
Timers Interrupts Bottom Halves Kernel synchronization

Kernel Synchronization and Interrupt Handling

Oliver Sengpie, Jan van Esdonk

Arbeitsbereich Wissenschaftliches Rechnen
Fachbereich Informatik

Fakultt fr Mathematik, Informatik und Naturwissenschaften
Universitt Hamburg

2015-01-14

1 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Table of Contents

1 Timers

2 Interrupts

3 Bottom Halves

4 Kernel synchronization

2 / 36



Timers Interrupts Bottom Halves Kernel synchronization

The timers

Real time clock (RTC)

Time stamp counter (TSC)

Programmable interval timer (PIT)

CPU Local timer (APIC)

High precision timer (HPET)

ACPI Power Management timer

3 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Why do we need Interrupts?

Getting information from hardware when it’s needed
(Hardware Interrupts)

Processing data when it’s needed (Software Interrupts)

One solution would be polling

Overhead through unnecessary checks

Better solution: Interrupts

Work is only done when needed

4 / 36



Timers Interrupts Bottom Halves Kernel synchronization

What is an Hardware Interrupt?

Electrical signal, asynchronously emitted by a hardware device

Each device is mapped to an Interrupt-Request-Line

Processed by an Interrupt Controller

Forces the CPU to handle the interrupt

5 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Dealing with Hardware Interrupts

Kernel gets interrupted by the CPU

Each IRQ Line has Interrupt Handlers

C function
Implements a specific function prototype
Executed in its own context (Interrupt Context)

6 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Writing your own Interrupt Handler

Function prototype:

static irqreturn_t intr_handler(int irq, void *dev_id,

struct pt_regs *regs)

Registering the Handler at the IRQ:

int request_irq(unsigned int irq,

irqreturn_t (*handler)(int, void *, struct pt_regs *),

unsigned long irqflags,

const char *devname,

void *dev_id)

7 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Kinds of Interrupt Handlers

SA_INTERRUPT

Short execution time
Not interruptable

SA_SAMPLE_RANDOM

Source for Kernel Entropy Pool

SA_SHIRQ

Multiple Handlers possible
Handler detects which device emitted the interrupt
Every registered handler is checked for the emitting device

8 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Interrupt Context

Not associated to any process

Running process gets dumped to kernel memory

No ability to sleep

Its own stack (1 page)

Simple rules:

Be quick and short
Only use the stack if absolutely necessary

9 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Managing Interrupts

Enabling/Disabling Interrupts

local irq enable() / local irq disable()

Disabling specific Interrupts

disable irq(unsigned int irq)

Status of Interrupts (Activation, Context)

irqs disabled()
in interrupt() / in irq()

Interrupt statistics

/proc/interrupts

10 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Overview of Interrupt Handling

Figure: Source: Robert Love: Linux Kernel Development 3rd Edition 11 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Why do we need Bottom Halves

Interrupt Handlers need to be finished fast

All processes on the CPU are blocked by Interrupts
Only used for time critical tasks and arrival confirmations

Bottom Halves are used for data processing

Interrupts are enabled while executing a BH

12 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Types of Bottom Halves

Deprecated types

BH-Interface
Task Queues

softirq

Tasklets

Work-Queues

13 / 36



Timers Interrupts Bottom Halves Kernel synchronization

softirqs

Statically allocated at compile time

Maximum of 32 softirqs

implemented as a structure

Points to a function to run
softirq handler gets a pointer to the structure

void softirq_handler(struct softirq_action *)

Needs to be marked for execution in a bitmask
Gets executed by a looper over the softirq vec array

14 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Usage of softirqs

1 Assigning a priority index

2 Registering the handler

open_softirq()

3 Marking it for execution

raise_softirq()

Handler gets executed by the next do softirq() run

15 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Tasklets

based on softirqs

implemented as tasklet struct

State field manages its execution status

Organized in a linked list Tasklet structures

Gets executed in the do softirq() cycle

16 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Writing your own Tasklet

1 Declare the Tasklet

statically:

DECLARE_TASKLET(name, func, data)

dynamically:

tasklet_init(t, tasklet_handler, dev)

2 Implement a Tasklet-Handler

function prototype:

void tasklet_handler(unsigned long data)

3 Schedule the Tasklet

tasklet_schedule(&your_tasklet)

17 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Work Queues

Executed by their own kernel thread

Executed in process context

Organized in linked list of work queues structures

18 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Usage of Work Queues

1 Declare Work Queue at runtime

statically:

DECLARE_WORK(name, void (*func)(void *), void *data)

dynamically:

INIT_WORK(struct work_struct *work, void (*func)(void *),

void *data)

2 Implement Handler

void work_handler(void *data)

3 Schedule the Work Queue

schedule_work(&work)

19 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Which BH should I choose?

softirq

High priority operations
Short execution time
Thread safe

Tasklet

Short execution time
Doesn’t need to be thread safe

Work Queues

Big operations (i/o)
Doesn’t need to be thread safe

20 / 36



Timers Interrupts Bottom Halves Kernel synchronization

What are synchronization mechanisms?

Functions and structures provided by the kernel

Prohibit race conditions in shared memory

21 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Why are these mechanisms necessary?

The kernel is not running serially

Most kernels use preemption

Multicore processor systems

Kernel control paths are interleaving

22 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Synchronization primitives

There are a few elementary mechanisms to synchronize programs:

Per-CPU variables

Local interrupt disabling

Local softirq disabling

Optimization and memory barriers

Atomic operations

Spin locks

Semaphores and completions

Seqlocks

Read-copy-update (RCU)

23 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Where are them not needed

Before we take a closer look at the mechanisms:
There are cases in which no synchronization mechanisms are
needed.

24 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Where are them not needed

Interrupts
Interrupts disable their IRQ-lines, cannot be nested or be
interleaved by deferrable functions and are nonblocking and
nonpreemptable.

Softirqs and tasklets
They cannot be interleaved on their CPU and are nonblocking
and nonpreemptable

Unique structures in Tasklets
They need no synchronization, because they can only be
executed with one instance on all CPUs.

25 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Single core

26 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Per-CPU variables

Simplest way to make sure no other CPU can corrupt the memory.
With Interrupthandlers, Softirqs and Tasklets race condition secure.

27 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Interrupt and softirq disabling

Can be used to make interrupt handlers thread secure.

28 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Optimization and memory barriers

Instructions which affect the compiler. They avoid optimization
and reorganization of the instructions in the compiler.
Optimization barriers assure that the assambly instructions remain
in the same order and memory barriers ensure that the instructions
before the barrier are finished when the barrier is reached.

29 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Multiple cores

30 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Atomic operations

Atomic operations appear to be instantanious to the hardware.

31 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Spin locks

Make sure that readers and writers don’t get into conflicts
accessing a ressource. There are different types of spin locks:

simple spin locks (every action is equal)

read write spin locks

The waiting processes ”spin”, i.e. they execute a tiny instruction
loop to check whether the lock has yet been released.

32 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Semaphores and completions

Waiting processes are put to sleep and awakened, when they are at
the first place of the wait queue and the lock is free.

33 / 36



Timers Interrupts Bottom Halves Kernel synchronization

Seqlocks

Like Spinlock but with priviliges to the writers. The readers have
to check after the reading if the data they read is valid.

34 / 36



Timers Interrupts Bottom Halves Kernel synchronization

RCU

Use of pointer - and thus only available for data on the heap.

35 / 36



Timers Interrupts Bottom Halves Kernel synchronization

The Big Kernel Lock

Forces the processor to allow only one process in kernel space.

36 / 36


	Timers
	Different kinds of timers

	Interrupts
	What is an Interrupt?
	How to use Interrupts
	Overview of Interrupt Handling

	Bottom Halves
	What is a Bottom Half?
	softirqs
	Tasklets
	Work Queues
	Bottom Halves Conclusion

	Kernel synchronization
	What are synchronization mechanisms?
	Synchronization primitives


