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HBase [29, 30]

Row column1 column2 ...
“Hans” bla 19 ...
“Julian” NULL 20 ...

Column-oriented key-value database for structured data

Based on Google’s BigTable
Simple data and consistency model

Scalable for billion of rows with millions of columns

Sharding of tables: distribute keys automatically among servers
Stretches across data centers

Custom query language

Real-time queries
Compression, in-memory execution
Bloom filters and block cache to speed up queries

Use HDFS and supports MapReduce

Uses ZooKeeper for configuration, notification and synchronization

Interactive shell (invoke hbase shell)
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Data Model [29]

Namespace: Logical grouping of tables for quota, security

Table: A table (ns:tbl) consists of multiple rows

Row: Consists of a row key and (many) columns with values

Column: Consists of a column family and a qualifier (cf:q)

Column family: string with printable characters

Cell: Combination of row, column

Contains value (byte array) and timestamp

Timestamp: versions that change upon update

WARNING: hbase shell stores all data as STRING

Table: Student grading table (timestamps are not shown)

Row=Matrikel a:name a:age l:BigData1516 l:Analysis1 12/13 ...
stud/4711 Hans 19 1.0 2.0 ...
stud/4712 Julian 20 NULL 1.7 ...
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Main Operations [29]

get: return attributes for a row

put: add row or update columns

increment: increment values of multiple columns

scan: iterate over multiple rows
delete: remove a row, column or family

Data is marked for deletion
Finally removed during compaction

Schema operations

create: create a table, specify the column families

alter: change table properties

describe: retrieve table/column family properties

list: list tables

create_namespace: create a namespace

drop_namespace: remove a namespace
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Example Interactive Session

1 $ create ’student’, cf=[’a’,’b’] # a,b are the column families
2 0 row(s) in 0.4820 seconds
3 => HBase::Table - student
4 $ put ’student’, ’mustermann’, ’a:name’, ’max mustermann’
5 $ put ’student’, ’mustermann’, ’a:age’, 20 # we can convert 20 to a

↪→ bytearray using Bytes.toBytes(20)
6 $ put ’student’, ’musterfrau’, ’a:name’, ’sabine musterfrau’
7 $ scan ’student’
8 ROW COLUMN+CELL
9 musterfrau column=a:name, timestamp=1441899059022, value=sabine musterfrau

10 mustermann column=a:age, timestamp=1441899058957, value=20
11 mustermann column=a:name, timestamp=1441899058902, value=max mustermann
12 2 row(s) in 0.0470 seconds
13 $ get ’student’,’mustermann’
14 COLUMN CELL
15 a:age timestamp=1441899058957, value=20
16 a:name timestamp=1441899058902, value=max mustermann
17 2 row(s) in 0.0310 seconds
18 # Increment the number of lectures attended by the student in an atomic

↪→ operation
19 $ incr ’student’, ’max mustermann’, ’a:attendedClasses’, 2
20 COUNTER VALUE = 2
21 # delete the table
22 $ disable ’student’ # deactivate access to the table
23 $ drop ’student’
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Inspecting Schemas

list <NAME>: List tables with the name, regex support

1 $ list ’stud.*’
2 TABLE
3 student

describe <TABLE>: List attributes of the table

1 $ describe ’student’
2 COLUMN FAMILIES DESCRIPTION
3 {NAME => ’a’, BLOOMFILTER => ’ROW’, VERSIONS => ’1’, IN_MEMORY => ’false’,

↪→ KEEP_DELETED_CELLS => ’FALSE’, DATA_BLOCK_ENCODING => ’NONE’, TTL =>
↪→ ’FOREVER’, COMPRESSION => ’NONE’, MIN_VERSIONS => ’0’, BLOCKCACHE =>
↪→ ’true’, BLOCKSIZE => ’65536’, REPLICATION_SCOPE => ’0’}

