roofline Model [10] Graph Analysis

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[10] Samuel Williams, Lawrence Berkeley National Laboratory, "The Roofline Model", , Berkeley Par Lab

Performance Modeling – Ahmed Hassan 24/37

Execution-Cache-Memory (ECM) [11]

What is the optimal number
of cores for minimum
energy to solution?

Is it more energy-efficient
to use more cores at lower
clock speed than fewer
cores at higher clock speed?

When exactly does the
‘race to idle’ rule apply?

Is it necessary to sacrifice
performance in favor of low
energy consumption?

What is the influence of
single-core optimization on
energy efficiency?

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[11] Treibig J, Hager G. Introducing a performance model for bandwidth-limited loop kernels. Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science, vol. 6067, Wyrzykowski R,
Dongarra J, Karczewski K, Wasniewski J (eds.). Springer Berlin / Heidelberg, 2010; 615–624, doi:10.1007/978-3-642-14390-8 64.

Performance Modeling – Ahmed Hassan 25/37

Refined by

Roofline Model

ECM

Execution Cache Memory

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

Execution-Cache-Memory (ECM) [11]

[11] Treibig J, Hager G. Introducing a performance model for bandwidth-limited loop kernels. Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science, vol. 6067, Wyrzykowski R,
Dongarra J, Karczewski K, Wasniewski J (eds.). Springer Berlin / Heidelberg, 2010; 615–624, doi:10.1007/978-3-642-14390-8 64.

Performance Modeling – Ahmed Hassan 26/37

• Refines the roofline model to predict the behavior of saturation and
scaling of bandwidth-limit.

• Provides a clear understand of the single and multi-core performance of
streaming kernels.

Intel Sandy Bridge processor exposes part of its power characteristics to the
programmer through “Running Average Power Limit” feature.

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

Execution-Cache-Memory (ECM) [11] [12]

[11] Treibig J, Hager G. Introducing a performance model for bandwidth-limited loop kernels. Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science, vol. 6067, Wyrzykowski R,
Dongarra J, Karczewski K, Wasniewski J (eds.). Springer Berlin / Heidelberg, 2010; 615–624, doi:10.1007/978-3-642-14390-8 64.
[12] G. Hager, J. Treibig, J. Habich, and G. Wellein, Erlangen Regional Computing Center (RRZE), "Exploring performance and power properties of modern multicore chips via simple machine models",
Erlangen, Germany, pp. 1 - 21.

Performance Modeling – Ahmed Hassan 27/37

Execution-Cache-Memory (ECM) [12] [13] Hardware

• The majority of numerical codes are based on streaming loop kernels.

• Kernels are always limited by the bandwidth of memory that leads to a
distinct scaling behavior across the cores of a multicore chip.

BUT

Roofline model is used to anticipate the performance

ECM model provides essential insight about the
cache bandwidths and organization on the multicore
chip to show up a more authentic characterization
on the single-core level.

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[12] G. Hager, J. Treibig, J. Habich, and G. Wellein, Erlangen Regional Computing Center (RRZE), "Exploring performance and power properties of modern multicore chips via simple machine models",
Erlangen, Germany, pp. 1 - 21.
[13] Rotem E, Naveh A, Ananthakrishnan A, Rajwan D, Weissmann E. Power-management architecture of the Intel microarchitecture code-named Sandy Bridge. IEEE Micro 2012; 32:20–27,
doi:10.1109/MM.2012.12.

Performance Modeling – Ahmed Hassan 28/37

Execution-Cache-Memory (ECM) [12] [13] Single core

composed of

1

2

Core Time (Tcore)

Time taken to execute all instructions, with all
operands of loads/ stores coming from/ going to
the L1 data cache.

Data Delay (Tdata)

Time taken to transfer data to/ from L1 through
the memory hierarchy. This value will be larger if
the required cache line(s) are “far away.”

