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Abstract
Neuromorphic computation is the concept, developed by Carver Mead in the late 1980s,
of using very large scale integrated circuits to mimic the behaviour of synapses and
neurons occurring in neural systems. After an introduction to neuromorphic computation
in general, this report presents the limitations of traditional computing considering the
efficiency of simulated neural systems. To illustrate those limits a comparison between
the benchmark results of a neural simulation running on the currently 4th highest
performing super computer "K" in Kobe, Japan and the human brain as the biological
counterpart will be drawn. In the last decade, many teams and organizations have made
major advances researching and developing neuromorphic systems. In this report, the
three designs SpiNNaker, Spikey (both from the Human Brain Project) and TrueNorth
(System of Neuromorphic Adaptive Plastic Scalable Electronics) will be discussed and
compared to each other, as well as the previously addressed computer "K" and the human
brain. The different hardware choices, implementations and resulting preferences of those
systems allow for an in-depth analysis of individual perks and promises. Furthermore, the
prospects and benefits of the recently prototyped memory resistor in general computing
and its consequences for neuromorphic systems will be debated. Finally, possible near
and far future applications of neuromorphic computation will be addressed.
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1. Introduction

1.1. The Human Brain
Neuromorphic computation describes a computing concept inspired by the structure and
function of biological neural systems. To get qualitative results which determine the
efficiencies of such computational approaches, neuromorphic systems can be compared
to natural ones, such as the human central nervous system. It is the most complex
neural system nature produced through evolution and because of the fact that such a
system can exist, it should theoretically be possible to artificially recreate it (even if
that means to rebuild a human brain in the ever lavish process of putting it together
out of single atoms). The human brain is a network of roughly 85 billion neurons in
which each neuron is linked to up to 10 thousand others. Thus, to establish a connection
between any two neurons within this network, merely 2 to 3 intermediate neurons might
be needed, at most. A single neuron represents a processing unit, calculating its output
up to 1 thousand times per second, but typically about 300 times per second. Taken
together, the human brain could be seen as a massive parallel computing device with
85 billion cores running at very slow frequencies - in comparison to traditional CPUs.
Overall the human brain has a performance of up to 1 petaFLOPS with a remarkably
low energy consumption of 20 Watt, analogous to that of a dim light bulb. [Jam12] [Luk]
[Den89] [J+01]

1.2. Goals of Neuromorphic Computation
The goals of neuromorphic computation are efficiencies like those of the human brain
in terms of processing power, storage capacity and energy consumption. Currently
efficiencies of traditional computers are many orders of magnitude worse with Moore’s
Law slowly coming to a halt. Besides many practical applications where brain-inspired
information processing promises much better results, neuromorphic researchers also hope
to learn a lot in the process of studying and essentially recreating neural systems. [Chr99]
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2. Benefits

2.1. High Performance Computer "K"
Another illustration of performance differences between the human brain and traditional
computers is the biggest neural simulation to date which was run on the computer
"K" by RIKEN HPCI Program for Computational Life Sciences, the Okinawa Institute
of Technology Graduate University in Japan and the Forschungszentrum Jülich in
Germany. "K" as the currently 4th most powerful high performance computer has the
raw specifications as seen in Table 2.1. The simulation consisting of 1.73 billion neurons
connected by 10.4 trillion synapses represents about 1% of the human brain. Nevertheless
it took "K" 40 minutes to calculate only 1 second of brain activity consuming ~8,500
kilowatt hours and using about 1 petabyte of memory. [Ins13]

Peak Performance ~11.3 PetaFLOPS
Power Consumption ~12.7 Megawatt
Memory ~1.5 Petabyte

Table 2.1.: "K" specifications [TOP15]
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2.2. Comparison between "K" and the Human Brain
Separating efficiencies in terms of speed, energy consumption and storage usage, the
differences of "K" and the human brain are immense. Assuming linear scaling, the time
it would take "K" to simulate 100% of brain activity would be 66 hours and 40 minutes.
Thus, the performance of "K" which is 10 times larger than the brain’s performance
is not reflected in the computing time. There seem to be a lot more overhead and/or
bottlenecks when trying to simulate brain activity with traditional computers. In fact
the human brain is about 240,000 times faster than "K" regarding the processing of
neural signals.
Examining the energy consumption of "K" in contrast to that of the human brain

