
A low cost power measurement device to
improve energy efficiency of HPC devices

Project Report

Manuela Beckert Janosch Hirsch

August 5, 2015

1

Contents
1. Introduction 3

1.1. Motivation . 3
1.2. Related Work . 4

2. Hardware 4
2.1. Arduino . 5
2.2. Analog-to-digital converter . 7
2.3. Hall effect sensor . 9
2.4. Arduino Shield . 10

3. Calibration 12
3.1. Determining the reference voltage . 12
3.2. Channel calibration . 13

4. Software 15
4.1. Arduino: Protocol and Implementation 15
4.2. pmlib . 20

5. Experimental results 24
5.1. Testing Machines . 24
5.2. Benchmarks . 24
5.3. Results . 25

6. Conclusion 29

A. Appendix 31
A.1. Arduino Code Loop - Synchronized . 31
A.2. Arduino Code Loop - High Sampling Rate 32
A.3. Comparison: samples per second . 33
A.4. settings.py . 34
A.5. Calibration Script Guide . 35
A.6. Power Measurement Graphs . 36
A.7. Photos of the Setup . 47

2

1. Introduction

Energy efficiency means using less energy to provide the same service[1], like lighting
a room with light bulbs that consume less energy. Or writing a program in a way
that it finishes faster and consumes fewer resources. While energy efficiency plays an
increasing role in our everyday life, for example how much money we could save each
month if we would buy a new freezer with less energy consumption, it has the greatest
importance in places where a lot of machines have to be powered all over the year,
like data centers. According to an evaluation of the Borderstep Institut[2] from May
2012, the energy consumption of servers and data centers in Germany in the year 2011
was 9.7 TWh. That makes around 1.2 billion Euro of energy costs and would take 4
medium sized coal power stations to provide it.

Most energy in data centers and enterprise networks is consumed by servers and cooling
facilities. Making them more efficient has the highest impact on costs and is therefore
the main research subject. But the amount of energy consumed by networking devices
will continue to grow, too, especially with the growth of infrastructures to support
cloud computing and software as a service models[3].

In order to improve energy efficiency, it is necessary to measure how much power a
machine consumes and where (most of) that power is consumed. If we know which
component consumes the most power, we can replace it by a more efficient one and
if we know which section of the software that might be running on the machine con-
sumes the most energy, we can try to improve that section. Therefore, we need power
measurement devices.

1.1. Motivation

Our objective is to measure the power consumption of code running on a computer.
To achieve this, we need a measurement device which can measure power precisely
and time dependent, so we can correlate the data to sections of the program.

We want to distinguish the power internally to know which parts of the computer are
actually demanding the power. If we study the power cables of the main board, hard
disk drives and graphics card for example, we can make a good guess where the power
is needed.

The device shall not only be usable on a single computer, but in a whole cluster. So
it has to be cheap, easy to set up (e.g. USB communication) and simple to use. It is
not feasible if a watt meter costs 1000 Euro when we want to measure a cluster with
32 nodes – we would have to pay 32 thousand Euro.

3

Most commercial devices are not only expensive, but also hard to integrate into existing
hardware or software. They are designed for laboratory conditions and not intended
for a permanent integration. Even if they can be integrated, they are often so big that
we cannot possibly put them into a server machine and close the machine afterwards.
If we were to measure a whole cluster, they would take up a lot of additional space.
Some devices are hard to integrate into the software, too. For example they need to
be operated via an intermediate software, which only runs on Windows. Often such
software is not open source so we can’t modify it to fit our needs.

To overcome those limitations we developed a microcontroller based power measure-
ment device that can observe, for example, mainboard, GPU and HDD power rails
individually. It consists of an Arduino and a Hall effect sensor shield, which are cheap,
small, easy to integrate and scalable. We integrated the device into the power mea-
surement library pmlib.

1.2. Related Work

There are two main related works named PowerPack[5] and PowerMon2[6]. These as
well aim to analyze the internal power lines in detail. PowerPack in fact monitors both
the external and internal power lines to also be able to evaluate the power supply’s
efficiency. For inspecting the internal lines professional high precision measurement
devices from Texas Instruments are used. These are super accurate and capable of
delivering enormous sampling rates but extremely expensive and space consuming
too. Thus infeasible to deploy in larger scales or outside the scientific or commercial
scope.

PowerMon2 on the other hand is very similar to our project. Like we do, it focuses
on monitoring internal power lines and uses a microcontroller based approach for this.
The measurement process differs though as other sensing components are utilized. The
main goals also are cost efficiency and scalability.

2. Hardware

The measurement device consists of an Arduino microcontroller board, a custom made
measurement shield and connectors for the cables to be measured.

4

2.1. Arduino

An Arduino[7] is a microcontroller board of roughly the size of a credit card (Picture
1). It comes with preinstalled hardware and software which make it very easy to use
even for beginners.

Figure 1: Photo of an Arduino Mega 2560[12]. The black square in the center of the the board
is the microcontroller chip. The USB adapter is located at the very left. An external power
source can be plugged in at the bottom. At the borders of the other three sides several general
purpose pins are located.

A microcontroller chip is located in the center of the board. It will run our program.
The Arduino has an on board bidirectional USB interface for communication with a
computer, for example in order to load the program onto the chip. The board can
be powered via USB or an external power adapter. There are several general purpose
pins on the board which can be used as input or output, both analog and digital.

For our project we used an Arduino Mega 2560 which has 16 analog input pins, the
highest count among the Arduino family. We will be using those 16 analog pins as
input pins for the hall effect sensor output voltages. In consequence, our device will
be able to measure 16 channels at a time. Since not all lines of a cable are actually
interesting to measure (see chapter 5.1), those 16 channels are enough to measure the
CPU, HDD and mainboard of a machine at the same time, so it will suffice for our
purpose. Analog input signals need to be converted into digital values before the chip
can work with them. For that purpose there is an analog to digital converter integrated
in the microchip. The chip communicates via a serial interface with the computer and

5

we will need to think about how to send values efficiently, as well as what protocol to
use. This will be discussed more deeply in chapter 4.1.

Additional boards, called shields can be easily plugged on top of the Arduino, making
it easy to combine with other controllers without any need to solder. An Arduino
board provides many possibilities, but is still cheap (around 40 Euro), easy to use,
open source, well documented, has a large community and is small enough to fit into
a closed machine. Thus it perfectly satisfies all our requirements.

2.1.1. Arduino IDE

Figure 2: Screenshot of the
Arduino IDE

Arduinos provide their own simple IDE (figure 2). Af-
ter selection of the Arduino model and desired serial
port in the Tools menu, the code can be uploaded to
the board by clicking just one button. The IDE is a
little crude for a real programmer, as is does not offer
any development tools like code completion or soft-
ware libraries for advanced data structures, but it is
very simple to use. There is a serial monitor to track
data received from the Arduino. It interprets all data
as ASCII symbols, thus not very useful if binary data
is sent. The chip is programmed in a C like program-
ming language. Again, this language is very simple
and minimalistic to make it easy to use, but it serves
our purpose. In figure 3 is an example for an Arduino
program that makes the on-board LED blink.

Every pin is numbered and can be addressed
by its number. To access a pin there are
four functions: analogRead, analogWrite,
digitalRead and digitalWrite, which read or
write in analog or digital mode. While functions can
be defined at will just like in C, there are two important special functions: setup,
which gets called every time the Arduino powers up, and loop, which will be called
after setup and, as the name suggests, just runs in a infinite loop, as long as the Ar-
duino has power. There are more special functions for other events, like input data
arriving at a serial interface. These act as interrupt functions in between the normal
command flow.

6

// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13;

// the setup routine runs once when you press reset:
void setup() {

// initialize the digital pin as an output.
pinMode(led, OUTPUT);

}

// the loop routine runs over and over again forever:
void loop() {

digitalWrite(led, HIGH); // turn the LED on
// (HIGH is the voltage level)

delay(1000); // wait for a second
digitalWrite(led, LOW); // turn the LED off by making

// the voltage LOW
delay(1000); // wait for a second

}

Figure 3: Arduino program for a blinking LED (an example program included in the IDE).