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[12] G. Hager, J. Treibig, J. Habich, and G. Wellein, Erlangen Regional Computing Center (RRZE), "Exploring performance and power properties of modern multicore chips via simple machine models",
Erlangen, Germany, pp. 1 - 21.
[13] Rotem E, Naveh A, Ananthakrishnan A, Rajwan D, Weissmann E. Power-management architecture of the Intel microarchitecture code-named Sandy Bridge. IEEE Micro 2012; 32:20–27,
doi:10.1109/MM.2012.12.

Performance Modeling – Ahmed Hassan 29/37

Execution-Cache-Memory (ECM) [12] [13]

Maximum: 4 cycles
Minimum: 2 cycles

epending on whether the transfers
can overlap or not
 32-byte wide buses between the cache levels

d

Intel Architecture Code Analyzer (IACA)

Tool that can derive more accurate predictions
by taking dependencies into account.

Single core

L1 Cache

L2 Cache

Register

Memory

L3 Cache

64-byte
cache line

A

A

A B

B

B

B

C

C

C

C

A

D

D

D

D

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[12] G. Hager, J. Treibig, J. Habich, and G. Wellein, Erlangen Regional Computing Center (RRZE), "Exploring performance and power properties of modern multicore chips via simple machine models",
Erlangen, Germany, pp. 1 - 21.
[13] Rotem E, Naveh A, Ananthakrishnan A, Rajwan D, Weissmann E. Power-management architecture of the Intel microarchitecture code-named Sandy Bridge. IEEE Micro 2012; 32:20–27,
doi:10.1109/MM.2012.12.

Performance Modeling – Ahmed Hassan 29/37

L1 Cache

Execution-Cache-Memory (ECM) [12] [13]

L2 Cache

Register

Memory

Multicore scaling

L3 Cache

64-byte
cache line

A

A

A B

B

B

B

C

C

C

C

A

D

D

D

D max(2(B)+2(C)+2(D), 4(A))cy = 6 cy

(2(B)+2(C)+2(D), 4(A))cy = 10 cy

(2(B)+2(C)+2(D), 4(A))cy = 10 cy

(5.64 B. 2.7Gcy/s)/(36 GB/s) = 24 cy

256 bit LD &
128 bit ST

256 bit

256 bit

107 bit
(@ 2.7 GHz)

Single-core ECM model anticipate lower and
upper limits of the bandwidth pressure on all
memory hierarchy levels. When the bandwidth
capacity of one level is drained, performance
starts to saturate.

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[12] G. Hager, J. Treibig, J. Habich, and G. Wellein, Erlangen Regional Computing Center (RRZE), "Exploring performance and power properties of modern multicore chips via simple machine models",
Erlangen, Germany, pp. 1 - 21.
[13] Rotem E, Naveh A, Ananthakrishnan A, Rajwan D, Weissmann E. Power-management architecture of the Intel microarchitecture code-named Sandy Bridge. IEEE Micro 2012; 32:20–27,
doi:10.1109/MM.2012.12.

Performance Modeling – Ahmed Hassan 30/37

Execution-Cache-Memory (ECM) [12] [13] Multicore scaling

L1

L2

 L
1

L3

 L

2

M
e

m
o

ry

 L
3

0

6

16

20

24

26

34

50

L1

L3

 L
2

M

e
m

o
ry

 L

3

L2

 L
1

L1

L2

 L
1

L3

 L
2

M
e

m
o

ry

 L
3

No Overlap
All Cache

Single-ported
Full overlap
beyond L2

Cycles

Measured
cycles

6.04

17.2

26.3

52.3

Data in L1

Data in L2

Data in L3

Data in Memory

The presence of overlap
depends on the type of code.

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[12] G. Hager, J. Treibig, J. Habich, and G. Wellein, Erlangen Regional Computing Center (RRZE), "Exploring performance and power properties of modern multicore chips via simple machine models", Erlangen, Germany, pp. 1 - 21.
[13] Rotem E, Naveh A, Ananthakrishnan A, Rajwan D, Weissmann E. Power-management architecture of the Intel microarchitecture code-named Sandy Bridge. IEEE Micro 2012; 32:20–27, doi:10.1109/MM.2012.12.