4 {NAME => ’b’, BLOOMFILTER => ’ROW’, VERSIONS => ’1’, IN_MEMORY => ’false’,
↪→ KEEP_DELETED_CELLS => ’FALSE’, DATA_BLOCK_ENCODING => ’NONE’, TTL =>
↪→ ’FOREVER’, COMPRESSION => ’NONE’, MIN_VERSIONS => ’0’, BLOCKCACHE =>
↪→ ’true’, BLOCKSIZE => ’65536’, REPLICATION_SCOPE => ’0’}

alter: Change table settings

1 # Keep at most 5 versions for the column family ’a’
2 $ alter ’student’, NAME => ’a’, VERSIONS => 5
3 Updating all regions with the new schema...
4 0/1 regions updated.
5 1/1 regions updated.
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Remove Irrelevant Responses from Scans

Scan options allow to restrict the rows/keys/values to be retrieved

LIMIT the number of returned rows

COLUMNS specify the prefix of columns/families

ROWPREFIXFILTER restricts the row names

1 # filter columns using scan properties
2 $ scan ’student’, {COLUMNS=>[’a:age’,’a:name’], LIMIT=>2, ROWPREFIXFILTER =>’muster’}
3 ROW COLUMN+CELL
4 musterfrau column=a:name, timestamp=1449395009213, value=sabine musterfrau
5 mustermann column=a:age, timestamp=1449395005507, value=20
6 mustermann column=a:name, timestamp=1449395001724, value=max mustermann
7

8 # scan rows with keys "STARTROW" <= "ROW" < "ENDROW"
9 $ scan ’student’, {COLUMNS=>[’a:age’,’a:name’], STARTROW => "muster", ENDROW =>

↪→ "mustermann"}
10 musterfrau column=a:name, timestamp=1449395009213, value=sabine musterfrau
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Client Request Filters [30]

Filters are Java classes restricting matches; overview show_filters
Filter list: combines multiple filters with AND and OR
Compare values of one or multiple columns

Smaller, equal, greater, substring, prefix, ...
Compare metadata: column family and qualifier

Qualifier prefix filter: Return (first few) matching columns
Column range filter: return a slice of columns (e.g. bb-bz)

Compare names of rows
Note: it is preferable to use scan options

Example in the hbase shell [32], [33]

1 # Apply regular filters
2 $ scan ’student’,{ FILTER => "KeyOnlyFilter()"}
3 musterfrau column=a:name, timestamp=1449395009213, value=
4 mustermann column=a:age, timestamp=1449395005507, value=
5 mustermann column=a:name, timestamp=1449395001724, value=
6 # return only rows starting with muster AND columns starting with a or b AND at most 2 lines
7 $ scan ’student’,{ FILTER => "(PrefixFilter (’muster’)) AND MultipleColumnPrefixFilter(’a’,’b’) AND ColumnCountGetFilter(2)" }
8 mustermann column=a:age, timestamp=1449395005507, value=20
9 $ scan ’student’,{ FILTER => "SingleColumnValueFilter(’a’,’name’,=,’substring:sabine musterfrau’)"}
10 musterfrau column=a:name, timestamp=1449395009213, value=sabine musterfrau
11 # return all students older than 19
12 $ scan ’student’,{ COLUMNS=>[’a:age’], FILTER => "SingleColumnValueFilter(’a’,’age’,>,’binary:19’)"}
13 mustermann column=a:age, timestamp=1449407597419, value=20
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Consistency [29]

Row keys cannot be changed
Deletes mask newer puts until compaction
Strong consistency of reads and writes
All mutations are atomic (no partial succeed)

Multiple column families of one row can be changed atomically
Mutations of multiple rows are not atomic
Order of concurrent mutations not defined
Successful operations are made durable

The tuple (row, column, version) specifies the cell
Normally version is the timestamp, but can be changed
The last mutation to a cell defines the content
Any order of versions can be written (max number of versions defined by cf)

Get and scan return recent versions but maybe not the newest
A row returned must be consistent (isolation to mutations)
A scan must return all mutations completed before it started

It MAY contain later changes

Content that is read is guaranteed to be durable
A get may return an old version but between subsequent gets the version
may never decrease (no time travel)

Julian M. Kunkel Lecture BigData Analytics, 2015 10 / 37



Introduction Excursion: ZooKeeper Architecture Accessing Data Summary

Tunable Semantics: Reduce Guarantees

Durability can be weakened by flushing data only periodically
Visibility of each read can be changed [30]

Normally strong consistency accesses only from primary replica
Timeline consistency enables use of other replicas, if timeout

May cause reading of older versions (eventual consistency)