results in an even bigger factorial gap. Scaling up "K" so it is able to simulate 100% of
brain activity in real time would result in an energy consumption of 8,500 kilowatt hours
(due to the simulation running only one second instead of 40 minutes). The human brain
only consumes about 6 milliwatt hours in one second of activity rendering it about 1.4
billion times more energy efficient than "K".
In terms of storage capacity, "K" and the human brain are barely comparable. A

widespread theory about how the brain stores memories and data is through the con-
stant activation of synapses. Assuming each synapse is either activated or deactivated
representing a binary digit, the human brain would have a capacity of 50 terabytes due
to the presence of about 400 trillion synapses. However, due to synaptic plasticity such
an analogy between synapses and storage capacity of the brain seems unlikely. Estimates
based on this principle are ranging from 100 terabytes to 5 petabytes. Nevertheless even
100 terabytes in the volume of a human brain would be quite impressive given today’s
standards; especially considering that the brain performs a variety of other tasks in
addition to storing data. [Pau10]
Taken together, the human brain remains by far superior even compared to the 4th

highest performing computer to date. Utilizing even a fraction of what should be possible
by mimicking human brain systems could result in major efficiency gains for computation
in general.
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3. State of the Art

3.1. General Device Concept
Neuromorphic systems differ widely from concept to concept due to non-standardized
approaches for chip internal signal processing resulting in diverse traits and preferences.
A neuromorphic chip in general can use digital or analog circuits. It typically consists of
an array of processor cores, a chip interface, an asynchronous package routing system
with fault tolerant relay capabilities and occasional architecture specific parts. Each
processor core simulates/emulates one or more neurons, collecting input signals and
computing outputs on demand. In addition to eliminating the Von-Neumann-Bottleneck,
this asynchronous calculation behaviour results in a much higher energy efficiency than
traditional computation. The core only works when signals are received and is essentially
off when it registers no input lacking any kind of idle process. The chip interface is
responsible for inter-chip-communication enabling the possibility of scalable systems as
well as communication with circuitry the chip is integrated in. The asynchronous package
routing system consists of the Network on Chip (NoC) and the router, connecting cores
and doing the conveying part of the purpose synapses fulfill in biological neural systems.
In contrast to a living brain the routing system is not responsible for weakening or
strengthening signals in terms of synaptic plasticity. All modeling of this plasticity is
done in the cores of the chip. Nevertheless the fault tolerant property in neuromorphic
routing systems is something inspired by neural systems. As material faults in the chip
hardware can threaten to render the whole system useless, preventive measures are
needed. The human brain is constantly replacing neurons and delegating their workload
to other neurons. An analogous method widespread in neuromorphic computing is the
relaying around broken neurons in which the system registers them and assigns their
workload to others. As values for synaptic plasticity are stored in the chip’s RAM they
can be accessed by functioning neurons to assimilate the behaviour of broken ones.

This description served as a broad framework of how neuromorphic chips in general are
structured and how their basic behaviour and cooperation lead to a brain-like processor.
Going into more detail considering each part of a neuromorphic chip at this point would
go beyond the scope of this report. Instead a comparison between recent neuromorphic
designs of different working groups follows.
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3.2. SpiNNaker

SpiNNaker (Spiking Neural Network Architecture) is a neuromorphic chip design by
the Human Brain Project. Due to currently superior manufacturing processes the
development team settled for an entirely digital approach, using 18 ARM9 processors
on a die area of 102mm2. A first prototype has been finished in 2009 and the first fully
operational chips have been delivered in 2011. A concept of the whole chip can be seen
in figure 3.1.
The final SpiNNaker machine consists of about 60 thousand chips with 1 million

processor cores altogether. It is capable of simulating about 1 billion neurons and 1
trillion synapses while consuming 50 Kilowatt on average. With this capability SpiNNaker
would be able to run the simulation of "K" in real time while using only a fraction of the
energy required. Even though this is a large step forwards from traditional computing, a
major efficiency gap remains considering the low energy consumption and the volumetric
size of biological networks. The SpiNNaker-machine still needs several racks filled with
equipment and neuromorphic microchips to perform as it does. [Adv12a] [Ste14]
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Figure 3.1.: Concept SpiNNaker Chip [Adv12b]

9



3.3. Spikey

In contrast to SpiNNaker, Spikey is realized using analog neurons and synapses. Compared
to SpiNNaker’s simulation capabilities the Spikey chip’s raw neuron count is very limited
with 382 neurons, each having 256 synapses. Yet, Spikey makes up for it with a 10
to 100 thousands times higher firing frequency of each neuron compared to biological
systems. This allows the system to emulate more neurons than it actually consists
of. Furthermore Spikey’s analog approach arguably results in a more suitable model
of biological neural systems. Discreet synapse weights and other variables used for
processing are instead represented by the whole continuum of possible values which
makes the entire system more precise compared to digital ones. A mayor drawback
however is the before mentioned inferior manufacturing process of analog circuits which
results in worse miniaturization and by association performance.