Performance Modeling – Ahmed Hassan 31/37

Roofline Model in HPC [10] Overview

Arithmetic Intensity

SpMW, BLAS1,2

Stencils (PDEs)

Lattice Methods

FFTs
Dense Linear Algebra (BLAS3)

Partivle Methods

• Certain arithmetic intensity is exceed by local store space.

• Arithmetic Intensity (AI) ~ Total Flops / Total DRAM Bytes

• Some HPC kernels have a constant arithmetic intensity.

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[10] Samuel Williams, Lawrence Berkeley National Laboratory, "The Roofline Model", , Berkeley Par Lab

Performance Modeling – Ahmed Hassan 32/37

Intensity (flops/byte)

P
e
rf

o
rm

a
n
c
e
 (

G
fl
o
p
/s

)

1/8 1/4 1/2 1 2 4

1

2

4

8

16

32

64

8 16

Opteron 2356

Peak SP

Mul/add imbalance

Without SIMD

Without ILP

Software Optimization [10]

• Loop unrolling,
reordering, and long
running loops are
considered as a type of
Software optimization.

• Compilers will not allow
great bandwidth

• Long unite stride accesses

• NUMA wise allocation as
well as paralleization

• Software prefetching

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[10] Samuel Williams, Lawrence Berkeley National Laboratory, "The Roofline Model", , Berkeley Par Lab

Performance Modeling – Ahmed Hassan 33/37

Application/Service Modeling [14]

Other way of performance modeling is to model a communication between
application/services.

Inputs

• Scenarios and design documentation about critical and significant use cases.

• Application design and target infrastructure and any constraints imposed by
the infrastructure.

• QoS requirements and infrastructure constraints, including service level
agreements (SLAs).

• Workload requirements derived from marketing data on

 prospective customers.

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[14] HP LoadRunner User Manual, v11.00, URL: http://community.hpe.com/hpeb/attachments/hpeb/sws-LoadRunner_SF/11042/1/hp_man_LoadRunner11.00_AnalysisUser_pdf.pdf

Performance Modeling – Ahmed Hassan 34/37

Application/Service Modeling [14]

Outputs
• A performance model document.
• Test cases with goals.

For example if we are developing an online booking system then we measure
the performance of the system with respect to our pre-defined SLA.
e.g.

• Number of Co-current booking requests
• Number of Running Vusers
• Number of Hit per Second
• CPU etc

Tools:
 Commercial Tools like HP LoadRunner or Open-source Tool like JMeter

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[14] HP LoadRunner User Manual, v11.00, URL: http://community.hpe.com/hpeb/attachments/hpeb/sws-LoadRunner_SF/11042/1/hp_man_LoadRunner11.00_AnalysisUser_pdf.pdf

Performance Modeling – Ahmed Hassan 35/37

Application/Service Modeling

Source: http://bish.co.uk – Performance Testing – Page 17

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

Performance Modeling – Ahmed Hassan 36/37

Roofline Performance Modeling focuses on rates and efficiencies (Gflop/s, % of peak)

Afford a visual assistance that provides:

• Realistic forecast of performance as well as productivity

• Show hardware constraint for a given kernel

• Show potential assistance and priority of optimizations

Easily extendable to other architectural paradigms as well as other
communication/computation metrics.

Who’s not the audience for the Roofline:

• Not for those interested in fine tuning (+5%)

• Not for those challenged by parallel kernel correctness

Execution-Cache-Memory (ECM) describes the scaling characteristics of bandwidth
bound codes on a multicore chip better than a simple bottleneck analysis.

Conclusion

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

Performance Modeling – Ahmed Hassan 37/37

Conclusion [15]

P
e
rf

o
rm

a
n
c
e
 (

G
fl
o
p
/s

)

1/8 1/4 1/2 1 2 4

1

2

4

8

16

32

64

8 16

Intensity (flops/byte)

Pmax

P´max

1. Reach the bandwidth bottleneck by good serial code

3. Jumping from memory-
bound to core-bound

2. Increase intensity
make better utilization
of the bandwidth

4. Good serial coding to reach
the core bottleneck

5. Implementing different
algorithm or accessing additional
hardware features

Roofline Model HPC Software/Service Optimization Summary ECM Introduction

[15] Performance Modeling: The Roofline Model, "Loop-based performance modeling: Execution vs. data transfer", Friedrich-Alexander Universität, Erlangen-Nürnberg, pp 2-16

Questions?