2.2. Analog-to-digital converter

An ADC (Analog-to-digital converter) converts an analog signal to a digital represen-
tation of it. Analog signals are continuous in the time and space domain. That means
an analog signal can have any imaginable value at any imaginable point of time. This
behavior can not be represented digitally. The digital domain is discrete, what implies
that you can only have a finite amount of values and time intervals.

To get a digital representation of an analog signal it must be sampled and quantized.

Quantization is to transform coherent continuous values into discrete ones. To do so
a finite and predetermined set of values is needed. In the quantization process every
continuous value is set to the nearest finite one out of the set. The resulting error is
called quantization error.

Sampling is the quantization of the time domain. The quantization of time continuous
values is done in fixed time intervals. In every interval a quantization of the signal
value is done. The number of quantized values per second is called sampling rate.

The number of bits an ADC can use for the quantization is called resolution and
defines the range of discrete values. The sampling rate and the resolution determine
the accuracy of the digital representation of the signal.

Figure 4 visualizes an analog signal and a resulting digital representation after sampling
and quantization is done.

7

Figure 4: Sampling in the time domain and quantization in the space domain of the analog
signal (grey line). The result is a digital representation of it (red dots).

2.2.1. Arduino ADC

The integrated ADC of the Arduino Mega 2560 has a resolution of 10 bits and can be
feed trough 16 multiplexed analog input pins. The maximum sampling rate is roughly
specified with 10,000 samples per second. However the Arduino ADC has to be called
through a function for each sample. It does not run in a individual loop providing
values to read out of a buffer. So the sampling rate is determined by the number
of function calls per second and does not have to be periodic. Of course by having
further computation between this function calls the sampling rate will decrease. Also
multiplexed input channels imply that the sampling capability is shared by all used
input channels.

2.2.2. Reference voltage

The Arduino ADC can quantize voltages from 0V to a maximum of 5V. This voltage
range will be quantized into 10 bit values corresponding to 1024 levels with each level
representing the voltage resolution of 5V

1024 ≈ 4.88mV.

The ADC reference voltage can be used to shrink the voltage range but increase
the voltage resolution. The reference voltage defines the maximum voltage to be
quantized. The whole 10 bit resolution is used on the voltage range of 0V to the
reference voltage. If the reference voltage is set to only 1.1V the voltage resolution
would be 1.1V

1024 ≈ 1.07mV. A higher voltage resolution leads directly to a higher ADC
accuracy.

For an efficient use of an ADC it is important to use the whole working range. Other-
wise the unused resolution is wasted. For the most efficient use the maximum voltage
that should be convertible with the ADC should be estimated and used as the reference

8

voltage. The lower voltage of the Arduino ADC voltage range can not be adjusted
and is fixed at 0V.

For an accurate ADC quantization the reference voltage needs to be stable and known
exactly, because it must be used to calculate the voltage of the digital values. The
Arduino Mega 2560 provides two internal regulated voltages of 1.1V and 2.56V to
choose. Additionally an ADC reference voltage input pin can be used to feed in a
desired reference voltage. By default the 5V USB voltage is used unregulated. This
just serves for rough quantizations. For the same reason you should only use the
regulated 3.3V Arduino rail as source for a voltage divider resistor arrangement if you
want to feed in a custom voltage.

The used reference voltage source option is defined in software.

2.3. Hall effect sensor

A Hall effect sensor can be used for measuring current through an electric circuit. To
do so the Hall effect is utilized. The Hall effect describes a voltage that is occurring
if electrons pass a non parallel oriented stationary magnetic field through a wire.
This voltage is called Hall-voltage and has its polarity orthogonal to the electrons
flow and the magnetic field. It comes off due to the Lorentz force appearing on an
electron passing through a magnetic field. The Hall-voltage is proportional to the
current through the wire and thus serves as value to calculate the current along with
a constant composed of material constants and the magnetic field constant. Figure 5
illustrates the Hall effect principle.

Figure 5: The Hall effect: 1 Electrons, 2 Hall-element, 3 Magnet, 4 Magnetic field, 5 Electric
circuit, 6 Hall-voltage.

9

2.3.1. Hall effect sensor Integrated Circuits

Hall effect sensor ICs (Integrated Circuits) have an integrated Hall effect sensor and
amplifying circuit. The Hall effect IC itself needs a supply of 3.3V to 5V to work. The
electric circuit in which the current is to be measured is passed through the IC. On an
output pin the very low hall-voltage is amplified to levels between 0V for no current
and 5V for the maximum specified current the Hall effect IC is capable of.

2.3.2. Allegro ACS713

The measurement shield is equipped with 16 Allegro ACS713 Hall effect sensors. They
were picked because of their appropriate technical specifications and especially because
of their small size (surface mount package). The Allegro ACS713 can measure form 0
up to 20 ampere and is mainly used in the automotive area. However, on the output
of this IC an offset voltage of about 0.5V is present if no current is passing through
the Hall effect sensor. The ampere range of 0 to 20A is proportional to the output
voltage range of 0.5V to 5V.

2.4. Arduino Shield

In figure 6 a photo of the assembled Arduino shield can be seen. It consists of 16
hall effect sensor ICs, some capacitors for signal smoothing and noise reduction and a
connector for each channel.

Figure 6: Photo of the Hall effect sensor shield plugged on top of an Arduino. The shield has
16 orange connectors for each channel soldered on top.

10

2.4.1. Wiring

In figure 7 the lines of all important PSU (Power Supply Unit) connectors in a server
environment are displayed. The interesting lines to measure are the yellow, red and
orange ones. Ground lines do not need to be measured because they carry the current
of all other lines combined back to the power supply. All lines of different colors
are mainly control lines and do not deliver power for the main processing units. The
voltage of the lines is necessary to know for calculating the power. Yellow lines provide
12 Volts, red lines 5 Volts and orange lines 3.3 Volts.

Lines of the same connector and voltage can be merged together and thus measured
through a single channel. This needs to be done if 16 channels are not enough to
measure all desired lines. In our experiments all lines of the same connector and
voltage had the exact same power characteristic so no information is lost by merging
these. The ATX standard specifies multiple lines to distribute the over all power over
multiple wires thus lowering the resistance and voltage drop. One has to be aware
that merging lines increases the channels measured current what may effect the choice
of the right ADC reference voltage described in the calibration section.

Figure 7: The lines of common PSU connectors.

Figures A.7.1 and A.7.2 show our measurement device installed into a desktop and
server machine.

11

3. Calibration

The measurement system (Shield, Arduino and pmlib) as a whole needs to be calibrated
to get exact current readings. The critical steps are the conversion of current to voltage
by the Hall effect sensor ICs and the voltage quantization with a given reference voltage
by the Arduino ADC. Both steps need calibration to be exact. We need to know
which current corresponds to what voltage and what voltage corresponds to what
quantization level. This can be calculated but will not correlate to the reality because
of various reasons, e.g. manufacturing tolerances and environmental influences. To get
the most accurate results in minimizing errors we calibrate both steps, which happen
in series, as one. This means we relate currents directly to quantization levels.

The calibration process begins by determining a permanent reference voltage destined
for the measurement scenario and is completed by calibrating currents thereafter.
After calibration the system is in a fixed state and does not need to be calibrated
again unless the measurement scenario changes to one in which a different maximum
current value can occur. For example moving the device from a desktop to a server
machine or upgrading the machine’s hardware.

3.1. Determining the reference voltage

By measuring the currents of all single wires in a desktop and a server machine under
full load we evaluated that in our scenario no wire is handling more than a maximum
of 4 to 5 amperes. Thus the Hall effect sensor ICs will never exceed a corresponding
output voltage to be quantized by the Arduino ADC. This maximum output voltage
can be calculated by mapping the Hall effect IC’s ampere range to its output voltage
range as shown in figure 8. But to have the most accurate data, this voltage should
be measured directly at the Hall effect IC’s output pin with a voltmeter.

5V20A − 0.5Voffset
20AIC max

5Ascenario max

= 1.125V

Figure 8: Calculating the Hall effect sensor IC’s output voltage for a current of 5 amperes.

