
Introduction to the
 Linux Kernel

Praktikum Kernel Programming
University of Hamburg
Scientific Computing

Winter semester 2014/2015



Outline
● What is an Operating System
● History of Operating Systems
● Types of Operating Systems
● The Linux Kernel    
● Summary



What is an OS
● Hard to define
● Abstracts a set of hardware 

resources
○ High level interface instead of 

machine code
■ e.g File storage from block 

devices
● Resource management

○ Multiplexing (sharing) resources
■ e.g Assign CPU time to 

applications

Hardware

Operating 
System 

Libraries

Applications



Outline
● What is an Operating System
➢ History of Operating Systems
● Types of Operating Systems
● The Linux Kernel    
● Summary



1st Generation
● Vacuum Tubes (1945-55) 

○ ~20.000 vacuum tubes where used
○ Programming was done in absolute 

machine code
○ Assembly language was unknown
○ Each program used the machine 

exclusively
○ Most famous ENIAC

■ Announced in 1946
■ Solve large class numerical 

problems 



2nd Generation
● Transistors and batch systems 

(1955-65) 
○ Designers / Builders / Operators / 

Programmers / Mainterers
○ Programmers first wrote the program 

in paper, then punch it on cards 
○ Card readers to read the program 

source
○ Output stored on tapes and also 

printed
○ 1st use of Compilers (FORTRAN)



3rd Generation
● ICs and Multiprogramming (1965-1980) 

○ IBM 360 Mainframe 
■ Multiprogramming

● Several programs in memory at onces with 
separate memory Overlap I/O with Computation

○ Timesharing
■ Each user has an online terminal
■ CTSS (Compatible Time Sharing System)
■ MULTICS (MULTiplex Information and Computing 

System)
■ UNIX, a stripped-down version of MULTICS
■ BSC (Berkeley Software Distribution)  



4th Generation
● Personal Computers (1980-today)

○ SYSTEM V, 1st commercial UNIX operating System 
(1983) 

○ LSI (Large Scale Integration)
○ IBM PC (early 1980)

■ Intel 80286 CPU
■ DOS (Disk Operating System)
■ MS-DOS (Microsoft DOS)

○ LISA
■ First Computer with GUI
■ Protected memory,  preemptive multitasking,  



Modern Operating Systems 



Outline
● What is an Operating System
● History of Operating Systems
➢ Types of Operating Systems
● The Linux Kernel    
● Summary



Types of OS’s
● Multi-user

○ Multiple users access the computer simultaneously
● Single-tasking

○ Only one running program
● Multi-tasking 

○ Allows more than one program to run parallel
○ Two types: 

■ Pre-emptive, the OS slices the CPU time and 
dedicates one slot to each of the programs

■ Co-operative, each process give time to the others 
● Real-time 

○ Aims at executing real-time applications



Types of OS’s
● Distributed 

○ Manages a group of independent computers and 
makes them appear to be a single computer

● Templated
○ A single virtual machine image as a guest operating 

system, then saving it as a tool for multiple running 
virtual machines

● Embedded
○ Designed to be used in embedded computer 

systems



Monolithic kernel
● Single image that runs in a single address 

space
○ A set of primitives operations are implemented in 

operating system level
■ Process management
■ Memory management
■ Device Drivers

○ Trivial (IPC) Inter Process Communication
○ Easy to design
○ Difficult to maintain and extend
○ Examples: 

■ MULTICS, SunOS, Linux, BSD



Micro-kernel
● The minimum amount of software that provide 

the mechanisms needed to implement an OS 
○ Also known as μ-kernel
○ Provides

■ Build in IPC 
■ Low level address space management
■ Thread management

○ Easy to extend
○ Performance penalties (requires IPC calls)
○ Examples

■ Symbian,  Mac OS, WinNT



Monolithic VS. μ-kernel

Source: http://en.wikipedia.org/wiki/Microkernel#mediaviewer/File:OS-structure.svg

Everything that runs in kernel mode defines the OS



Outline
● What is an Operating System
● History of Operating Systems
● Types of Operating Systems
➢ The Linux Kernel

○ Introduction (story, licence, versioning)
○ Main parts 
○ Loadable Kernel Modules
○ System Calls 
○ Security   

● Summary



Introduction
● Developed by Linus Torvalds (1991)

○ Just for Fun: The Story of an Accidental 
Revolutionary by Linus Torvalds

● Based on Unix
● 1st version supported Intel 80386
● Currently various platforms are supported
● Implemented in GNU C
● Several Distributions (distro)

○ RedHat, CentOS, Ubuntu, SUSE, Debian, Arch
○ Different package system, configuration etc.
○ Apply different patches



Introduction (cont.)
● X-Server is not implemented within the Kernel
● Everything run in “Kernel mode”

○ Privileged access to hardware
● Monolithic but boasts modular design

○ Kernel preemption (under certain conditions)
■ The scheduler is permitted to forcibly perform a 

context switch
○ Supports kernel threads
○ Dynamic load and unload binaries (kernel modules) 
○ Reentrant, several processes can be in kernel mode 

simultaneously



Introduction (cont.)
● License Terms

○ is licensed under the Version 2 of the GNU General 
Public License (GPL)

○ Allows anybody to redistribute and even sell a product 
covered by GPL as long as the recipient has access to 
the source and is able to exercise the same rights

○ Any software derived by a product covered by GPL 
must be released under the GPL

● Democratize, everyone can contribute
○ If you want your code to go into the mainline or you 

have modified the kernel then you have to use GPL-
compatible license



Introduction (cont.)
● Use of binary Blobs (Modules, firmware)

