		Technical Details	The SDK		
000000	000000	00000	00	0	0

Automaton Processor

Dennis Struhs

Arbeitsbereich Wissenschaftliches Rechnen Fachbereich Informatik Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg

17.11.2015

	Technical Details	The SDK	

Topics Overview

1 Introduction

- 2 Automata Processor
- 3 Technical Details
- 4 The SDK
- 5 Summary

6 Literature

Introduction ●00000	Technical Details 00000	The SDK 00	

Introduction

- Why would we need Automaton Processors?
 - Couldn't a CPU do the same job?
 - Maybe a GPU would be a good choice as well?
- Why would anybody want to even do research in this field?
 - Isn't the Von-Neumann architecture the final word of wisdom?
 - Shouldn't traditional systems be able to handle every problem there is with ease?

Introduction	Technical Details	The SDK	
00000			

Traditional Computing Appliances

- Programs are usually working on rather small datasets
 - Data is most likely structured in a certain way / preprocessed
- GPU assists the CPU in specialized tasks
 - Large scale of applied matrix multiplikation
 - Billions of transistors solely for vector and matrix calculations
- Traditional Parallel Computing on von Neumann Systems
 - Use many CPUs and parallelized programs to raise performance

Introduction	Technical Details	The SDK	
000000			

New Computing Challanges: Data Mining

"The Challenge of Complex, Unstructured Data"

- How to deal with large scale data input?
- How about real-time data analysis and evaluation?
- What's with unstructured data?
- How can this be performantly done using parallelisation?

IntroductionAutomata ProcessorTechnical DetailsThe SDKSummaryLiterature00000000000000000000

Example of Unstructed Data

CCCGGGCACGTTACCGTATTGATGTTACTAGTAGCGCACAGAAACATCCTGGTCTAAGCAGTTGCAGCAGGTACTGCGTT GTAGTGGCGGTAGTTACGACTCTGTAGGTTAGAGCGGAGGCTTTGCTGGAGCAATGTCCGCCTAGTGAAGCTCGGAGAGG TTTCTGTTCTCCTTTCCCTGCGACTGGATAATATTATTCAGTGGAGTTACTGGGCGGTGTTTGCTCCAATATGGTTGTGG AAACTAATGGTTATTGTGGGAGCCTCAGTTGGTACAGGTGTATGGGCACGTAACCCTCAATACAGGGCAGAAGGTGAAAC ATGTGTGGAGTTCAAGGCCATGCTAATTGCAGTGGGAATTCATTGCTGCTGCTTCTTATGTTTGAAGTTCTTGTTTGCGATC GTATTGAAAGAGGAAACCACTACTTCTGGTTGCTAGTCTTTATGCCTTTATTCTTTGTGTCCCCCAGTATCCGTTGCAGCT TGCGTTTGGGGCTTTCGGCATGATCGATCATTGGAAATCTTGTGCTCCGTCAATATTCTGCAGTTTATATTCAT GCCTAGTAGTATGTATTATATTGTGTGGTCAGTTCTGTTCCTGCGTTCAATGGATGTTATTGCAGAACAAAGGAGAACT CATATTACTATGGCAGTCAGTTGGATGGCTATAGTTGTACCGCTTCTGACATTCGAGATATTACTTGTTCATCGACTTGA TGGGCACAAATCCAATAATCGAAATAATCCCTAATAATTGTTCCGCTTTGGCTTTGCTTAATAACGTTGATGGCAACAACCTTTG GACAGAAAGGAGGCAATCACTGGTGGTTTGGGATTCGTAAAGACTTCTGCCAGTTTCTGTTGGAGATTTTCCCTTTTCTT CGAGAATATGGCAATATCTCATATGATATTCATCATGAAGACAGTGAAGATGCTGAAGAACACCTGTACCGGAGCCCCC CAAAATCGCACCAATGTTTCGAAAGAAGACTGGCGTTGTCATTACCCAGAGCCCAGGGAAATATATTGTTCCTCCTGCTA AACTTAACATCGACATGCCGGATTAAGGTGAAATTTGGTGGCTTGAGGGCACTTTTTTCTGTTTTAACTAATCCTGTTAG TAGTACACTATCAGGTGTCATGGACTGAAGGGAAAAAAAGACTACTGACCTCATTCCTTTTTTGTATTCATTTGTAATTT TTTTTGTTCCTGCAATGGTATGTGTTTTCCCCATCCTAATTCCATGTCATGTCATGTCAGGGAAGCTTCTTAA **GGGCAAAGAATGCTGGAATTTGTAGTTTATAATTTGTGGATGACTATAAATTTTCACATCTGTTGTCTTGGTAATGACTG** CAGTCTTGCATTCTAGTTTCTAGTAACACAGAGATAGACCAGCTGTGGCCCTCCAGATACTGAGCTAACAAGCTTTGGGA GACATCCTGGGAATCTTAGCAGCTCTGGGGCCACAGGTTGGACTTCTCAGCAGTAAAATTAAGTATAATGTTTATCTTAA GTAAATGTCTTTGTGTGTGTTGTTATGCAATGCAGCTATTGTTTGATATCTTTACagcagaacttgtgcatagaattgaa GAAGTGATATTTGAGCAGAGGGCTTATGGGATATATCTAATATACACCTTCCCTTAGGAGTTACTACTCCTTGGCTCACTT GTATAGTATTTATAAGAACATTTTATCAATGTAATATATTGTGTTCAAAAATTATTCTTATGTACAGTATAAAATGGATAAA ATCTATGTGAATTCTACAATGAAAAAAAGATCTATACAAATTTCAAAAGCCAGTATGTCATTTTTATATACTGACCATGTAC ATATTATGTAAGATGTAAAGCCAAACACCAATGACATGAATGTTAAGTTATTAGACTATGAATAAAACATTGATTTAATT TTATGTTGTAAAAAAAAAAAAAAAAAAAAAA