The optimal reference voltage for our scenario would be about 1.2V. Unfortunately this
is a little higher and a lot less than the Arduino’s internal provided voltages of 1.1V
and 2.56V. For the most efficient ADC use and thus the highest resolution, we should
have used an external reference voltage tapped of a voltage divider on the Arduino
3.3V rail. But we did not have enough time and no suitable resistors at hand, so we

12

did the tests with the internal 2.56V as reference voltage. This roughly halves the
resolution we could have. 1.2V

2.56V ≈ 0.47 Efficiency.

3.2. Channel calibration

All measurement channels consist of the same hardware, therefore the calibration of
one channel should be enough to suppose the same characteristics for every channel.
But because of manufacturing tolerances and other influences like solder joint quality
we decided to do the calibration on each channel individually. This turned out to be
a good decision as the regression lines of each channel differ slightly. The ADC should
not have a great contribution in that because it is just one multiplexed unit, so the
deviations must come from the measurement shield. Possible reasons could be the
solder joint qualities and the manufacturing tolerances of the Hall effect sensor itself
or its external passive components like capacitors.

3.2.1. Calibration setup

For the calibration process you need to be able to generate at least two different stable
and known currents in an electric circuit. This can be done with either a variable
voltage power supply and a dummy load or a fixed voltage power supply and different
kinds of dummy loads. Most bench power supplies have a variable voltage. With the
addition of a power resistor of for example 1 Ohm as load, sufficient current values
inside the power specifications of the power supply and resistor can be generated. The
current can be calculated with Ohm’s law shown in figure 9.

I = U

R

Figure 9: Ohm’s law: I Current, U Voltage, R Resistance

To get different currents with a fixed voltage power supply, different resistances are
needed. A variable power resistor or multiple power resistors connected in series or
parallel can be utilized. We used light bulbs as load and achieved various current
values by adding bulbs connected in parallel. To read the current values an ampere
meter is necessary.

All channels can be calibrated at once by connecting all terminals in series with the
electric circuit. In that configuration every channel experiences the exact same current

13

flow of the circuit. Figure 10 displays a wiring schematic for calibrating all channels
at once.

Figure 10: Measurement Arrangement: 1 Power supply, 2 Load, 3 Ampere meter, 4 Channel
terminals, 5 Measurement shield

3.2.2. Calibration process

The channel calibration starts with a stable current in the electric circuit. Then
the ampere value has to be read from the ampere meter and saved along with the
quantization levels of all channels. This has to be done at least twice with different
ampere values. With that data a linear regression of two points for each channel can
be done. With more measured points the regression line will be more accurate but the
data should be linear anyway because the Hall effect sensor ICs and the ADC specify
linearity.

The slope and offset of the individual regression lines for each channel are necessary
to calculate ampere values from quantization levels. These parameters need to be
calculated from the data and saved in the pmlib settings file to complete the calibration.
Figure 11 shows a plot of the regression lines we got through our calibration.

3.2.3. Calibration script

To make this process faster and easier we implemented a calibration script which
automatically saves the quantization values for as many ampere values to be measured.
It also samples a desired amount of times per current value and uses the mean value to
eliminate noise. The linear regression for every channel is done automatically and the
output can easily be copied and pasted directly into the pmlib settings file. Additional
output data like the standard deviation can be analyzed to detect noise.

14

Figure 11: Regression lines

A guide of how to use the script can be found in appendix A.5.

4. Software

Figure 12 shows the setup for our measurement device. The device consists of the
Arduino and shield. It measures the current on a client machine and offers adapters
for HDD, CPU and mainboard for quick installation. The adapters are attached though
connectors and can easily be replaced by other adapters if needed. The device reports
the measured data to a server. On the Arduino runs a program which collects values
from the shield and puts them into an efficient format to be sent to the server. We
will explain the protocol we used, as well as the main idea of the program that runs
on the Arduino. To evaluate the data received from the Arduino, we used the power
measurement library pmlib. We will therefore also introduce the library and explain
how we integrated the device.

4.1. Arduino: Protocol and Implementation

For communication of the Arduino with the computer, we need to send data over a
serial interface, which transfers data bytewise. We want to maximize the sampling
rate and the serial connection is one of the main two bottlenecks, so we want to
minimize the amount of data we send. In consequence, we will have to tinker with

15

server pmlib
integration

client pmlib

measurement device

arduino

shield

adapters

arduino
program

server
protocol

client

measurement device

ethernet connection

Figure 12: Distribution of hardware and software components for a measurement. Client and
server can be the same machine.

bytes and bitmasks. The second bottleneck is the Arduino itself. Computation on
a microcontroller will obviously take longer than on a regular machine. A single
operation or two are still faster than sending a byte over the serial interface, but if we
design the computation of the bytes we intend to send too complicated (e.g. with lots
of integer shifts), the accumulated time can quickly surpass the sending time and thus
yield a negative impact on the sampling rate. So we need some sort of protocol that
is both easy (in terms of as few operations as possible) to implement on the Arduino
side and at the same time compresses our data as much as possible.

There are two types of communication between the Arduino and the computer. First,
the Arduino has to know which channels to measure. For that purpose, the computer
has to transfer the channel list to the Arduino. This only happens once at the start of
a measurement and is rather easily done with a bitmask. For 16 channels we just need
to send two bytes, where every bit represents one of the channels. The bitmask

00000000 00001011

for example will mean that channels 0, 1 and 3 are to be measured. Extracting channels
from the bitmask is quickly done on the Arduino side, too and since it only has to be
done once, it will have no impact on the sampling rate even if we waste one or two
operations here.

The second, and more interesting, type of communication is sending values from the
Arduino to the computer. The channels have 10 bit resolution, so we need to send 10
bit for each value. We can only send bytes over the serial interface and sending two
bytes for every value would waste 6 bit each time. It may not sound like a lot, but
let’s view it this way: 6 bit of 16 are about one third. If we used those 6 bits more
efficiently, we could reduce the time needed to send the values by one third. Or the
other way around: we could send 1.5 as many values in the same time. We tried to
use those bits more efficiently thus.

16

If we do not concern ourselves with robustness, we could just use the leftover bits to
start coding in the next value, like

AAAAAAAA AABBBBBB BBBBCCCC ...

where A is the first value, B the second one and so on. This is rather difficult to
compute for different amounts of channels though, both on the Arduino and pmlib
side, so we went with a slightly different approach where we put the highest two bits
of every four values into an additional byte:

AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD AABBCCDD ...

It still takes some effort to make it work for different amounts of measured channels,
but is overall easier to implement. We tried out this protocol out of curiosity and on
first glance it works very well. The sampling rate is maximized (7774 samples per
second if all 16 channels are used) and in an experiment where we let the server run
for two hours just collecting data, we always got correct values. The problems started
when we tried to let the server actually do something with these values. Every time
the client requested to receive the data that was collected, the bytes the server received
started to be out of synchronization. With the bytes out of order, the bits were falsely
shifted. This made everything we would receive afterwards total garbage. We assume
the cause to be that the serial output buffer on the Arduino side overflows because
the server misses to receive the values in time. Theoretically this should not happen
because the program part that collects the bytes and the program part that sends the
received data to the client are supposed to run in different threads. But it did happen.
It might have been possible to fix this problem in pmlib, but our understanding of the
library was not deep enough to do so. Even if we did find a fix, there was no telling
what else might go wrong next. In the end, we didn’t want an hour-long measurement
to go to waste, just because someone stepped on a cable midway and a byte got lost.

We decided to go with a more robust protocol. We want to be able to tell whether a
synchronization failure happened and to correct it. In order to tell which byte we are
currently reading, we need to reserve at least one bit per byte for synchronization. We
chose the first bit, set it to 1 if it is the first byte of a set of values, to 0 otherwise and
used the remaining bits for the values like this:

1AAAAAAA 0BBBBBBB 00AAABBB
0CCCCCCC 0DDDDDDD 00CCCDDD

...