 Ahmed Hassan

Sources

• [1] National Center for Supercomputing Applications (NCSA), University of Illinois, USA, "Performance Modeling for
Systematic Performance Tuning", ACM 978-1-4503-0771-0/11/11, pp. 1 - 5.

• [2] S. Jarvis, S.Wright, Simon Hammond, High Performance Computing Systems: Performance Modeling,
Benchmarking and Simulation, Springer, ISBN: 978-3-319-10213-9, pp. 19 - 26.

• [3] Heike McCraw, Innovative Computing Laboratory, Departmanet of Electrical Engineering and Computer Science,
"Performance Modeling", University of Tennessee, 2013, pp. 7 - 9.

• [4] Samuel Williams, David Patterson, ParLab Summer Retreat, "The Roofline Model: A pedagogical tool for
program analysis and optimization", Berkeley Par Lab

• [5] Samuel Williams, Andrew Waterman, David Patterson, "Simple performance modeling: The Roofline Model"
Communications of the ACM, Vol. 52 No. 4, 10.1145/1498765.1498785, pp. 65 - 76.

• [6] W. Schönauer (2000), "Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory
Parallel Computers"

• [7] S. Williams (2008), "Auto-tuning Performance on Multicore Computers", UCB Technical Report No. UCB/EECS-
2008-164. PhD thesis

• [8] Datasheet Addendum, 2nd Generation Intel® Core™ Processor Family Mobile with ECC, May 2012

• [9] Intel free Press, "Ron Friedman: The Man Behind Sandy Bridge", December 28, 2010. Retrieved November 11,
2011, URL: http://www.intelfreepress.com/news/the-man-behind-sandy-bridge/

Sources
• [10] Samuel Williams, Lawrence Berkeley National Laboratory, "The Roofline Model", , Berkeley Par Lab

• [11] Treibig J, Hager G. Introducing a performance model for bandwidth-limited loop kernels. Parallel Processing
and Applied Mathematics, Lecture Notes in Computer Science, vol. 6067, Wyrzykowski R, Dongarra J, Karczewski K,
Wasniewski J (eds.). Springer Berlin / Heidelberg, 2010; 615–624, doi:10.1007/978-3-642-14390-8 64.

• [12] G. Hager, J. Treibig, J. Habich, and G. Wellein, Erlangen Regional Computing Center (RRZE), "Exploring
performance and power properties of modern multicore chips via simple machine models", Erlangen, Germany,
pp. 1 - 21.

• [13] Rotem E, Naveh A, Ananthakrishnan A, Rajwan D, Weissmann E. Power-management architecture of the Intel
microarchitecture code-named Sandy Bridge. IEEE Micro 2012; 32:20–27, doi:10.1109/MM.2012.12.

• [14] HP LoadRunner User Manual, v11.00, URL: http://community.hpe.com/hpeb/attachments/hpeb/sws-
LoadRunner_SF/11042/1/hp_man_LoadRunner11.00_AnalysisUser_pdf.pdf

• [15] Performance Modeling: The Roofline Model, "Loop-based performance modeling: Execution vs. data
transfer", Friedrich-Alexander Universität, Erlangen-Nürnberg, pp 2-16

Sources
• Schönauer W. Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel

Computers. Self-edition, 2000. URL http://www.rz.uni-karlsruhe.de/~rx03/book.

• Treibig J, Hager G. Introducing a performance model for bandwidth-limited loop kernels. Parallel Processing and
Applied Mathematics, Lecture Notes in Computer Science, vol. 6067, Wyrzykowski R, Dongarra J, Karczewski K,
Wasniewski J (eds.). Springer Berlin / Heidelberg, 2010; 615–624, doi: 10.1007/978-3-642-14390-8 64.