Figure: DNA Sequence

Introduction	Technical Details	The SDK	
000000			

Structuring the Data

Figure: Genetic Sequencing Workflow

Introduction		Technical Details	The SDK		
00000	000000	00000	00	0	0

Large Scale Pattern Matching is Required

- Many scientific appliances for handling big data
- Economic interested in big data is growing steadily
- Quick way of handling this amount of data is required
- Data can deprecate over time losing its significance

The Automata Processor - A Parallel Computing Solution

A memory based, massively parallelisable silicon device which is able to process data streams in real time

Figure: Micron Automata Processor

Automata Processor	Technical Details	The SDK	
00000			

The Automaton Processor - A Parallel Computing Solution

- How does it integrate into commonly used Systems?
 - Needs an existing system that operates it
 - Is (so far) not a standalone Processing Unit

It is meant to be used along a traditional Computing Setup

- Provides a non-Von-Neuman processing architecture
- Pursues the implementation of a NFA based design

Automata Processor	Technical Details 00000	The SDK 00	

Von Neumann Architecture

- Realises all components of a deterministic Turing Machine
 - A concept for implementation of universal machines.
- A Turing Machine consist of an input band and an Automaton
- The Automata operates the data stored on the input band
 - It has a writer/reader that touches one item of the input band
 - The Automaton controls the movement and the manipulation of the cells content

Automata Processor	Technical Details	The SDK	
000000			

Example of a Turing Machine

Figure: Input Band with Read/Write Head

Figure: Visualized Transition Function

	Automata Processor 0000●0	Technical Details 00000	The SDK 00	
NFA vei	rsus DFA			

Deterministic Finite Automaton

Automata Processor 00000●	Technical Details 00000	The SDK 00	

NFA versus DFA

Nondeterministic Finite Automaton

All possible paths on the Word 011:

- $(z_0, 011) \vdash (z_0, 11) \vdash (z_1, 1) blocked$
- $(z_0, 011) \vdash (z_0, 11) \vdash (z_0, 1) \vdash (z_0, \lambda)$ rejected
- $(z_0, 011) \vdash (z_0, 11) \vdash (z_0, 1) \vdash (z_1, \lambda) accepted!$

As long as there is at least one Path that succeeds, the Automaton will accept the input word.

	Technical Details ●0000	The SDK 00	

The Automata Processor: Technical Details

- How does the Automata Processor implement the NFA?
 - It achieves the NFA implementation by using many DFAs runned simultanously to emulate an NFA
 - Each DFA-Cell will complete Symbol-Delivery, Comparison and Activation in a single clock cycle every time
 - There are no race conditions or timing loops to take care of since the DFA-Cells are not dependant on each other

	Technical Details	The SDK	
	0000		

A Memory-Derived Architecture

Figure: The Memory Array with 8-Bit DDR3 Bus interface

	Technical Details	The SDK	
	00000		

A Memory-Derived Architecture

Figure: The Memory Routing Matrix with DFA-Cells Highlighted

	Technical Details	The SDK	
	00000		

The DFA-Cells Location

Figure: The Automata Processor Memory Modules

	Technical Details 0000●	The SDK 00	

The DFA-Cells Explained

Figure: A simple example of a programmable pattern for a DFA-Cell

	Technical Details	The SDK	
		0	

The Self Development Kit Features

Features a fully interactive GUI-Based application

- Drag & Drop your Elements onto your workspace
- Connect your elements intuitiviely for full functionality
- Has debugging mechanisms to find deadlocks
- Program each DFA-Cell with a different Pattern
- Realtime-Check if the Automaton matches the desired pattern

	Technical Details	The SDK	
		00	

A quick look on the SDK

Figure: The Automata Processor SDKI

	Technical Details	The SDK	Summary	
			•	

Zusammenfassung

- Traditional Approach
 - Not well suited for "big data"
 - Potentially underperforming even when parellelised
- Automaton Processor
 - Ideal for preprocessing big data in real time
 - Many computation elements allow for scalable parallelisation

		Technical Details 00000	The SDK 00	Literature •
Literatur	e			

Désiré Athow.

All you need to know about Automata, Micron's revolutionary processor.

Techradar.pro, (1):1, 3 2014.

Russell Fish.

Two Views of the Post PC World - Automata Processor and TOMI Celeste, Part 1-4. EDN Network, (1):1-4, 3 2014.

Micron.

A Massively Parallel Computing Solution.

http://www.micron.com/about/innovations/automataprocessing, (1):1, 112015.