Taken together Spikey is a very interesting neuromorphic chip based on a more natural,
analog approach with mayor differences compared to SpiNNaker. As analog circuit
manufacturing improves, such chips could soon outperform digital ones, especially with
the use of memory resistors, which were not used by the Spikey system. [And07]

Figure 3.2.: Spikey chip (a) and system with chip under sealing (b) [T+15]
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3.4. Truenorth

As the most modern concept of the three presented, the development of the TrueNorth chip
by the SyNAPSE-Team (Systems of Neuromorphic Adaptive Plastic Scalable Electronics)
was a collaboration of IBM and several US universities. The chip is able to simulate
1 million neurons with 256 synapses each while consuming less than 70 milliwatt. Its
entirely digital circuitry consists of a 64 times 64 array to a total of 4096 cores residing
on a die area of approximately 150mm2.
Systems consisting of 16 interconnected chips already have been built resulting in a

network of 16 million neurons and 4 billion synapses. Plans to construct a machine out of
4 thousand chips leading to the processing power of about 5% of the human brain while
consuming 4 kilowatt are currently realized. Compared to SpiNNaker this again would
be a major step with a 50 fold energy efficiency gain. Yet, the human brain remains
about 4 million times more efficient compared to an up scaled system of TrueNorth chips,
assuming linear scaling of energy consumption and performance. [P+14]

Figure 3.3.: TrueNorth Chip Core Array [Dha14]
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3.5. Final Comparison

The three presented architectures were chosen to convey the differences and similarities
of current neuromorphic systems. Especially Spikey, with its analog approach, stands
out and shows a different but promising path of research and development. SpiNNaker
and TrueNorth are more similar, with the major difference being the modularity of
TrueNorth. Instead of a system wide router and network on chip for inter-core communi-
cation, TrueNorth pursues the paradigm that each core acts as an independent entity,
communicating with other cores trough its own interface. Of course the technological
level of SpiNNaker and TrueNorth also represents a big difference which could be due to
better funding and the use of more advanced fundamental circuitry of the more modern
TrueNorth chip. The comparison of the TrueNorth and SpiNNaker chips allow for a first
progression estimate of digital approaches in neuromorphic computing. Table 3.1 shows
the efficiencies of "K", SpiNNaker, TrueNorth and the human brain in percentage of
human brain efficiency. The systems are scaled up to match the processing power of the
human brain, again assuming a linear raise in energy consupmtion and processing power.

System Efficiency (% of human brain)
HP Computer K ≈ 7.14 ∗ 10−8

SpiNNaker ≈ 5 ∗ 10−6

TrueNorth ≈ 2.5 ∗ 10−5

Human Brain 100

Table 3.1.: Efficiency comparison of scaled up systems
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4. Upcoming Technologies

4.1. The Memory Resistor
As a very young concept, neuromorphic computing is subject to major breakthroughs
and accomplishments. One of those breakthroughs is the discovery and prototyping of
the memory resistor in 2008. The memory resistor (or memristor) is the last fundamental
circuit element next to the Inductor, the Capacitor and the Resistor with applications in
both traditional as well as neuromorphic computation. It relates the flux (time integral
of voltage) to the passing charge. This means the more it is used, the lesser its resistance
gets or equivalently the more charge can pass it. Its resistance can be raised again by
reversing the current. In addition, as its name suggests, it remembers its resistance even
when there is no applied current (non-volatile). [oTT10] [Par13]