• Suleman MA, Qureshi MK, Patt YN. Feedback-driven threading: power-efficient and high performance execution of
multi-threaded workloads on CMPs. SIGARCH Comput. Archit. News Mar 2008; 36(1):277– 286,
doi:10.1145/1353534.1346317.

• Hoisie A, Lubeck O, Wasserman HJ. Performance and scalability analysis of teraflop-scale parallel architectures
using multidimensional wavefront applications. Int. J. High Perform. Comp. Appl. 2000; 14:330–346,
doi:10.1177/109434200001400405.

• Nudd GR, Kerbyson DJ, Papaefstathiou E, Perry SC, Harper JS, Wilcox DV. Pace — A toolset for the performance
prediction of parallel and distributed systems. Int. J. High Perform. Comp. Appl. 2000; 14(3):228–251,
doi:10.1177/109434200001400306.

• Kerbyson DJ, Jones PW. A performance model of the Parallel Ocean Program. Int. J. High Perform. Comp. Appl.
2005; 19:261–276, doi:10.1177/1094342005056114.

• G. Hager, J. Treibig, J. Habich, and G. Wellein, "Exploring performance and power properties of modern multicore
chips via simple machine models", Erlangen Regional Computing Center (RRZE) Martensstr. 1, 91058 Erlangen,
Germany

Backup Slides

FMA

The FMA instruction set is an extension to the 128 and 256-bit
Streaming SIMD Extensions instructions in the x86
microprocessor instruction set to perform fused multiply–add
(FMA) operations.

There are two variants:
• FMA4 is supported in AMD processors starting with the

Bulldozer architecture. FMA4 was realized in hardware
before FMA3.

• FMA3 is supported in AMD processors starting with the
Piledriver architecture and Intel starting with Haswell
processors and Broadwell processors since 2014.

FLOPS

In computing, FLOPS or flops (an acronym for floating-point operations per
second) is a measure of computer performance, useful in fields of scientific
calculations that make heavy use of floating-point calculations. For such
cases it is a more accurate measure than the generic instructions per second.
GFLOPS = (CPU Clock in GHz) × (Number of CPU Kernels)

FLOPS can be calculated using this equation:

Most microprocessors today can carry out 4 FLOPs per clock cycle; thus a
single-core 2.5 GHz processor has a theoretical performance of 10 billion
FLOPS = 10 GFLOPS.

Sockets is referring to processor chip sockets on a motherboard, in other
words, how many processor chips are in use, with each chip having one or
more cores on it. This equation only applies to one very specific (but
common) hardware architecture and it ignores limits imposed by memory
bandwidth and other constraints. In general, gigaFLOPS are not determined
by theoretical calculations such as this one; instead, they are measured by
benchmarks of actual performance/throughput. Because this equation ignores
all sources of overhead, in the real world, one will never get actual
performance that is anywhere near to what this equation predicts.

Cache entries
Data is transferred between memory and cache in blocks of fixed size, called cache lines.
When a cache line is copied from memory into the cache, a cache entry is created. The
cache entry will include the copied data as well as the requested memory location (now
called a tag).

When the processor needs to read or write a location in main memory, it first checks for
a corresponding entry in the cache. The cache checks for the contents of the requested
memory location in any cache lines that might contain that address. If the processor
finds that the memory location is in the cache, a cache hit has occurred. However, if the
processor does not find the memory location in the cache, a cache miss has occurred. In
the case of a cache hit, the processor immediately reads or writes the data in the cache
line. For a cache miss, the cache allocates a new entry and copies in data from main
memory, then the request is fulfilled from the contents of the cache.

Cache performance
The proportion of accesses that result in a cache hit is known as the hit rate, and can be
a measure of the effectiveness of the cache for a given program or algorithm.

Read misses delay execution because of requiring data to be transferred from memory,
which is much slower than reading from the cache. Write misses may occur without such
penalty, since the processor can continue execution while data is copied to main memory
in the background.

Replacement policies

In order to make room for the new entry on a cache miss, the cache
may have to evict one of the existing entries. The heuristic that it uses
to choose the entry to evict is called the replacement policy. The
fundamental problem with any replacement policy is that it must
predict which existing cache entry is least likely to be used in the
future. Predicting the future is difficult, so there is no perfect way to
choose among the variety of replacement policies available.