17

Note that there is a wasted bit in every third byte. It is theoretically possible to
use that bit to code in another value. But we were not able to find any means of
computation on the Arduino side that was not so complicated that it took longer than
just sending an additional byte over the serial interface though. As soon as we used
32-bit integer shifts (instead of byte shifts), the runtime exploded. If we did not, we
ended up with very long conditions inside a loop, and the runtime exploded. So we
went with the protocol above at the end. This might be a point where the sampling
rate could possibly be further improved.

We implemented both versions (with and without synchronization). Except for the
loop method they are identical. There are only three methods:

• setup, which gets called when the Arduino is powered on and mainly just
initializes the serial interface.

• serialEvent, which gets called every time there is incoming data on the serial
interface. The only incoming data is the channel bitmask. This method extracts
the channels from it and stores them.

• loop, which reads a value from each analog pin that shall be measured, codes
them into bytes according to the protocol and sends those bytes via the serial
interface.

We attached the loop functions of both protocols for reference in appendix A.1 and
A.2.

For communication via a serial interface you need to choose a baud rate. The baud
rate specifies the number of symbols transmitted per second. The serial interface uses
bits as smallest unit so the baud rate specifies bits per second. The baud rate has to be
equal or higher than the data-rate our protocol is capable of. We chose 115,200 baud
equaling to 14,400 bytes per second. The synchronization protocol needs at worst 2
bytes to send 1 sample. But only if just one channel is measured. The serial interface’s
data-rate would only be able to deliver 14,400

2 = 7200 samples per second. However if
more than 1 channel is measured the protocol efficiency is never worse than 1.7 bytes
needed per sample. This corresponds to a maximum possible rate of 14,400

1.7 ≈ 8470
samples per second through the serial connection, which is more than the Arduino is
capable of sending.

With the synchronized protocol we achieve a sampling rate of 5879-7652 samples per
second, depending on the number of channels we measure (figure 13).

Note that the y-axis goes from 5800 to 7800, the values are all rather similar thus. The
sampling rate with just one channel is low as expected, as we need to send two bytes
for every single value. With an even number of channels our protocol is most efficient
hence we can note peaks for even channel numbers. The more channels we measure,

18

Channels
0 2 4 6 8 10 12 14 16

S
a
m

p
le

s
p
e
r

se
co

n
d

5800

6000

6200

6400

6600

6800

7000

7200

7400

7600

7800
Protocol efficiency per Channels

Figure 13: Samples per second in total with the synchronized protocol for different numbers
of measured channels.

the more insignificant an additional byte that we send becomes, so the difference is
not as noticeable for higher channel counts. In addition to the different efficiency for
an even and uneven amount of channels, there is also an increase in efficiency with
increasing channel count. This surprised us at first, because theoretically the steps
we do for packing two channels should be the same, regardless of whether these two
channels are part of a set of two or sixteen.

We assume it has to do with our use of loops. In our implementation (appendix A.1) we
use two for-loops to iterate over the number of channels: first to retrieve time-bound
values from the analog pins and thereafter to write the data to the serial interface.
The body of the loops should have no effect on our sampling rate, as it does the same
whether we have two or sixteen channels to measure. What differs though, is the
amount of times we have to check the break condition. With only one or two channels
to measure, the last condition check to break out of the loop has a greater over all
computation time contribution than if we were measuring sixteen channels:

16 x measuring 1 channel = 16 times * 2 loops * 2 checks = 64 checks
8 x measuring 2 channels = 8 times * 2 loops * 3 checks = 48 checks
4 x measuring 4 channels = 4 times * 2 loops * 5 checks = 40 checks
2 x measuring 8 channels = 2 times * 2 loops * 9 checks = 36 checks
1 x measuring 16 channels = 1 time * 2 loops * 17 checks = 34 checks

So for measuring one channel we need twice as many checks for the same amount of
values as with sixteen channels.

As expected the sampling rate of every channel decreases with an increased amount
of channels to measure (figure 14). There is not an exact increase of a factor of 16 for

19

measuring just one channel instead of sixteen. This is because our protocol is more
efficient for a higher amount of channels to measure. But the correlation of sampling
rate per channel and number of channels measured is still clearly visible.

Channels
0 2 4 6 8 10 12 14 16

S
a
m

p
le

s
p
e
r

se
co

n
d
 a

n
d
 c

h
a
n
n

e
l

0

1000

2000

3000

4000

5000

6000
Samples per second per channel

Figure 14: Samples per second per channel with the synchronized protocol for different num-
bers of measured channels.

We compared the efficiency of the two protocols in figure 15. The exact values can
be looked up in appendix A.3. We can see that the first protocol (orange) is most
efficient for multiples of four channels to measure, what makes sense because then the
amount of bits we waste in order to deliver the highest bits is minimized. It is also
notable that for one channel, both protocols are more or less identical, and for two
channels the synchronized protocol (blue) is better, likely due to the fact that we used
byte instead of integer at some points and achieved a small speedup with that. In
all other cases the the synchronized protocol is about 100 samples per second slower,
because of lower byte per sample efficiency. If we consider the scale though, that is a
small price to pay for synchronization in our opinion.

4.2. pmlib

Pmlib[11] is a power measurement library developed by the work group Wissenschaft-
liches Rechnen (Scientific Computing) at University of Hamburg. It provides a frame-
work for retrieving data from power measurement devices and processing it into a
parseable or human readable form. Furthermore it provides methods which can be
called right out of the source code of a program, which enables the programmer to

20

Figure 15: Comparison of samples per second for both protocols with different numbers of
measured channels. Blue: synchronized protocol. Orange: unsynchronized protocol.

measure specific parts of his code. The library consists of two parts: server and client
(figure 16).

settings.py

server

power meters

p1 p2 p3 ...

client

set

provide values

use library

Figure 16: Overview of pmlib.

The server daemon has access to power measurement devices, collects data from them
and sends the processed data to clients. A client library provides communication with
the server and allows clients to measure the power consumption of their programs.

On the server side, there exists one class for every device that is, or can be, attached.
That class handles how information from the device shall be interpreted, for example
computing the power from the read data or storing them in a matrix. The idea is
that a client has the power measurement device attached and if he asks the server for
measuring, the server will start collecting data from the desired device. The informa-
tion what device to read from and which channels on that device should be read is

21

stored in a settings file named settings.py on the server side. The server reads the
settings file on startup, begins collecting data when the client tells him to, process it
according to the device’s class and stops when the client tells him to. The collected
data is then held until the client asks to receive it.

The client will have to set the needed information in the settings.py and can then
just use the library methods in some program source code to start measuring. The
server is written in Python, but there is a client library for C. If a client wants to
retrieve data from a device “DCM1” for example, he only needs to call 4 methods,
what, simplified, looks like this:

pm_create_counter("DCM1",...)
pm_start_counter(...)
[Code to measure]
pm_stop_counter(...)
pm_get_counter_data(...)

Pmlib also offers a whole collection of additional functions to the client, for example to
determine which devices and channels are available to read from, selecting channels of
interest1 or receiving further information about the device. So the measurement can
be as simple or as customized as the client wishes.

4.2.1. Integration of our device

Figure 17: Relevant part of pmlib
for our project.

An excerpt of the pmlib structure with all files that
we added or changed is shown in figure 17. Firstly,
we of course had to add a class for our device,
ArduPowerDevice.py. This is the main file and
contains all the logic needed for the protocol, re-
trieving and processing data and so on. It im-
plements the interface Device.py from the same
folder. In addition, there were two other files on
the server side we had to touch. __init__.py,
where we have to introduce our new device to pm-
lib, which is just one line to add:

from ArduPowerDevice import *

And, of course, the settings.py, where we need
to tell pmlib that it shall retrieve data from our
device and what channels shall be read. Again,

1Of the channels that are specified in the settings.py.

22

there are just a few lines we needed to add. First,
to register our device

c= ArduPowerDevice(name="ArduPowerDevice", computer=localhost,
url="/dev/ttyACM0", max_frequency=100)

whereas the url has to match the USB port we attached our device to. And secondly
a line

c.add_line(number=0, name="", voltage=3.3, description="",
slope=71.4943627331, offset=198.6262)

for each channel to be measured. Each channel has a number. For computing the
channel power of the retrieved data, we need to provide the line voltage of the channel,
as well as the values from calibration (see section 3). An example where all 16 channels
are registered is attached in appendix A.4.

