Scaling through more cores

From single to multi core

by Thomas Walther

Seminar on 30.11.2015

Index

1. Introduction

2. Scaling with single core until 2005

Problems and barriers
3. Solution through more cores

Current standard
Multi core usage
Amdahl's law
4. Problems and barriers

Hot spots
DIE size
5. Fabrication and approaches for new technologies

New materials for higher frequencies
6. Conclusion

Index

1. Introduction

2. Scaling with single core until 2005

Problems and barriers
3. Solution through more cores

Current standard
Multi core usage
Amdahl's law
4. Problems and barriers

Hot spots
DIE size
5. Fabrication and approaches for new technologies

New materials for higher frequencies
6. Conclusion

Scaling with single core until 2005

Moore's law - Transistors are doubled every 12 to 24 month

Smaller structures - New manufacturing technologies

Higher frequencies - Smaller structures need less power

Index

1. Introduction
2. Scaling with single core until 2005

Problems and barriers
3. Solution through more cores

Current standard
Multi core usage
Amdahl's law
4. Problems and barriers

Hot spots
DIE size
5. Fabrication and approaches for new technologies

New materials for higher frequencies
6. Conclusion

Problems and barriers: Problems

Higher frequencies - Needed for more computing power

Higher voltage - Needed for higher frequencies

Heat production - High frequencies and high voltage result in higher power consumption and dissipation (waste heat)

Problems and barriers: Barriers

Power consumption - Frequency and voltage directly influence the consumption: $P=a{ }^{*} C{ }^{*} V^{2} f$

Hot spots - Smaller structures result in smaller hot spots, that are more difficult to cool

Critical Point 2004 - Pentium 4 with ~ 4 Ghz (air cooled) marked the line for the next years

Note: $\mathrm{P}=$ power(Watts), $\mathrm{V}=$ voltage(Volts), $\mathrm{f}=$ frequency(cycles/sec), $\mathrm{C}=$ capacitance(Farads), $\mathrm{a}=$ Coulombs/Volt

Index

1. Introduction
2. Scaling with single core until 2005

Problems and barriers
3. Solution through more cores

Current standard
Multi core usage
Amdahl's law
4. Problems and barriers

Hot spots
DIE size
5. Fabrication and approaches for new technologies

New materials for higher frequencies
6. Conclusion

Solution through more cores

Since 2006 - Intel accepted the end of single cores and introduced the first Dual Cores with 1.5 to 2.33 Ghz

More Cores and HT - Intel combined more cores on one DIE with smaller structures and a customized architecture and later additionally the cheaper Hyper Threading

Heat production - Lower work load per core reduces the power consumption and heat production in total

Index

1. Introduction
2. Scaling with single core until 2005

Problems and barriers
3. Solution through more cores

Current standard
Multi core usage
Amdahl's law
4. Problems and barriers

Hot spots
DIE size
5. Fabrication and approaches for new technologies

New materials for higher frequencies
6. Conclusion

Current standard

Consumer PC - 2 to 8 cores with a total of 16 threads

Handheld - 2 to 8 cores

HPC in the Top $500-\quad$ From thousands up to 3.12 million cores

Current standard

CPU Mark Rating

As of 23rd of November 2015 - Higher results represent better performance

Graphic 1, s. Attachment

First multi cores

Multi cores today

- In comparison to Pentium 4 the Core2 Duo processor is ~ 2.8 times faster
- In comparison to Pentium 4 one of the newest processors with 8 cores and 16 threads is ~ 32.5 times faster

Current standard

	Intel Pentium 4 3.80 GHz	Intel Core2 Duo E4600 @ 2.40 GHz	$\begin{gathered} \text { Intel Core i7-5960X @ } \\ 3.00 \mathrm{GHz} \end{gathered}$
Socket Type	$N A^{2}$	LGA775	LGA2011-v3
CPU Class	Desktop	Desktop	Desktop
Clockspeed	3.8 GHz	2.4 GHz	3.0 GHz
Turbo Speed	Not Supported	Not Supported	Up to 3.5 GHz
\# of Physical Cores	1 (2 logical cores per physical)	2	8 (2 logical cores per physical)
Max TDP	65W	65W	140W
First Seen on Chart	Q4 2008	Q4 2008	Q2 2014
\# of Samples	52	406	371
Single Thread Rating	$824{ }^{3}$	888	1993
CPU Mark	493	1395	15999

1 - Last seen price from our affiliates NewEgg.com \& Amazon.com.
${ }^{2}$ - Information not available. Do you know? Notify Us.

[^0]
Index

1. Introduction
2. Scaling with single core until 2005

Problems and barriers
3. Solution through more cores

Current standard
Multi core usage
Amdahl's law
4. Problems and barriers

Hot spots
DIE size
5. Fabrication and approaches for new technologies

New materials for higher frequencies
6. Conclusion

Multi core usage

Consumer/Handheld - Only a few programs that use more than 2 cores, especially games or graphic programs

HPC usage - Programs are limited by hardware - open potential!

