Performance Considerations

Lecture BigData Analytics

Julian M. Kunkel

julian.kunkel@googlemail.com

University of Hamburg / German Climate Computing Center (DKRZ)

18-12-2015

<e=> DKRZ

julian.kunkel@googlemail.com

Outline

Overview

Hardware

Assessing Performance
Bl Benchmarks

Summary

Julian M. Kunkel Lecture BigData Analytics, 2015 2/19

Overview

[Jele}

Goals

m Goal (user perspective): minimal time to solution

m Solution = workflow from data ingestion, programming to analysis results
m Programmer/User productivity is important

m Goal (system perspective): cheap total cost of ownership

m Simple deployment and easy management
m Cheap hardware
m Good utilization of (hardware) resources means less hardware

= In this lecture, we focus on the processing of a workflow

Julian M. Kunkel Lecture BigData Analytics, 2015 3/19

Overview e
(o] le}

Processing Steps

Ingesting data into our big data environment
Processing the workflow with (multiple) Hive/Pig/... queries

m Low runtime is crucial for repeated data analysis and data exploration

m Important factor for the productivity of data scientists

m Multiple steps/different tools can be involved in a complex workflow
We consider only the execution of one job with any tool

Post-processing of output with (external) tools to produce insight

Julian M. Kunkel Lecture BigData Analytics, 2015 4/19

Overview

[e]e] } [e

Performance Factors Influencing Processing Time

m Startup phase
m Distribution of necessary files/scripts
m Allocating resources/containers
m Starting the scripts and loading dependencies
m Usually fixed costs

m Job execution: computing the product
m Costs for computation and necessary communication & I/O depend on

B Job complexity
W Software architecture of the big data solution
B Hardware performance and cluster architecture

m Cleanup phase

m Teardown containers, free resources
m Usually fixed costs

Julian M. Kunkel Lecture BigData Analytics, 2015 5/19

Hardware A Performance
©000

BigData Cluster Characteristics

m Usually commodity components
m Cheap (on-board) interconnect, node-local storage
m Communication (bisection) bandwidth between different racks is low

! Rack L Rack ‘
‘ Node Node o Node Node !
I (| I
RN e
L120ps A A A | A A A |
B:1 GBRt/S \Y V \ - \ V \"4 |
B: 4B GBS — iR r— || e
B: 10 GBit/s |
\"4 \"4

Switch

Figure: Architecture of a typical BigData cluster

Julian M. Kunkel Lecture BigData Analytics, 2015 6/19

Hardware
©0e00

HPC Cluster Characteristics

m High-end components
m Extra fast interconnect, global/shared storage with dedicated servers
m Switches provide high bisection bandwidth

]]] 1]
u Node 4 |u Node u Node J |u Node
A A

L0Sus 4 0) 0 0 |
B: 56 GBit/s v v \% \% v \%
B: 24 TBit/s Switch - ¥ Switch
L:600 ns | |
\"4
Cut-Through-Switch
0
\'4
Switch
TAAY A uoses
V.V A" V VvV B: 56 GBit/s
1/0- 1/0-
Server Server
==~ -

Figure: Architecture of a typical HPC cluster.
Julian M. Kunkel Lecture BigData Analytics, 2015 7/19

ew Hardware
[ele] 1o}

Hardware Performance

Computation

m CPU performance (frequency - cores - sockets)

m e.g. 2.5 GHz - 12 cores - 2 sockets = 60 Gcycles/s
m The number of cycles per operation depend on the instruction stream

m Memory (throughput - channels); e.g. 25.6 GB/s per DDR4 DIMM -3

Communication via the network

m Throughput e.g. 125 MiB/s with Gigabit Ethernet
m Latency e.g. 0.1 ms with Gigabit Ethernet

Input/output devices

m HDD mechanical parts (head, rotation) lead to expensive seek
= Access data consecutively and not randomly
= Performance depends on the I/O granularity, e.g. 150 MiB/s

Julian M. Kunkel Lecture BigData Analytics, 2015

8/19

Hardware-Aware Strategies for Software Solutions

Use Java: 1.2 - 2x more cycles needed than C
Utilize different hardware components concurrently
m Pipeline computation, 1/0 and communication
m At best hide two of them = 3x speedup
m Avoid barriers (waiting for the slowest component)
m Balance and distribute workload among all available servers

m Linear scalability is vital (and not the programming language)
m Add 10x servers, achieve 10x performance

Avoid 1/O if possible (keep data in memory)

Avoid communication if possible
m Allow monitoring of components to see their utilization
Examples for Pig/Hive

m Foreach, Filter are node-local operations
m Sort, group, join need communication

Julian M. Kunkel Lecture BigData Analytics, 2015

9/19

Assessing Performance
©000

sic Apprach

Question
Is the observed performance acceptable?

