
What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Memory Subsystem and Data Types in the Linux
Kernel

Praktikum Kernel Programming

Björn Brömstrup and Alexander Koglin

Arbeitsbereich Wissenschaftliches Rechnen
Fachbereich Informatik

Fakultät für Mathematik, Informatik und Naturwissenschaften
Universität Hamburg

21. January 2015

1 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Outline

1 What is the Memory Subsystem?

2 Kernel Memory Allocators

3 Kernel Data Structures

4 Summary

5 Literature

2 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Contents

1 What is the Memory Subsystem?
Memory Addresses in the Kernel
Memory Zones
Memory Zones
High Memory
Virtual Memory
Pages
Memmap

2 Kernel Memory Allocators
Page Allocator
SLAB Allocator
kmalloc Allocator
vmalloc Allocator
(Physically Continuous) Large Buffers
Debugger

3 Kernel Data Structures
Queues
Lists
Trees
Maps

4 Summary

5 Literature

3 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Memory Addresses in the Kernel

Physical Addresses

(Kernel) Logical Addresses

normal Kernel address space
1-to-1 mapping to physical memory

subtract PAGE OFFSET (0xC000000 on 32 bits ⇒ 3:1 split)

uses hardware’s native pointer size ⇒ with 32 bits probably
not all memory can be logically addressed (max. 896 MB)
Mapping by Memory Management Unit (MMU) between CPU
and memory bus

(Kernel) Virtual Addresses

also mapping from kernel space address to physical address
not necessarily 1-to-1 mapping
able to allocate physical memory that has no logical address
Limited addresses ranges reserved: vmalloc is 128 MB

4 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Memory Zones

Figure: http://free-electrons.com/doc/training/linux-kernel/

linux-kernel-slides.pdf

5 / 47

http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf


What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Memory Zones

Physical memory is divided into three zones:

ZONE DMA

capable of DMA (Direct Memory Access)

ZONE NORMAL

normal Kernel memory

ZONE HIGHMEM

not mapped by kernel

6 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

High Memory

Low memory

Memory for which logical addresses exist in kernel space

High Memory

PAGE OFFSET 0xC000000 on 32 bits ⇒ only 1 GB for Kernel
addressable
not directly addressable part is called High Memory
temporary mapping: kmap to insert memory page into page
table
kunmap to eject

7 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Virtual Memory

independent extension of the physical space

logical addresses are part of the virtual address space

Features:

Large Address Spaces: OS appears as if it has a larger
amount of memory than it actually has + Swapping

Fair Physical Memory Allocation

Memory Mapping maps directly into the virtual address
space of a process

Security: Each process has own seperate virtual address space

Shared Virtual Memory allows to share memory (e.g code)
between processes

8 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Pages

Physical and Virtual Memory divided into chunks of the same
size called pages (4 KB on x86)

use of page tables for translation

easier translation

each page has unique page frame number (PFN)

an address consists of offset and (virtual) PFN ⇒ look up
(physical) PFN and access at correct offset

translation lookaside buffer (TLB)

flags indicate if the page is in real memory

Swapping/Paging

9 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Memmap

Figure:
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt

10 / 47

https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt


What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Contents

1 What is the Memory Subsystem?
Memory Addresses in the Kernel
Memory Zones
Memory Zones
High Memory
Virtual Memory
Pages
Memmap

2 Kernel Memory Allocators
Page Allocator
SLAB Allocator
kmalloc Allocator
vmalloc Allocator
(Physically Continuous) Large Buffers
Debugger

3 Kernel Data Structures
Queues
Lists
Trees
Maps

4 Summary

5 Literature

11 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Kernel Memory Allocators

Figure: http://free-electrons.com/doc/training/linux-kernel/

linux-kernel-slides.pdf, 252
12 / 47

http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf


What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Page Allocator

gets a power of two of PAGE SIZE of physically contiguous
memory (Buddy Allocator)

page size on x86 is 4 KB

size up to about 8 MB (medium size)

physical memory fragmentation ⇒ limited size

fails when order= log2(number of pages) too big
see /proc/buddyinfo for info about the memory zones’
available blocks of each order

13 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Page Allocator API

unsigned long get free page(int flags)

returns (virtual) address of a free page
flags

unsigned long get zeroed page(int flags)

unsigned long get free pages(int flags,
unsigned int order)

returns (virtual) address of beginning of memory area
consisting of multiple contiguous pages
order= log2(number of pages)

number of pages must be of power two
get order(number of pages)

14 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Page Allocator Flags

GFP KERNEL

primary flag for memory allocation
blocking

GFP ATOMIC

non-blocking
for critical sections
can fail

GFP DMA

allocator for DMA suitable memory

more available under include/linux/gfp.h

15 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Page Allocator API

void free page(unsigned long addr)

void free pages(unsigned long addr,unsigned int
order)

multiple pages
same order as in allocation is imperative!