Parallelization - The hardware power needs a optimized parallelization to achieve its full potential

Potential limited - Amdahl's law shows the limits

Index

1. Introduction
2. Scaling with single core until 2005

Problems and barriers
3. Solution through more cores

Current standard
Multi core usage
Amdahl's law
4. Problems and barriers

Hot spots
DIE size
5. Fabrication and approaches for new technologies

New materials for higher frequencies
6. Conclusion

Amdahl's law

Note: $n s=$ speedup, $T=$ running time (RT), $\mathrm{ts}=$ serial RT, $\mathrm{tp}=$ parallel RT, $\mathrm{np}=$ cores, to(np$)=$ synchron time

Amdahl's law

Amdahl's law

Parallelization $-\quad$ Not every problem can be solved parallel if it is not possible to split it up and compute the problems separately

Time problem $\quad-\quad$ A program running time can never be reduced below its serial components runtime

Tianhe-2

- With 3.12 Million cores the computing power with >33 PFLOPS has a huge potential, but nearly no program can use it at once

Index

1. Introduction
2. Scaling with single core until 2005

Problems and barriers
3. Solution through more cores

Current standard
Multi core usage
Amdahl's law

4. Problems and barriers

Hot spots
DIE size
5. Fabrication and approaches for new technologies

New materials for higher frequencies
6. Conclusion

Hot spots

Small structures $\quad-\quad$ Hot spots get more intense the smaller the structures get

High frequencies

- Also multi cores have the weakness when one core clocks higher, that one small point gets hot

Hot Spot cooling

- High temperatures in small areas are still hard to cool and the different cooling methods limit the possible waste heat

Hot spots

CPU Active

Graphic 5, s. Attachment

Index

1. Introduction
2. Scaling with single core until 2005

Problems and barriers
3. Solution through more cores

Current standard
Multi core usage
Amdahl's law

4. Problems and barriers

Hot spots
DIE size
5. Fabrication and approaches for new technologies

New materials for higher frequencies
6. Conclusion

DIE size

Limited space on DIE $\quad-\quad$ Space needed for the CPU, cache, register and today often the GPU

Smaller structures - More space for more technology but smaller hot spots

Knights Landing $\quad-\quad$ Even with very low frequencies the heat generation will explode with too many cores (Up to 72(76) cores with a TDP of 200W)

DIE size: Intel Xeon PHI - Knights Landing

Graphic 6, s. Attachment
DIE size $\quad-\quad 700 \mathrm{~mm}^{2}$ produced with 14 nm Lithography

Index

1. Introduction
2. Scaling with single core until 2005

Problems and barriers
3. Solution through more cores

Current standard
Multi core usage
Amdahl's law
4. Problems and barriers

Hot spots
DIE size
5. Fabrication and approaches for new technologies

New materials for higher frequencies
6. Conclusion

Fabrication and approaches for new technologies

New architectures

- Reprogrammable simple CPU parts for daily tasks to use the main CPU part on DIE for one special task

New cooling materials - Directly distributed between the components like a viscous mass to spread the heat

Index

1. Introduction
2. Scaling with single core until 2005

Problems and barriers
3. Solution through more cores

Current standard
Multi core usage
Amdahl's law
4. Problems and barriers

Hot spots
DIE size
5. Fabrication and approaches for new technologies

New materials for higher frequencies
6. Conclusion

New materials for higher frequencies

Semiconductor materials - Possible successor of silicon could be indium, germanium and gallium arsenide

Reduced voltage - This alternative materials can run at 0.5 V while silicon needs a voltage around 1.1 V

Higher frequencies - Reduced voltage requirement leads to higher frequencies to use the full potential

Index

1. Introduction
2. Scaling with single core until 2005

Problems and barriers
3. Solution through more cores

Current standard
Multi core usage
Amdahl's law
4. Problems and barriers

Hot spots
DIE size
5. Fabrication and approaches for new technologies

New materials for higher frequencies

6. Conclusion

Conclusion

Problems and barriers - Power consumption always exists and needs permanent optimization through new technologies

Parallelization

- Developer have to learn to program and optimize their software for parallelization

New pathes

- Specialized Hardware with its own software and code is a possible way for more speed

Sources

http://www.extremetech.com/extreme/166413-post-post-pc-the-new-materials-tech-and-cpu-designs-that-will-revive-overclocking-and-enthusiast-computing
https://de.wikipedia.org/wiki/Amdahlsches_Gesetz
https://de.wikipedia.org/wiki/Mooresches_Gesetz
https://software.intel.com/en-us/blogs/2009/06/29/why-p-scales-as-cv2f-is-so-obvious
https://en.wikipedia.org/wiki/Tianhe-2
https://en.wikipedia.org/wiki/List_of_CPU_power_dissipation_figures\#Desktop_processors
http://lwn.net/Articles/483889/
http://physics.stackexchange.com/questions/34766/how-does-power-consumption-vary-with-the-processor-frequency-in-a-typical-comput http://superuser.com/questions/988453/why-multi-core-processors-producing-less-heat
http://superuser.com/questions/543702/why-are-newer-generations-of-processors-faster-at-the-same-clock-speed/906227\#906227 Graphics:
[1], [2]: http://www.cpubenchmark.net/compare.php?cmp[]=1081\&cmp[]=937\&cmp[]=2332
[3] : http://blogs.dnvgl.com/utilityofthefuture/wp-content/uploads/2011/12/Amdahls-law1.gif
[4] : https://upload.wikimedia.org/wikipedia/commons/thumb/e/ea/AmdahlsLaw.svg/8oopx-AmdahlsLaw.svg.png
[5]: http://www.extremetech.com/wp-content/uploads/2013/o9/big_soc-cpu2-e1379614854509-640x403.png
[6]: http://pics.computerbase.de/6/9/o/1/o/1-1260.jpg

[^0]: ${ }^{3}$ - Single thread rating may be higher than the overall rating, thread performance is just one component of the CPU Mark.