Basic approach

Start with a simple model
Measure time for the execution of your workload
Quantify the workload with some metrics

® e.g. amount of tuples or data processed, computational operations needed
B e.g. you may use the statistis output for each Hadoop job

Compute wt, the workload you process per time
B Compare wt with your expectations of the system

Refine the model as needed e.g. include details about intermediate steps

Julian M. Kunkel Lecture BigData Analytics, 2015 10/19

Assessing Performance
[o] lele}

Updating Batch Views

Scenario
m While performing a batch update new data is captured
m We have to keep up with the data generation
m How long is the processing time? Should we upgrade hardware?

A simple model [11]

T Runtime of the batch update
O Overhead for startup/cooldown of the batch (independent to size)
A Time data is captured in the system that is processed per batch

P Additional processing time per time unit of data
® e.g. add 30 minutes processing for 60 minutes of data = 0.5

Runtime of the workflow: T=0+P-A
o

Equilibrium with incoming data: A=T =T = =

Julian M. Kunkel Lecture BigData Analytics, 2015 11/19

Assessing Performance

0oeo

Updating Batch Views: Model Equilibrium

100
1

50
1

T (workflow processing time)

0.0 0.2 0.4 0.6 0.8 1.0

P (relative batch processing time per amount of data)

Figure: Time for updating a batch view with a
variable proc. time for const. overhead

m Assume constant
overhead of 1 time unit

m Processing time increases
significantly with P — 1
m e.g. processing 90% of
time takes 5 times
longer than with 45%
m Requires about twice
the hardware resources
to half P

m Buying more hardware is
efficient for P > 0.5

Julian M. Kunkel Lecture BigData Analytics, 2015

12/19

Assessing Performance
efelel

Errors while Processin 11]

m Error probability E < 1 increases the processing time
m A rerun of a job may fail again
® Processing time with errors: P = (E+ E? +...)- P =P/(1 — E)

|
/

100
I

50
L

20
L

T~

m Familiar graph
m With 50% chance of errors, twice
the processing time

P’ (relative batch processing time with errors)
5
I

2
L

T T T T T T
0.0 0.2 0.4 0.6 0.8 10
E (Error probability)

Figure: Processing time & error probability

Julian M. Kunkel Lecture BigData Analytics, 2015 13/19

Daytona GraySort

m Sort at least 100 TB data in files into an output file

m Generates 500 TB of disk I/0 and 200 TB network 1/0 [12]
m Drawback: Benchmark is not very compute intense

m Records: 10 byte key, 90 byte data
m Performance Metric: sort rate (TBs/minute)

Hadoop MR [Spark iSpark

Record Record 1PB
Data Size 1102.5T8 100 TB IL000 TB
Elapsed Time 72 mins 23 mins [234 mins
Nodes 2100 206 190
Cores 50400 physical 6592 virtualized 0080 virtualized
Cluster disk 3150 GB/s _

618 GB/s (570 GB/s

hroughput l(est
[Sort Benchmark

Yes Yes INo
Daytona Rules

dedicated data virtualized (EC2) virtualized (EC2)
INetwork "

center, 10Gbps 10Gbps network [10Gbps network
[Sort rate 1.42 TB/min #4.27 TB/min 4.27 TB/min
[Sort rate/node 0.67 GB/min 20.7 GB/min 22.5 GB/min

Figure: Source: [12]

Julian M. Kunkel Lecture BigData Analytics, 2015 14/19

Benchmarks
(o] lelele]

Assessing Performance

Hadoop

m 102.5TB in 4,328 seconds [13]

m Hardware: 2100 nodes, dual 2.3Ghz 6cores, 64 GB memory, 12 HDDs
m Sortrate: 23.6 GB/s = 11 MB/s per Node = 1 MB/s per HDD

m Clearly this is suboptimal!

Apache Spark (on disk)

m 100 TB in 1,406 seconds [13]
m Hardware: 207 Amazon EC2, 2.5Ghz 32vCores, 244GB memory, 8 SSDs
m Sortrate: 71 GB/s = 344 MB/s per node

m Performance assessment
m Network: 200 TB = 687 MiB/s per node
Optimal: 1.15 GB/s per Node, but we cannot hide (all) communication
m |/O: 500 TB = 1.7 GB/s per node = 212 MB/s per SSD
m Compute: 17 M records/s per node = 0.5 M/s per core = 4700 cycles/record

Julian M. Kunkel Lecture BigData Analytics, 2015 15/19

ance Benchmarks
[e]e] lele]

xecuting t Optimalgorithm on Given Hardware

An Utopic Algorihm
Assume 200 nodes and random key distribution
Read input file once: 100 TB
Pipeline reading and start immediately to scatter data (key): 100 TB