Figure: Source: Timeline Consistency [30]
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Bulk Loading [31]

General process (ETL)

1 Extract data (and usually import it into HDFS)

2 Transform data into HFiles using MapReduce

3 Load files into HBase by informing the RegionServer

Figure: Source: [31]
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Bulk Loading (2) [31]

Transform step

Either replace complete dataset or incremental loading (update)

Bypasses the normal write path (WAL)

Create one reduce job per Region

Original dataset loading

Replaces data in the table with all data
You have to specify key mappings/splits when creating the table
Hbase ships with importtsv mapreduce job to perform the import as strings
Importtsv replaces the existing files with converted HFiles from the CSV

Incremental loading

Triggers minor compaction
No replication of data!
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Co-Processors [43]

Coprocessor concept allow to compute functions based on column values

Similar to database triggers

Hooks are executed on the RegionServers implemented in observers

Can be used for secondary indexing, complex filtering and access control

Scope for the execution

All tables (system coprocessors)
On a table (table coprocessor)

Observer intercepts method invocation and allows manipulation

RegionObserver: intercepts data access routines on RegionServer/table
WALObserver: intercepts write-ahead log, one per RegionServer
MasterObserver: intercepts schema operations

Currently must be implemented in Java

Can be loaded from the hbase shell. See [43]
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Zookeeper Overview [39, 40]

Centralized service providing

Configuration information (e.g. service discovery)
Distributed synchronization (e.g. locking)
Group management (e.g. nodes belonging to a service)

Simple: Uses a hierarchical namespace for coordination

Strictly ordered access semantics

Distributed and reliable using replication

Scalable: A client can connect to any server

Figure: Source: ZooKeeper Service [40]
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Hierarchical Namespace [40]

Similar to file systems but kept in main memory
znodes are both file and directory

Figure: Source: ZooKeeper’s Hierarchical Namespace [40]

Nodes

Contain a stat structure: version numbers, ACL changes, timestamps

Additional application data always is read together with stats

Watch can be set on a node: triggered once when a znode changes

Ephemeral nodes: are automatically removed once the session that
created them terminates
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Consistency Guarantees

Sequential consistency

Updates are applied in the order they are performed
Note: znodes need to be marked as sequential if this is needed

Atomicity: no partial results

Single System Image: same data regardless to the server connected

Reliability: an update is persisted

Timeliness: a client’s view can lack behind only a certain time

Reliability: Server failures are tolerated

Quorum: Reliable as long as ceil(N/2) nodes are available

Uses Paxos consensus protocols with atomic message transfer
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Architecture: Updating Data [40]

Writes are serialized to storage before applied to the in-memory db

Writes are processed by an agreement protocol (Paxos)

All writes are forwarded to the leader server

Other servers receive message proposals and agree upon delivery

Leader calculates when to apply the write and creates a transaction

Figure: Source: ZooKeeper Components [40]
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Architecture Concepts [30]

Use HDFS as backend to store data
Utilize replication and place servers close to data

Server (RegionServer) manage key ranges on a per table bases
Buffer I/O to multiple files on HDFS
Performs computation

Regions: base element for availability and distribution of tables
One Store object per ColumnFamily
One Memstore for each store to write data to files
Multiple StoreFiles (HFile format) for each store (each sorted)

Catalog Table HBase:meta (not splittable)
Contains a list of all regions < table >,< regionstartkey >,< regionid >

Table splitting

Upon initialization of a table only one Region is created

Auto-Splitting: Based on a policy split a region into two

Typical policy: Split when the region is sufficiently large
Increases parallelism, automatic scale-out

Manual splitting can be triggered
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Sharding of a Table into Regions

Server2 Server3Server 1

Logical table
Row keys

aa…
ab…

...
F...

G…
H...

I...
...

M...
N...
...

Q...
R...
...

ZZ..