In the main file, ArduPowerDevice.py, we had to implement the Device interface,
so there are two main methods: __init__, which just sets some starting values, and
read, which had to be implemented in a way that it yields a set of values (one value
for each channel) every time it is called. We did this by setting up the serial connection
and then running an endless while-loop that reads and processes a set of values from
the serial interface and yields it. The use of yield brings the desired effect of getting
a set of values each iteration.
The remaining code is mainly communication with the Arduino, synchronization and
the protocol. As already mentioned in section 4.1, the server needs to inform the
Arduino of the channels it is supposed to measure. This happens once at the start,
after opening the serial connection.
Synchronization checks happen after every read in the loop. If a synchronization fail
is detected, the whole set gets discarded and the beginning of the next set is searched
for. As soon as a proper set (first byte starts with 1 and all others with 0) is found, the
loop continues normally. For debugging we also print out a message on the command
line if a synchronization fail is detected and corrected.
While the protocol is fairly easy to implement on the Arduino side, it took a lot of
effort to translate the bytes back into values on the pmlib side. We spent a lot of time
on this, especially since we tried out a lot of protocols. In order to extract a value from
a sequence of bytes we need to know which bytes carry the bits we are interested in and
how to shift them in order to retrieve the bits. These positions and shifts are somewhat
periodic but we could not break them down to a simple formula, especially for the first
protocol. We went with a solution with two arrays in the end and sticked to it with the
synchronized protocol, too. The arrays are descriptively named positions and shifts.
We iterate over the count of values we intend to retrieve. The byte containing the
lower 7 bits of a value can easily be found by using the loop counter. For the byte
containing the 3 higher bits we look up its position in the positions array and use

23

the shifts array to extract the bits properly. We did not have time to revise our code
afterwards or to think of a better solution, or at least improve the readability. So while
it works, our pmlib code is not very pretty. We would recommend to revise it prior to
any future work with it.

5. Experimental results

To test our device, we installed it into a desktop machine, and later a sever machine,
performed several benchmarks and collected power measurement data each time.

5.1. Testing Machines

For the tests we used a standard desktop machine with an Intel i7 (Sandy Bridge)
Processor and a Nvidia Quadro graphics card. The server was a NUMA (non-uniform
memory access) machine with a Super Micro Computer mainboard and two Intel Xeon
X5560 Processors. While performing our tests Hyper-Threading was disabled on both
machines.

5.2. Benchmarks

part benchmark
CPU Linpack
HDD hdparm

memory STREAM
network iPerf

user application partdiff-par

Table 1: List of used benchmarks.

We used different benchmarks to stress differ-
ent components of the machine. An overview
of all benchmarks we used can be found in table
1.

Linpack[13] stresses the CPU by letting the
system solve a dense system of linear equations
Ax = b on double precision. Its main pur-
pose is to approximate how fast a computer
can solve problems, but it also gives a good
estimation on peak performance. We used a
version called xlinpack that was provided to us
by the work group Wissenschaftliches Rechnen
(WR) at University of Hamburg.

Hdparm is a command line utility to set and view hardware parameters of hard disk
drives, but it can also be used as an HDD benchmark with the command:

24

hdparm -t /dev/sda

STREAM[14] is a benchmark that measures memory bandwidth (in MB/s) for simple
vector kernels. It was specifically designed to work with data sets that are much larger
than any available cache. There were several values which could be adjusted, but we
just set STREAM_ARRAY_SIZE to 7 million as per instructions in the STREAM file
and compiled it with -fopenmp to make it run parallel.

IPerf is a network testing tool that can create data streams (TCP, UDP) and measure
the throughput of the network that is transferring them. It can be used to measure
network performance. We used it with the following parameters:

iperf --client [ClientIP] -t 60

Lastly, partdiff-par is a program developed on TU Muenchen by Prof. Dr. Thomas
Ludwig (et. al.), who is now part of the WR group at University of Hamburg. It is a
partial differential equation solver used as a lecture program for parallel programming.
We used it as exemplary HPC application program because it does a lot of computation
on multiple cores and its computation time can be influenced in every possible detail
with parameters. The program roughly repeats two phases in a loop: computation of
the matrix and writing it to the disk.

In addition to the data our device reported during the benchmarks, we also collected
sensor data of the machines with a special version of the pmlib server called pm-
lib_server_west.

We did not find a scientific GPU benchmark and did not run any extensive GPU tests
thus, but we found a program called Heaven[16] which renders a 3D graphic.

5.3. Results

The sensor data we collected while running the benchmarks as well as most of the
beforehand mentioned benchmarks provided no enriching or useful data. So we focus
on the productive results in this section.

In studying the power measurement data we observed and verified some typical behav-
ior of certain power lines. The most interesting benchmark results are the ones of the
partdiff-par program. The synthetic benchmarks only stress a distinct component so
that no real interaction of components or different runtime phases can be observed.

25

5.3.1. Power lines

The CPU activity can easily be determined by inspecting the 12V ATX line. If the
power level rises the CPU is busy calculating. Whenever the calculation phase is
paused or terminated the unused inactive cores enter in a power saving idle state,
which decreases the power demand drastically. With all cores in idle state the desktop
machine’s CPU takes around 20 Watt and the server machine’s two CPUs around 70
Watt. On both machines every single calculating core needs about 15 Watt addition-
ally.

On the desktop machine the 12V ATX line is very strongly correlated with the 5V
mainboard line. This means whenever the CPU is calculating the mainboard is work-
ing, too. That is not very surprising, but out of the three mainboard voltages it only
uses the 5V line. The 12V and 3.3V lines remain constant over a whole program run.
So most of the processing related components are powered by the 5V line. Like the
CPU power increases with more cores active, so does the 5V mainboard line: approx-
imately 3.5 Watt per active core and around 10 Watt total with all cores idling.

On the server machine the mainboard behaves in almost the same way but predomi-
nantly uses the 12V line. On the 3.3V line, hardly any correlation is noticeable and
it is nearly constant at roughly 7 Watt. The power of the 5V line behaves different
than all other lines. By comparing the graphs of figures A.6.4 and A.6.6 it seems like
the power decreases with the number of active calculating cores, since in CPU idle
phases the power is at a constant value of about 9 Watt. This may be explainable
electrotechnically. However, even idling the desktop mainboard consumes more power
of the 5V line while only supporting one CPU. So in contrast the server mainboard
works mainly of the 12V line.

Because about 16 Watt of power consumed by the desktop mainboard via the 12V
line is a considerable amount we tried to figure out what its purpose could be. We
found out that the power is even further increasing and correlated with stressing the
PCI express graphics card. This can be observed in figure A.6.11 where we captured
the launch of the graphics benchmark program “Heaven”. It would be interesting to
measure the power of the 12V line with a detached graphics card to see how far the
power drops and what portion other components consume.

We were not able to investigate the purpose of the 3.3V line by experimenting. Tra-
ditionally the 3.3V lines were for powering the CPU and Memory. But today these
require much lower voltages and at least the CPU requires a lot more power, so higher
voltage lines with on board regulators are utilized[17].

The hard disk is using the 12V and 5V lines. The 3.3V line is specified in the SATA
power connector standard but not used by the majority of hard disks[18] like the one in
our desktop machine. By inspecting the measurement results, very high power spikes

26

on the 12V line of the hard disk can be seen. They may be caused every time the
actuator is accelerating the arm on which the heads are mounted to park or move
them. The constant power of the 12V line may be used by the motor for spinning the
platters. The 5V line is for the logic circuitry and the heads. When the hard disk
is working, the power through the 5V line rises while the 12V line remains almost
constant after the arm was moved. After performing the IO operation the arm is
parked and the logic goes into some kind of idle state where less power is needed.

5.3.2. Partdiff

The characteristic of the partdiff application is transfered perfectly to the correspond-
ing power graphs. Every iteration of matrix computations is equivalent to a high on
the 12V ATX CPU line. In between these, the IO phase in which the matrix is written
to the hard disk is happening. This can be traced ideally on the hard disk power lines.
While doing IO the CPU is not needed and its power consumption decreases radically.
There may be some activity noise of operating system processes running in parallel
especially on the desktop machine.