One popular replacement policy, least-recently used (LRU), replaces
the least recently accessed entry.

Marking some memory ranges as non-cacheable can improve
performance, by avoiding caching of memory regions that are rarely
re-accessed. This avoids the overhead of loading something into the
cache without having any reuse. Cache entries may also be disabled
or locked depending on the context.

Write policies

If data is written to the cache, at some point it must also be written to main memory;
the timing of this write is known as the write policy. In a write-through cache, every
write to the cache causes a write to main memory. Alternatively, in a write-back or copy-
back cache, writes are not immediately mirrored to the main memory, and the cache
instead tracks which locations have been written over, marking them as dirty. The data in
these locations is written back to the main memory only when that data is evicted from
the cache. For this reason, a read miss in a write-back cache may sometimes require two
memory accesses to service: one to first write the dirty location to main memory, and
then another to read the new location from memory. Also, a write to a main memory
location that is not yet mapped in a write-back cache may evict an already dirty location,
thereby freeing that cache space for the new memory location.

There are intermediate policies as well. The cache may be write-through, but the writes
may be held in a store data queue temporarily, usually so that multiple stores can be
processed together (which can reduce bus turnarounds and improve bus utilization).

Cached data from the main memory may be changed by other entities (e.g. peripherals
using direct memory access (DMA) or another core in a multi-core processor), in which
case the copy in the cache may become out-of-date or stale. Alternatively, when a CPU
in a multiprocessor system updates data in the cache, copies of data in caches
associated with other CPUs will become stale. Communication protocols between the
cache managers that keep the data consistent are known as cache coherence protocols.

CPU stalls

The time taken to fetch one cache line from memory (read latency)
matters because the CPU will run out of things to do while waiting for
the cache line. When a CPU reaches this state, it is called a stall. As
CPUs become faster compared to main memory, stalls due to cache
misses displace more potential computation; modern CPUs can
execute hundreds of instructions in the time taken to fetch a single
cache line from main memory.

Various techniques have been employed to keep the CPU busy during
this time, including out-of-order execution in which the CPU (Pentium
Pro and later Intel designs, for example) attempts to execute
independent instructions after the instruction that is waiting for the
cache miss data. Another technology, used by many processors, is
simultaneous multithreading (SMT), or—in Intel's terminology— hyper-

threading (HT), which allows an alternate thread to use the CPU core
while the first thread waits for required CPU resources to become
available.

Instruction-level parallelism (ILP) is a measure of how
many of the operations in a computer program can be
performed simultaneously. The potential overlap among
instructions is called instruction level parallelism.

There are two approaches to instruction level parallelism:

• Hardware
• Software

Hardware level works upon dynamic parallelism whereas, the
software level works on static parallelism.

Instruction Prefetch

In computer architecture, instruction prefetch is a technique
used in microprocessors to speed up the execution of a
program by reducing wait states.

Modern microprocessors are much faster than the memory
where the program is kept, meaning that the program's
instructions cannot be read fast enough to keep the
microprocessor busy. Adding a cache can provide faster access
to needed instructions.

Prefetching occurs when a processor requests an instruction
from main memory before it is actually needed. Once the
instruction comes back from memory, it is placed in a cache.
When an instruction is actually needed, the instruction can be
accessed much more quickly from the cache than if it had to
make a request from memory.

ECM Measurement Tools

We have used the Intel compiler Version 12.1 update 9 for
compiling source codes. Hardware counter measurements
were performed with the likwid-perfctr tool from the LIKWID
tool suite, which, in its latest development release, can access
the power information (via the RAPL interface) and the
“uncore” events (i.e., L3 cache and memory/QuickPath
interface) on Sandy Bridge processors.

The LIKWID suite also contains likwid-bench, a micro-
benchmarking framework that makes it easy to build and run
assembly language loop kernels from scratch, without the
uncertainties of compiler code generation. likwid-bench was
used to validate the results for some of the streaming micro-
benchmarks in this work.