Region 2
Keys G-H

Region 1
Keys A-F

Region 3
Keys I-M

Region 4
Keys N-Q

Region 5
Keys R-Z

RegionServers

Figure: Distribution of keys to servers, values are stored with the row
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Storage Format [30]

HFile format [35]

Cell data is kept in store files on HDFS

Multi-layered index with bloom filters and snapshot support

Sorted by row key

Append only, deletion writes key type with tombstone

Compaction process merges multiple store files

Figure: Record format Source: [36]
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Storage Format [30]

Write Ahead Log (WAL) – stored as sequence file

Record all data changes before doing them
Ensure durability by enabling replay when server crashes

Medium-sized Objects (MOB)
HBase is optimzed for values ≤ 100KB

Larger objects degrade performance for splits, compaction

MOBs are stored in separate files on HDFS and referenced by HFiles
Example: Add support for MOB to a table

1 alter ’stud’, {NAME => ’pic’, IS_MOB => true, MOB_THRESHOLD => 102400}
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Architecture Components and Responsibilities [30]
Master

Monitor RegionServer
Runs LoadBalancer to transfer regions between servers
CatalogJanitor: Check and clean the meta table
Typically runs on HDFS NameNode

RegionServer

Hosts a subsequent span of keys (Region) for tables
Executes Client Request Filters
Runs periodic compaction
Typically runs on HDFS DataNode
Memstore: Accumulates all writes

If filled, data is flushed to new store files
Multiple smaller files can be compacted into fewer
After flushes/compaction the region may be split

Client

Identify location of HBase:meta from ZooKeeper
Query HBase:meta for identifying the RegionServers
May use Client Request Filters
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High-Level Perspective of HBase File Mapping

Figure: Mapping of logical files to file blocks. Source: [38]
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Write-Path and the Write-Ahead Log [39]

Figure: Write-path: Updates of rows 1) trigger writes to WAL, 2) modify the memstore,
3) batch modifications are issued to HFiles. Source: [39]
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Caching of Data [30]

MemStore caches writes and batches them

Exists per Region, sorts rows by key upon write

BlockCache keeps data read in block-level granularity

One shared pool per RegionServer

Access to rows/values is cached via LRU or BucketCache

Cached data can be compressed in memory

LRU keeps data in Java heap

LRU eviction priority changes with access pattern and setup

1 Single access priority: when a block is loaded into memory
2 Multi access priority: block was repeatedly accessed
3 Highest priority: in-memory, configurable in the ColumnFamily

BucketCache is a two tier cache with L1 LRU and L2 in file

CombinedCache: Data in BucketCache, indices/bloom in LRU
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Consequences of the Storage Schema

Row keys and data

Rows are distributed across RegionServers based on the key
Rows are always sorted by the row key and stored in that order
Similar keys are in the same HDFS file/block
Wrong insertion order creates additional HFiles

Column family: string with printable characters

Tunings and storage options are made on this level
All cf members are stored together and managed by a MemStore

Reading data

MemStore and store files must be checked for newest version
Requires to scan through all HFiles (uses BloomFilters)

Remember

The key-prefix of rows close together is similar
Reversed URLs, de.dkrz.www/x is close to de.dkrz.internal/y
Different access patterns should be handled by different column families
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Splitting of Regions [30]
1 The memstore triggers splitting based on the policy

Identify the split point in the region to split into half

2 Notify Zookeeper about the new split and create a znode

The master knows this by watching for the znode

3 Create .splits subdirectory in HDFS

4 Close the parent region and mark it as offline

Clients cannot access regions but will retry access with some delay

5 Create two new region directories for daughter regions.
Create reference files linking to the bottom and top part per store file

6 Create new region directory in HDFS and move all daugther reference files

7 Send a put request to the meta table, setting parent offline and adding new daugthers

8 Open daugthers

9 Add daugthers to meta table and be responsible for hosting them. They are now online

Clients will now learn about the new regions from the meta table

10 Update the znode in Zookeeper

The master now learns that split transaction complete
The LoadBalancer can re-assign the daughter regions to other region servers

11 Gradually move data from parent store files to daugther reference files during compaction

If all data is moved, delete the parent region
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Splitting of Regions

Figure: Source: RegionServer Split Process [30]
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Support for MapReduce [30]

HBase can be a data source and/or data sink

At least (# of regions) mapper jobs are run
Java: TableInputFormat / Output, MultiTableOutputFormat
On table can be natively read with MR task, multiple explicitly

HRegionPartitioner for load-balancing output

Each reducer stores data to a single region

Tool for accessing table: HBase-server-VERSION.jar

1 $ hadoop jar ${HBase_HOME}/HBase-server-VERSION.jar <Command> <ARGS>

Operations:

Copy table
Export/Import HDFS to HBase
Several file format importers
Rowcounter
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MapReduce Example [30]

1 public static class MyMapper extends TableMapper<Text, Text> {
2 public void map(ImmutableBytesWritable row, Result value, Context context) throws

↪→ InterruptedException, IOException {
3 // process data for the row from the Result instance.
4 }
5 }
6

7 Configuration config = HBaseConfiguration.create();
8 Job job = new Job(config, "ExampleRead");
9 job.setJarByClass(MyReadJob.class); // class that contains mapper

10 Scan scan = new Scan();
11 scan.setCaching(500); // the default 1 is be bad for MapReduce jobs
12 scan.setCacheBlocks(false); // don’t set to true for MR jobs
13 // set other scan attrs ...
14 TableMapReduceUtil.initTableMapperJob(
15 tableName, // input HBase table name
16 scan, // Scan instance controls column family and attribute selection
17 MyMapper.class, // mapper
18 null, // mapper output key
19 null, // mapper output value
20 job);
21 job.setOutputFormatClass(NullOutputFormat.class); // because we aren’t emitting

↪→ anything from the mapper but storing data in HBase
22 if (! job.waitForCompletion(true) ) {
23 throw new IOException("error with job!");
24 }
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HBase Support in Hive [42]

HiveQL statements access HBase tables using SerDe
Row key and columns are mapped in a flexible way
Preferably: Use row key as table key for relational model
Supported storage types: string or binary

1 CREATE TABLE hbase_table(key int, value string)
2 STORED BY ’org.apache.hadoop.hive.hbase.HBaseStorageHandler’
3 WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,cf1:val#binary")
4 TBLPROPERTIES ("hbase.table.name" = "xyz");

Hive map with string key can be used to access arbitrary columns

1 # use a map, all column names starting with cf are keys in the map
2 # without hbase.table.name, table name is expected to match hbase tbl
3 CREATE TABLE hbase_table(value map<string,int>, row_key int)
4 STORED BY ’org.apache.hadoop.hive.hbase.HBaseStorageHandler’
5 WITH SERDEPROPERTIES ( "hbase.columns.mapping" = "cf:,:key" );

HBase composite keys can be used as struct (terminator must be set)

1 CREATE EXTERNAL TABLE delimated(key struct<f1:string, f2:string>, value string)
2 ROW FORMAT DELIMITED COLLECTION ITEMS TERMINATED BY ’~’
3 STORED BY ’org.apache.hadoop.hive.hbase.HBaseStorageHandler’
4 WITH SERDEPROPERTIES (’hbase.columns.mapping’=’:key,f:c1’);
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Schema Design Guidelines [29]

Keep the cardinality of column families small

Prevent hotspotting in row key design

As rows with related keys are stored together, this may cause bottlenecks
Salting (adding a prefixes randomly), increases write but decreases reads
Hashing: Add a hash value as prefix
Reversing the key

Prevent writes on monotonically increasing row keys

Timestamps or sequences should not be the row key

Reduce size of row, column familiy and attribute names

i.e. st instead of student
Use binary representations instead of strings
Saves network bandwith and memory for cell coordinates

Finding the most recent version of a row

Use <orignal key><ReverseTimestamp> as key
Scan for <orignal key> will return the newest key
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Example Mapping of an Entity Relationship Diagram

Student Lecture
* *

attends

NameMatrikel Birthday NameID

Figure: Our student lecture example

Possible mapping (use shorter names)

Table students (st)

Row key: reverse matrikel(mr)⇒Avoid re-partitioning
Columns: Name(n), birthday(bd), attends(a) array<lecture id>

Table lecture (lc)

Row key: ID (e.g. year-abbreviation)
Columns: Name (n), attendees (a) array<matrikel>

We may add tables to map names to lecture/student IDs
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Summary

HBase is a wide-columnar storage

Data model: row, columnfamiliy:column

Main operations: put, get, scan, increment

Strong consistency model returns newest version

Sharding distributes keys (rows) across servers

HFile format appends modifications

(Automatic) Region splitting increases concurrency

Schema design can be tricky

ZooKeeper manages service configuration and coordinates applications
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