By increasing the number of cores provided to the program the matrix computation
phase finishes faster because the work is distributed across the cores with little overhead
that does not yet have a great impact on a stand-alone machine. But of course with
more cores involved the power requirement rises because active cores are not idling in
a power saving state anymore. None the less the most efficient CPU usage is always to
load all cores so that no idling energy is wasted. Even with more power necessary for
the task normally it finishes faster so that the over all energy consumption is lesser.

The IO phase always takes the same amount of time because the hard disk always needs
the same time to write the matrix having constant dimensions. Because this is not
done asynchronously the computation and IO phase can be observed well separated in
the power graphs. At the beginning and the end of every IO phase the hard disk’s 12V
line has large spikes due to moving and parking the heads. Also while working, the 5V
line is noticeably loaded. In between this sections the computation phase with high
load on the CPU and mainboard is occurring. The hard disk of the server and desktop
machines behave very similar but are not of the same model so the characteristic
slightly differs.

5.3.3. Linpack

The data captured of the linpack benchmark on the desktop machine is valuable for
verifying that the CPU is exclusively powered via the 12V ATX line and for comparing
the maximal power extend with the partdiff application. In figure A.6.7 the linpack

27

benchmark was run with all four cores on the desktop machine. The power of the 12V
ATX line is quickly increasing to about 110 Watt and roughly staying there with some
minor downward peaks. This behavior is not correlated with any other power line,
especially not with the 5V mainboard line. Furthermore its average power drawing
is lower than in the partdiff run shown in figure A.6.3. However, the power drawing
of the CPU is way higher when running the linpack benchmark. This basically tells
that the partdiff application is not using the CPU with highest efficiency. But in real
applications this is rarely the case whereas synthetic benchmarks are purpose-built for
that.

On the server machine the exact same properties can be seen if Linpack is ran on one
core as seen in figure A.6.8 or up to 3 cores. However, starting with four cores like in
figure A.6.9 valleys in the 12V ATX line, and thus in the CPU activity, are occurring
at the end. With eight cores as shown in figure A.6.10 this gets the norm and constant
ups and downs in the CPU activity are present. None the less it is drawing more power
than the partdiff application with the same number of cores as shown in figure A.6.6.
Again anti-proportional ups and downs are occurring on the 5V mainboard line like
mentioned before so it is definitely no IO activity.

5.3.4. Energy consumption on Server and Desktop

Figure 18 shows the energy consumption of runs of the partdiff application on different
machines with several numbers of cores. On the x-axis S stands for server and D for
desktop. The digit indicates the number of cores provided. Above the application
runtime in seconds is shown. What stands out first is that the desktop machine is
more than double as energy efficient as the server machine. Secondly using two cores
on the desktop machine seems to be more energy efficient and faster than using four
cores. This is due to a falsified measurement. Unfortunately the operating system
scheduled another job in parallel to the measurement run of four cores. This and the
fact that four cores would be faster with less energy consumption than two cores can
be clearly seen in a broader perspective of the power line graphs. Even though the
run with three cores is also slower than with only two no obvious interferences can
be seen in the data. We did not do a full evaluation of the data immediately after
capturing it so to get the exact results the measurement would need to be repeated.
In addition the run with 7 cores on the server machine steps a bit out of line in its
energy consumption although the runtime seems quite reasonable.

The largest amount of energy is consumed by the processors. The seconds most energy
is required by the mainboard. In particular via the 12V line especially on the server
machine. On the desktop machine it is mainly used for the PCI express graphics card.
The energy amount may be reduced quite a bit by detaching it. The hard drive is
consuming the least amount of energy which could also be reduced by using solid state
disks.

28

S1c S2c S3c S4c S5c S6c S7c S8c D1c D2c D3c D4c

W
a
tt

h
o
u

rs
 (

W
h

)

0

2

4

6

8

10

12

14

16

18

20

566s

19.88

382s

14.45

329s

12.79

311s

12.28

297s

11.8

289s

11.56

286s

11.64

279s

11.54

331s

6.11

280s

5.29

284s

5.32

283s

5.74

Energy Consumption: /partdiff-par 1 2 450 1 2 2000 10 foo

CPU 12V
MB 12V
MB 5V
MB 3.3V
HDD 12V
HDD 5V
HDD 3.3V

Figure 18: The energy consumption of a partdiff run with different numbers of cores on different
machines. At the bottom the runtime is printed.

The reason for the desktop machine to be twice as energy efficient as the server has
to do with the processor model. Nearly 50 percent of the energy is consumed by the
processors. The server has two processors with 4 cores each, while the desktop machine
has only one with 4 cores. By comparing the bars S8c with D2c it is apparent that the
desktop processor must be at least twice as fast and almost twice as energy efficient
than the server processor.

6. Conclusion

After working on the device and evaluating the measured data we are absolutely certain
that the goal of a cheap, small and scalable power measurement device on microcon-
troller basis is practicable and achieved by this project. The results we got are very
well suited to analyze energy efficiency of high performance computing machines. The
achieved resolution and sampling rate is perfectly adequate for analyzing code running
on a machine. We had no difficulties in recognizing code sections in the power graphs.
Furthermore the interaction of different computing components and the characteristics

29

the hard disk drive are precisely identifiable. Finally the integration into the power
measurement library greatly eases the utilization of the device.

Of course can the device be further improved. A good improvement would be a resistor
array which offers the user to choose from a variety of given reference voltages. The
reference voltage does not need to be chosen frequently but a fine tuned one directly
leads to a higher accuracy of the device and its measurements. Also can be thought
about a case and easier to use connectors to simplify the fitting into a closed machine
and speed up the setup process.

By optimizing the protocol on the Arduino side it should be possible to enhance the
performance just a little more. But the main limitation is the microcontroller itself
with its ADC resolution and computation capability. More advanced and precise parts
would lead to higher costs so a trade-off has to be done.

All in all the resulted measurement device is quite practical and informative power
readings to analyze energy efficiency can be done with ease.

30

A. Appendix

For easier comparison we used the same syntax highlighting as the Arduino IDE for
the Arduino code.

A.1. Arduino Code Loop - Synchronized

void loop()
{

// seperate loop to have the channel readings closer together timewise.
for(byte i = 0; i < channels_to_read; i++)
{

values[i] = analogRead(read_channels[i]);
}

if(channels_to_read != 0)
{

// First Iteration
Serial.write((values[0] | 0x80));

high = (high << 3) | (values[0] >> 7);
if((0 & 0x01) == 0x01 || 0 == channels_to_read_0)
{

Serial.write(high);
high = 0x00;

}
}

// Successive Iterations
for(byte i = 1; i < channels_to_read; i++)
{

Serial.write((values[i] & 0x7F));

high = (high << 3) | (values[i] >> 7);
if((i & 0x01) == 0x01 || i == channels_to_read_0)
{

Serial.write(high);
high = 0x00;

}
}

}

31

A.2. Arduino Code Loop - High Sampling Rate

void loop()
{

// seperate loop to have the channel readings closer together timewise.
for(int i = 0; i < channels_to_read; i++)
{

values[i] = analogRead(read_channels[i]);
}

for(int i = 0; i < channels_to_read; i++)
{

Serial.write(values[i]);
high = (high << 2) | (values[i] >> 8);
if((i & 0x03) == 0x03 || i == channels_to_read_0)
{

Serial.write(high);
high = 0x00;

}
}

}

32

A.3. Comparison: samples per second

channels synchronized unsynchronized
1 5879.656594 5879.147156
2 3558.527375 3470.376750
3 2351.857441 2402.582930
4 1862.065905 1888.582845
5 1469.976028 1486.690182
6 1227.779860 1254.388576
7 1069.086516 1081.192215
8 949.786798 960.9935620
9 839.985461 849.693983
10 756.986302 772.894435
11 691.386038 706.494980
12 633.887713 646.994169
13 580.990068 591.796035
14 545.490571 554.996057
15 507.091368 516.896438
16 478.292542 485.896501

Table A.3.1: Comparison of samples per second per channel for the two protocols. They are
plotted in figure A.3.2 below. For figure 15 we multiplied the values with the channel number.