4.2. Hewlett Packards "The Machine"
Hewlett Packard actively researches and develops the memristor with plans to build
"The Machine"; a revolutionary traditional high performance computer using memristors
on many occasions instead of the usually used transistors. HP asserts that the "The
Machine" will be able to do 160 giga updates per second while consuming 160 kilowatt.
In comparison "K" uses about 12.6 thousand kilowatt while being able to do 28.8 giga
updates per second. HP even goes as far as suggesting "The Machine" for the new
generation of exascale computing. Even if HPs claims are very optimistic, considering the
many possibilities to integrate them in existing architectures, i.e. for non-volatile faster
RAM, ALUs, CPUs etc, memristors impact for traditional computing will be immense.
[Har14]
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4.3. Memristors in Neuromorphic Computation
Even more impressive is the possible gain from memristors in neuromorphic computa-
tion. Concentrating on its preferences, it is apparent that memristors essentially are
modeling synapses of biological neural systems. Even with the current relatively young
manufacturing technology, memristors can be realized as cubes of only 3 nanometer side
length. Thus, their dynamic resistance and the proportional relation between heavy
usage and a strong connection is the most natural, miniature emulation of synaptic
plasticity. Instead of the digital approach of using hundreds of transistors as in the
architectures of TrueNorth or SpiNNaker - whereas each single transistor is as big as
multiple memristors - a single memristor could be used to simulate one synapse. Even
sophisticated analog systems like Spikey will most likely not be able to miniaturize as
far as compressing the required circuitry of one synapse into a cube of 3 nanometer side
length without the use of memristors.
Memristors are a lot faster, smaller and more energy efficient than transistors used

in neuromorphic computing. Those three traits in conjunction lead to an enormous
potential. Current circuit designs using memristors consist of so called cross nets. A
cross net is basically a two layer high array of nanowires running vertically on one and
horizontally on the other layer with memristors on each intersection. The memristors of a
cross net can be dynamically configured by changing their resistances to perform different
task. For example that of a half adder as shown in figure 4.1 [Kon11]. With many
cross nets joined together, it is possible to model entire neurons with their respective
synaptic connections. One such design can be seen in figure 4.2. Analog neuromorphic
systems which use memristors in the form of crossnets are currently developed. A
team of the University of California, Santa Barbara managed to produce a 100 neuron
neuromorphic system with the use of memristors which is already able to conduct simple
image recognition tasks. Scaling up and optimizing such a system will arguably result
in a far more advanced and efficient neuromorphic computer than there are today. In
theory such systems have the potential of not only approaching the performance of the
human brain but even to outrun it. This is a consequence of a higher possible neuron
density and the higher processing rate of memristive neuromorphic computers compared
to biological neural systems. Energy consumption of such systems would still be higher
but completely manageable. [Mic15]
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Figure 4.1.: Cross net configured as a half adder [Blm08]

Figure 4.2.: Concept of a "Neuristor" [Mov14]
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5. Conclusion

5.1. Applications of Neuromorphic Computation
The following incomplete list shows possible applications for neuromorphic computation.
The list is ordered from top to bottom, upper entries represent upcoming applications in
the near future while applications further down should not be expected in the next 20
years. The far future applications require more understanding and research, mostly in
the subjects neuromorphic computation - as an interdisciplinary concept - depends on
i.e. neuropsychology, informatics, engineering etc.

• Face, Speech, Object recognition

• Robotic terrain maneuvering

• Language interpretation

• Further extension of Moore’s Law

• Understanding of the human brain

• Brain prosthetics for neurodegenerative diseases

1

1 The order of this lists represents an educated guess after exposition to this topic and by no means a
guarantee of the actual order of upcoming applications.
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5.2. Final Words
As a very young interdisciplinary concept, neuromorphic computation is subject to rapid
progression and development. In the last decade, many working groups and organizations
have developed different designs and implementations, all with the goal of creating the
best possible model to do brain like processing of information.
With the discovery and implementation of the memristor, more fundamental under-

standing of the human brain, architectural improvements and other accountable factors it
is reasonable to say that the performance/efficiency of neuromorphic systems is subject to
Moore’s Law. Even with the most pessimistic of views on the topic major breakthroughs
can be expected in no more than 15 years.
The human brain as the epitome of biological information processing remains the

inspiration for artificial neural systems. As the founder of neuromorphic computation said:

"As engineers, we would be foolish to ignore
the lessons of a billion years of evolution."

– Carver Mead, 1993
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A. Memristor - The missing element

Figure A.1.: The four fundamental electric variables and circuit elements [Par13]
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B. Titanium Dioxide Memristor

Figure B.1.: Titanium Dioxide Memristor [Jim10]
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