○ The source is not given
○ May contain part of the driver from another file system
○ If the code has been ported from another operating 

system is legal
○ If a company wants to keep the source private
○ Using such software is discourage

● Versioning
﹩ uname -a

3 . 17 . 1

major .  minor . revision



    Αpplications

Linux system overview

           Shell

Kernel

Hardware



Privileged mode 

Request flow

Applications

Shell

Kernel Hardware



Outline
● What is an Operating System
● History of Operating Systems
● Types of Operating Systems
● The Linux Kernel

○ Introduction (story, licence, versioning)
➢ Main parts 
○ Loadable Kernel Modules
○ System Calls 
○ Security   

● Summary



Main parts

Process 
Management (PM)

Memory 
Management (MM)

Network
Stack

Virtual File 
System (VFS)

Device Drivers 
(DD)Arch

System Call Interface



Main parts (cont.)
● System call interface (SCI)

○ A thin layer that provides a method to interact from 
user space to kernel space

● Process Management (PM)
○ Create, destroy processes 
○ Communication between different processes (kernel 

threads)
○ CPU scheduling

● Memory Management (MM)
○ Physical to virtual memory management
○ Memory allocation
○ Swapping, from memory to hard  disk



Main parts -- I/O Path
● Virtual File System (VFS)

○ Eports the common file interface
○ Abstract file system functionality 

from implementation
● File Systems

○ Implementation of FS functionality
● Buffer Cache

○ A set of functions to manipulate 
main memory designed for FS

● Device Driver
● Physical Device

○ Where data live 

  VFS

ext4 /procXFS

  Buffer Cache

  Device Drivers

Physical Devices



Main parts (cont.)
● Network Stack

○ Implement the network protocols
○ Deliver packets across programs and network 

interfaces  
● Device Drivers (DD)

○ Interact with the hardware
○ Extract an abstraction of the device functionalities

● Arch
○ Architecture dependent code 



Outline
● What is an Operating System
● History of Operating Systems
● Types of Operating Systems
● The Linux Kernel

○ Introduction (story, licence, versioning)
○ Main parts 
➢ Loadable Kernel Modules
○ System Calls 
○ Security   

● Summary



LKMs
● LKMs (Loadable Kernel Modules) 
● Pre-compiled binary pieces
● Each piece is called “module”
● Can be loaded at runtime 
● Extend the functionality of the system 
● Enforce modularity

○ Easy to develop, debug and maintain
○ No need to rebuild the kernel

● Can save memory (load only the necessary)



What are LKMs used for
● Everything that is not required in the core 
● 6 main categories 

○ Device drivers
○ File system drivers

■ Implementation of a specific file system
○ System calls
○ Network stack

■ Interprets a network protocol
○ TTY line disciplines
○ Executable interpreters for the supported formats



Character Device Driver
● Read or Write a byte at a time
● Accessed by a stream of bytes
● Usually permit only sequential access
● Implement: open, close, read, write
● Similar to regular files
● Examples:

○ /dev/console
○ /dev/ttyS0



Block Device Driver
● Read or Write block-size multiples 
● Permit random access
● Accessed in the /dev/
● File systems can be mount on top
● Handle I/O operations
● Differ with the char module in the way the 

manage data inside the kernel
● Different interface to the kernel than char 

modules



Network Drivers 
● Handle any network transaction made
● Transfer packets of data 
● Independent of a specific protocol
● Reception and Transmission instead of Read/Write
● Usually the interface is a hardware device but it can 

also be software like the loopback
○ loopback is used to communicate with the servers 

that run in the same node, debugging etc. 
● They are not mapped to the file system; they are 

identified by a name



Outline
● What is an Operating System
● History of Operating Systems
● Types of Operating Systems
● The Linux Kernel

○ Introduction (story, licence, versioning)
○ Main parts 
○ Loadable Kernel Modules
➢ System Calls 
○ Security   

● Summary



System calls
● A syscall causes a programmed exception (trap) on 

the CPU
○ syscall(number, arguments)

● Within the kernel you cannot access user space 
buffers

Syscall 
Table

User Space

Kernel Space

write(fd, ptr, sz)
syscall(WRITE, fd, ptr,

sz)

sys_write(f, up, sz)

vfs_write(f, p, sz) etx4_write(f, p, sz)

copy_from/to_user
(to,from,sz)



Outline
● What is an Operating System
● History of Operating Systems
● Types of Operating Systems
● The Linux Kernel

○ Introduction (story, licence, versioning)
○ Main parts 
○ Loadable Kernel Modules
○ System Calls 
➢ Security   

● Summary



Security considerations
● Security check is enforced by the kernel 
● If the Kernel has „holes“       System has holes
● Avoid introducing typical programming bugs

○ Module parameters
○ Buffer overrun
○ Memory corruption 

● Zero or initialize memory given to user
● Run precompiled kernels found in your distro
● In official distros only the superuser can load and 

unload modules



Outline
● What is an Operating System
● History of Operating Systems
● Types of Operating Systems
● The Linux Kernel
➢ Summary



Summary
● Definition of the Operating system

○ Exports hardware functionality
○ Resource manager

● Main types of OS’s
○ Multi-user 
○ Multi-tasking
○ Single-tasking
○ Real-time
○ Embeded
○ Micro-kernel
○ Macro-kernel



Summary
● Linux 

○ Follows Unix principles
○ Monolithic with Loadable modules 
○ Main parts:

■ System Call Interface
■ Process Management (PM)
■ Virtual File System (VFS)
■ Memory Management (MM)
■ Network Stack
■ Device Drivers 
■ Arch 



Kernel programming is vital for 
as long as new hardware is being 

designed and produced or
old-obsolete hardware is maintained.