Figure A.3.2: Comparison of samples per second and channel for both protocols with different
numbers of measured channels. Blue: synchronized protocol. Orange: unsynchronized protocol.

33

A.4. settings.py

Devices section of the settings.py with all 16 channels.

#==
PowerMeter daemon settings
#==

...

#--
Devices section
#--

ard= ArduPowerDevice(name="ArduPowerDevice", computer=intel5, url="/dev/ttyACM0", max_frequency=100)
ard.add_line(number= 0, name="24p-01c-3.3v", voltage= 3.3, description="", slope=71.4943627331, offset=194.12)
ard.add_line(number= 1, name="HDD-SAT-5v", voltage= 5, description="", slope=69.9332761719, offset=192.67)
ard.add_line(number= 2, name="24p-02c-3.3v", voltage= 3.3, description="", slope=72.0016991302, offset=193.11)
ard.add_line(number= 3, name="HDD-SAT-12v", voltage= 12, description="", slope=70.8100589449, offset=193.07)
ard.add_line(number= 4, name="24p-04c-5v", voltage= 5, description="", slope=72.0078867850, offset=194.97)
ard.add_line(number= 5, name="08p-2nd-12v", voltage= 12, description="", slope=69.6503691096, offset=186.98)
ard.add_line(number= 6, name="24p-06c-5v", voltage= 5, description="", slope=71.2795878411, offset=195.57)
ard.add_line(number= 7, name="08p-1st-12v", voltage= 12, description="", slope=65.9691784663, offset=192.37)
ard.add_line(number= 8, name="24p-23c-5v", voltage= 5, description="", slope=71.8246793103, offset=188.22)
ard.add_line(number= 9, name="08p-1st-12v", voltage= 12, description="", slope=67.0736180009, offset=191.60)
ard.add_line(number=10, name="24p-12,13c-3.3v", voltage= 3.3, description="", slope=71.0547210500, offset=191.25)
ard.add_line(number=11, name="24p-10c-12v", voltage= 12, description="", slope=68.1271175427, offset=188.17)
ard.add_line(number=12, name="08p-2nd-12v", voltage= 12, description="", slope=71.5951535529, offset=191.68)
ard.add_line(number=13, name="24p-11c-12v", voltage= 12, description="", slope=67.8861848384, offset=192.63)
ard.add_line(number=14, name="24p-21c-5v", voltage= 5, description="", slope=72.1452259359, offset=194.16)
ard.add_line(number=15, name="24p-22c-5v", voltage= 5, description="", slope=70.4234197519, offset=189.42)

34

A.5. Calibration Script Guide

This short guide explains how the calibration script has to be used:

Start the calibration script calibration.py.

python calibration.py
Number of samples per ampere value and channel?:

Enter the number of times the current values should be sampled. The mean value will
be used for linear regression.

Ampere value (’q’ for quit):

Establish the first stable and known current on the electric circuit all channels are
connected in series with. Then enter the ampere value read from an amperemeter.
Afterwards the measurement will take some time depending on the number of samples
and eventually you will be ask to enter the next ampere value. This process repeats
for all current values you want to use.

If you finished all current values (at least two) you can type in “q” to quit the calibra-
tion. The script will do the linear regression for each channel and provide you a file
including the results and all measured data. At the end of the file and also printed to
the console a section of code which can be copied and pasted directly into the PMLib
settings file can be found.

35

A.6. Power Measurement Graphs

138 138.5 139 139.5 140 140.5 141 141.5 142 142.5 143 143.5

W
a
tt

0

20

40

60

80

CPU

12V

138 138.5 139 139.5 140 140.5 141 141.5 142 142.5 143 143.5

W
a
tt

0

5

10

15

20

25

Mainboard

12V
5V
3.3V

Time
138 138.5 139 139.5 140 140.5 141 141.5 142 142.5 143 143.5

W
a
tt

0

5

10

15

Harddisk

12V
5V
3.3V

Figure A.6.1: The Partdiff benchmark on one core of the desktop machine.

36

138 138.5 139 139.5 140 140.5 141 141.5 142 142.5 143 143.5

W
a
tt

0

20

40

60

80

CPU

12V

138 138.5 139 139.5 140 140.5 141 141.5 142 142.5 143 143.5

W
a
tt

0

5

10

15

20

25

Mainboard

12V
5V
3.3V

Time
138 138.5 139 139.5 140 140.5 141 141.5 142 142.5 143 143.5

W
a
tt

0

5

10

15

Harddisk

12V
5V
3.3V

Figure A.6.2: The Partdiff benchmark on two cores of the desktop machine.

37

138 138.5 139 139.5 140 140.5 141 141.5 142 142.5 143 143.5

W
a
tt

0

20

40

60

80

CPU

12V

138 138.5 139 139.5 140 140.5 141 141.5 142 142.5 143 143.5

W
a
tt

0

5

10

15

20

25

Mainboard

12V
5V
3.3V

Time
138 138.5 139 139.5 140 140.5 141 141.5 142 142.5 143 143.5

W
a
tt

0

5

10

15

Harddisk

12V
5V
3.3V

Figure A.6.3: The Partdiff benchmark on all four cores of the desktop machine.

38

126 126.5 127 127.5 128 128.5 129 129.5 130 130.5 131 131.5

W
a
tt

60

80

100
CPU

12V

126 126.5 127 127.5 128 128.5 129 129.5 130 130.5 131 131.5

W
a
tt

15

20

25

30
Mainboard

12V

126 126.5 127 127.5 128 128.5 129 129.5 130 130.5 131 131.5

W
a
tt

8

9

10

5V

126 126.5 127 127.5 128 128.5 129 129.5 130 130.5 131 131.5

W
a
tt

6

7

8

3.3V

126 126.5 127 127.5 128 128.5 129 129.5 130 130.5 131 131.5

W
a
tt

0

5

10

15
Harddisk

12V

Time
126 126.5 127 127.5 128 128.5 129 129.5 130 130.5 131 131.5

W
a
tt

0

5

10

15

5V

Figure A.6.4: The Partdiff benchmark on one core of the server machine.

39

126 126.5 127 127.5 128 128.5 129 129.5 130 130.5 131 131.5

W
a
tt

50

100

150
CPU

12V

126 126.5 127 127.5 128 128.5 129 129.5 130 130.5 131 131.5

W
a
tt

0

20

40

60
Mainboard

12V

126 126.5 127 127.5 128 128.5 129 129.5 130 130.5 131 131.5

W
a
tt

8

9

10

5V

126 126.5 127 127.5 128 128.5 129 129.5 130 130.5 131 131.5

W
a
tt

6

7

8

3.3V

126 126.5 127 127.5 128 128.5 129 129.5 130 130.5 131 131.5

W
a
tt

0

5

10

15
Harddisk

12V

Time
126 126.5 127 127.5 128 128.5 129 129.5 130 130.5 131 131.5

W
a
tt

0

5

10

15

5V

Figure A.6.5: The Partdiff benchmark on four cores of the server machine.

40

126 126.5 127 127.5 128 128.5 129 129.5 130 130.5 131 131.5

W
a
tt

50

100

150

200
CPU

12V

126 126.5 127 127.5 128 128.5 129 129.5 130 130.5 131 131.5

W
a
tt

0

20

40

60
Mainboard

12V

126 126.5 127 127.5 128 128.5 129 129.5 130 130.5 131 131.5

W
a
tt

8

9

10

5V

126 126.5 127 127.5 128 128.5 129 129.5 130 130.5 131 131.5

W
a
tt

6

7

8

3.3V

126 126.5 127 127.5 128 128.5 129 129.5 130 130.5 131 131.5

W
a
tt

0

5

10

15
Harddisk

12V

Time
126 126.5 127 127.5 128 128.5 129 129.5 130 130.5 131 131.5

W
a
tt

0

5

10

15

5V

Figure A.6.6: The Partdiff benchmark on all eight cores of the server machine.