Receiving node stores data in likely memory region: 500 GB/node
Assume this can be pipelined with the receive

B Output data to local files: 100 TB

Estimating optimal runtime

Per node: 500 GByte of data; 1/0: keep 1.7 GB/s per node
Read: 294s
Scatter data: 434s = reading can be hidden
One read/write in memory (2 sockets, 3 channels): 6s
B Write local file region: 294s

Total runtime: 434 4 294 = 728 = 8.2 T/min

Julian M. Kunkel Lecture BigData Analytics, 2015 16/19

Benchmarks
[e]ele] o]

In-Memory Computing

Aggregating 10 M integers with 1 thread
m Spark [14]: 160 MB/s, 500 cycles per operation (should use all threads)

m Raw Python: 0.44s = 727 MB/s, 123 cycles per operation
m Numpy: 0.014s = 22.8 GB/s, 4 cycles per operation

Spark Python DF
Spark Scala DF
RDD Python
RDD Scala

0 2 4 6 8 10

Performance of aggregating 10 million int pairs (secs)

Figure: Source: [14]

= External programming languages in Spark are even more expensive!

Julian M. Kunkel Lecture BigData Analytics, 2015 17/19

Benchmarks

[e]ele]e])

Comparing Pig & Hive

Benchmark by IBM [16], similar to Apache Benchmark

m Tests several operations, data set increases 10x in size
m 1: 772 KB, 2: 6.4 MB, 3: 63 MB, 4: 628 MB, 5: 6.2 GB, 6: 62 GB

m 5 data/compute nodes, configured to run 8 reduce and 11 map tasks

Figure: Pig.

Set 1 | Set 2 | Set 3 | Set 4 | Set 5 Set 6]
Arithmetic | 32 36 49 83 423 3900
Filter 10% | 32 34 44 66 295 2640
Filter 90% | 33 32 37 53 197 1657
Group 49 53 69 105 | 497 4394
Join 49 50 78 150 | 1045 | 10258
Source: B. Jakobus, “Table 1: Averaged performance” [16]

Set 1 [Set 2[Set 3[Set 4 [Set 5 [Set 6 |
Arithmetic | 32 37 72 300] 2633 | 27821
Filter 10% | 32 53. 59 209 | 1672 | 18222
Filter 90% | 31 32. 36 69 331 3320
Group 48 47 46 53 141 1233
Join 48 56. 10- 517 | 4388 |-
Distinct 48 53. 72 109 - -

Figure: Hive. Source: B. Jakobus, “Table 2: Averaged performance” [16]

Julian M. Kunkel

Lecture BigData Analytics, 2015

18/19

Summary

Summary

Goal (user-perspective): optimize the time-to-solution

Runtime of queries/scripts is the main contributor

Compute in big data clusters is usually overdimensioned
Understanding a few hw throughputs helps assessing performance
Linear scalability of the architecture is the crucial performance factor

Basic performance analysis

Estimate the workload/s
Compare with hardware capabilities

Model for batch update predicts benefit of upgrades

Error model predicts runtime if jobs must be restarted
GreySort with Spark utilizes 1/0, communication well
Computation even with Spark is much slower than Python

Big data solutions exhibit different performance behaviors

Julian M. Kunkel Lecture BigData Analytics, 2015 19/19

Summary

Bibliography

10 Wikipedia

11 Book: N. Marz, J. Warren. Big Data - Principles and best practices of scalable real-time data systems.
12 https://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html
13 http://sortbenchmark.org/

14 https://databricks.com/blog/2015/04/24/recent-performance-improvements-in-apache-spark-sql-
python-dataframes-and-more.html

15 https://github.com/hortonworks/hive-testbench
16 http://www.ibm.com/developerworks/library/ba-pigvhive/pighivebenchmarking.pdf

Julian M. Kunkel Lecture BigData Analytics, 2015 20/19

https://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html
http://sortbenchmark.org/
https://databricks.com/blog/2015/04/24/recent-performance-improvements-in-apache-spark-sql-python-dataframes-and-more.html
https://databricks.com/blog/2015/04/24/recent-performance-improvements-in-apache-spark-sql-python-dataframes-and-more.html
https://github.com/hortonworks/hive-testbench
http://www.ibm.com/developerworks/library/ba-pigvhive/pighivebenchmarking.pdf

	Overview
	Goals

	Hardware
	BigData Clusters
	HPC Clusters
	Software

	Assessing Performance
	Approach
	Updating Batch Views
	Errors Causing Recomputation

	Benchmarks
	Daytona GraySort

	Summary