41

0 10 20 30 40 50 60

W
a
tt

20

40

60

80

100

120
CPU

12V

0 10 20 30 40 50 60

W
a
tt

0

5

10

15

20

25

Mainboard

12V
5V
3.3V

Time
0 10 20 30 40 50 60

W
a
tt

0

5

10

15

Harddisk

12V
5V
3.3V

Figure A.6.7: The Linpack benchmark on all four cores of the desktop machine.

42

0 10 20 30 40 50 60 70

W
a
tt

70

80

90

100

110
CPU

12V

0 10 20 30 40 50 60 70

W
a
tt

20

25

30

35
Mainboard

12V

0 10 20 30 40 50 60 70

W
a
tt

9.5

10

10.5

11

5V

Time
0 10 20 30 40 50 60 70

W
a
tt

6

6.5

7

7.5

8

3.3V

Figure A.6.8: The Linpack benchmark on one core of the server machine.

43

0 10 20 30 40 50 60 70

W
a
tt

100

150

200
CPU

12V

0 10 20 30 40 50 60 70

W
a
tt

20

30

40

50

60
Mainboard

12V

0 10 20 30 40 50 60 70

W
a
tt

8.5

9

9.5

10

10.5

5V

Time
0 10 20 30 40 50 60 70

W
a
tt

6

6.5

7

7.5

8

3.3V

Figure A.6.9: The Linpack benchmark on four cores of the server machine.

44

0 10 20 30 40 50 60

W
a
tt

100

150

200

250

300
CPU

12V

0 10 20 30 40 50 60

W
a
tt

20

40

60

80
Mainboard

12V

0 10 20 30 40 50 60

W
a
tt

8.5

9

9.5

10

10.5

5V

Time
0 10 20 30 40 50 60

W
a
tt

6

6.5

7

7.5

8

3.3V

Figure A.6.10: The Linpack benchmark on all eight cores of the server machine.

45

10 15 20 25

W
a
tt

0

20

40

60

80

CPU

12V

10 15 20 25

W
a
tt

0

5

10

15

20

25

Mainboard

12V
5V
3.3V

Time
10 15 20 25

W
a
tt

0

5

10

15

Harddisk

12V
5V
3.3V

Figure A.6.11: The launch of the Heaven GPU benchmark on the desktop machine.

46

A.7. Photos of the Setup

Figure A.7.1: The measurement device installed into a desktop machine.

47

Figure A.7.2: The measurement device installed into a server machine.

48

References

[1] Lawrence Berkley National Laboratory, What’s Energy Efficiency?. http://
eetd.lbl.gov/ee/ee-1.html, July 13, 2015

[2] Borderstep Institut, Energieverbrauch und Energiekosten von Servern und
Rechenzentren in Deutschland. http://www.borderstep.de/wp-content/
uploads/2014/07/Hintemann-Fichter-Kurzstudie_Rechenzentren_
2012.pdf, July 15, 2015

[3] Mahadevan, Priya, et al., On energy efficiency for enterprise and data center net-
works. Communications Magazine, IEEE 49.8 (2011): 94-100.

[4] Hsu, Chung-Hsing, and Stephen W. Poole. Power measurement for high perfor-
mance computing: State of the art. Green Computing Conference and Workshops
(IGCC), 2011 International. IEEE, 2011.

[5] Ge, Rong, et al., Powerpack: Energy profiling and analysis of high-performance
systems and applications. Parallel and Distributed Systems, IEEE Transactions on
21.5 (2010): 658-671.

[6] Bedard, Daniel, et al., Powermon: Fine-grained and integrated power monitoring
for commodity computer systems. IEEE SoutheastCon 2010 (SoutheastCon), Pro-
ceedings of the. IEEE, 2010.

[7] Arduino Website, http://arduino.cc/, April 12, 2015

[8] Hall effect image. Wikipedia. http://upload.wikimedia.org/wikipedia/
commons/0/01/Hall_effect.png

[9] ADC image. Wikipedia. http://upload.wikimedia.org/wikipedia/
commons/9/9a/Digital.signal.svg

[10] Hall-Effect IC Application Guide. Allegro MicroSys-
tems. http://www.allegromicro.com/en/Design-Center/
Technical-Documents/Hall-Effect-Sensor-IC-Publications/
Hall-Effect-IC-Application-Guide.aspx

[11] Power Measurement Library developed by Michael Kuhn and Manuel Dolz from
the work group Wissenschaftliches Rechnen at University of Hamburg. https:
//redmine.wr.informatik.uni-hamburg.de/projects/pmlib

[12] Image from: http://www.conrad.com/ce/en/product/191790/
Arduino-A000067-Mega-2560-Microcontroller-Board

49

http://eetd.lbl.gov/ee/ee-1.html
http://eetd.lbl.gov/ee/ee-1.html
http://www.borderstep.de/wp-content/uploads/2014/07/Hintemann-Fichter-Kurzstudie_Rechenzentren_2012.pdf
http://www.borderstep.de/wp-content/uploads/2014/07/Hintemann-Fichter-Kurzstudie_Rechenzentren_2012.pdf
http://www.borderstep.de/wp-content/uploads/2014/07/Hintemann-Fichter-Kurzstudie_Rechenzentren_2012.pdf
http://arduino.cc/
http://upload.wikimedia.org/wikipedia/commons/0/01/Hall_effect.png
http://upload.wikimedia.org/wikipedia/commons/0/01/Hall_effect.png
http://upload.wikimedia.org/wikipedia/commons/9/9a/Digital.signal.svg
http://upload.wikimedia.org/wikipedia/commons/9/9a/Digital.signal.svg
http://www.allegromicro.com/en/Design-Center/Technical-Documents/Hall-Effect-Sensor-IC-Publications/Hall-Effect-IC-Application-Guide.aspx
http://www.allegromicro.com/en/Design-Center/Technical-Documents/Hall-Effect-Sensor-IC-Publications/Hall-Effect-IC-Application-Guide.aspx
http://www.allegromicro.com/en/Design-Center/Technical-Documents/Hall-Effect-Sensor-IC-Publications/Hall-Effect-IC-Application-Guide.aspx
https://redmine.wr.informatik.uni-hamburg.de/projects/pmlib
https://redmine.wr.informatik.uni-hamburg.de/projects/pmlib
http://www.conrad.com/ce/en/product/191790/Arduino-A000067-Mega-2560-Microcontroller-Board
http://www.conrad.com/ce/en/product/191790/Arduino-A000067-Mega-2560-Microcontroller-Board

[13] Petitet, Whaley, Dongarra, Cleary, Linpack benchmark. http://www.netlib.
org/benchmark/hpl/, July 19, 2015

[14] John D. McCalpin, STREAM benchmark. https://www.cs.virginia.edu/
stream/, July 19, 2015

[15] iPerf, http://sourceforge.net/projects/iperf/files/, July 19, 2015

[16] Unigine, Heaven Benchmark, version 4.0. https://unigine.com/products/
heaven/, July 19, 2015

[17] Power Supply Unit. https://en.wikipedia.org/wiki/Power_supply_
unit_(computer)

[18] Serial ATA. https://en.wikipedia.org/wiki/Serial_ATA

50

http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/benchmark/hpl/
https://www.cs.virginia.edu/stream/
https://www.cs.virginia.edu/stream/
http://sourceforge.net/projects/iperf/files/
https://unigine.com/products/heaven/
https://unigine.com/products/heaven/
https://en.wikipedia.org/wiki/Power_supply_unit_(computer)
https://en.wikipedia.org/wiki/Power_supply_unit_(computer)
https://en.wikipedia.org/wiki/Serial_ATA

	Introduction
	Motivation
	Related Work

	Hardware
	Arduino
	Analog-to-digital converter
	Hall effect sensor
	Arduino Shield

	Calibration
	Determining the reference voltage
	Channel calibration

	Software
	Arduino: Protocol and Implementation
	pmlib

	Experimental results
	Testing Machines
	Benchmarks
	Results

	Conclusion
	Appendix
	Arduino Code Loop - Synchronized
	Arduino Code Loop - High Sampling Rate
	Comparison: samples per second
	settings.py
	Calibration Script Guide
	Power Measurement Graphs
	Photos of the Setup