16 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

SLAB Allocator

creates caches containing objects of the same size

relies on the page allocator

object size can nonetheless be bigger than acual page size

dynamic cache size management (info /proc/slabinfo)

API: include/linux/slab.h

usecase: inherently by the kernel for data structures

file objects
directory entries
network package descriptors
. . .

but rarely by drivers

17 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Different Implementations of SLAB

three different, but API compatible

SLAB: legacy
SLUB (Unqueued Allocator): default, simpler, scales well for
huge systems, less fragmentation
SLOB (Simple List Of Blocks): simple, space efficient, but
poor scalability, used for embedded systems

18 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

kmalloc Allocator

main kernel memory allocator (since 1.0 available)

allocates physically contiguous buffers

although only mandatory for hardware devices it’s faster than
vmalloc

case analysis:

small size: uses SLAB caches (kmalloc-XXX in
/proc/slabinfo)
larger size: uses page allocator

size (x86):

at least as much as you ask for
typical at least 32 bytes
max per allocation: 4 MB (assuming 4 KB page size), but
typical 128 KB
total: 128 MB

19 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

kmalloc

include <linux/slab.h>

get a (virtual memory) pointer to a buffer:

void *kmalloc(size t size, int flags);

size: number of bytes to allocate
flags: same as for page allocator

GFP KERNEL

GFP ATOMIC

GFP DMA

void kfree(const void *objp);

20 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

kmalloc related functions

zero-initialized variations:

void *kzalloc(size t size, gfp t flags);

6= zalloc

since 2.6.14

void *kcalloc(size t n, size t size, gfp t flags);

like calloc

reallocation:

void *krealloc(const void *p, size t new size,
gfp t flags);

like realloc: changes size of buffer pointed to by p to
new size.

21 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

kmalloc: Managed Ressources:

Motivation: Don’t initialize a PCI/USB on module init!
Solution: On device activation the kernel automatically selects the
device’s name/ID matching driver and calls its probe-function.

void *devm kmalloc(struct device *dev, size t

size, int flags);

*devm kzalloc, *devm kcalloc

2.6.21: Managed Ressources

⇒ auto-free allocated buffers when the device or module is
detached or an error occurs (in the initialization).
⇒ less errors/memory leaks

22 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

vmalloc Allocator

implemented in Linux/mm/vmalloc.c

declared in include/linux/vmalloc.h
void *vmalloc(unsigned long size);

at least size bytes (rounded to the next page)

void vfree(void *addr);

allocated memory is only virtually contiguous

allocates noncontiguous chunks of physical memory and maps
it via page tables into a contiguous chunk of the virtual
address space (prefers ZONE HIGHMEM)

large allocations possible (but on 32 bits only 128 MB in total)

slower than kmalloc

not usable for DMA (exeption: SPARC with DVMA)

23 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Large Buffers: Bootmem

physical memory fragmentation

large contiguous buffer allocations could fail

Do you need it? Really? Alterantive: Scatter and Gather?!

Solution: Allocate memory at boot time ⇒ bypass limitations

private pool

freed memory possibly not reuseable

only Kernel drivers directly linked to the kernel

include <linux/bootmem.h>

void *alloc bootmem pages(unsigned long size);

void *alloc bootmem low pages(unsigned long size);

24 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Large Buffers: CMA

contiguous memory allocation (CMA)

grabs a chunk of contiguous physical memory at boot time

drivers can request memory

areas cma=v=20M,c=20M cma map=video=v;camera=c

include <linux/cma.h>

unsigned long cma alloc(const struct device *dev,

const char *kind, unsigned long size, unsigned

long alignment);

25 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Debugger

Kmemcheck

Dynamic checker for access to uninitialized memory.
works best on x86

Kmemleak Dynamic checker for memory leaks

26 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Contents

1 What is the Memory Subsystem?
Memory Addresses in the Kernel
Memory Zones
Memory Zones
High Memory
Virtual Memory
Pages
Memmap

2 Kernel Memory Allocators
Page Allocator
SLAB Allocator
kmalloc Allocator
vmalloc Allocator
(Physically Continuous) Large Buffers
Debugger

3 Kernel Data Structures
Queues
Lists
Trees
Maps

4 Summary

5 Literature

27 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

kfifo

<linux/kfifo.h>: A simple data queue

Enqueue:

kfifo_in(kfifop, datap, length)

Dequeue:

kfifo_out(kfifop, datap, length)

Peek:

kfifo_out_peek(kfifop, datap, length, offset)

Clear:

kfifo_reset(kfifop)

28 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

kfifo

Creating and destroying a kfifo

struct kfifo queue;

int err;

err = kfifo_alloc(&queue, QUEUE_SIZE, GFP_FLAGS);

// ...

void kfifo_free(&queue);

Other useful functions

kfifo size(), kfifo len(), kfifo avail()

kfifo from user(), kfifo to user()

kfifo dma ...()

29 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

list

<linux/list.h>: A doubly-linked, circular, intrusive list

struct list_head {

struct list_head *next, *prev;

};

#define list_entry(nodep, contnr_t, member_name) \

container_of(nodep, contnr_t, member_name)

void INIT_LIST_HEAD(struct list_head *list) {

list->next = list;

list->prev = list;

}

30 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Manipulating a list

Adding and deleting elements

list_add(newp, nodep)

list_add_tail(newp, nodep)

list_del(nodep)

list_replace(oldp, newp)

Other useful functions

Rotating

Cutting and splicing

Moving entries from one list to another

Sorting (in <linux/list sort.h>)

31 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Iterating over a list

Over list heads:

nodep = nodep->next;

nodep = nodep->prev;

list_for_each(nodep, headp) { /* use nodep */ }

list_for_each_safe(nodep, nextp, headp) { /* ... */ }

Over list entries:

objp = list_next_entry(objp, member_name)

objp = list_prev_entry(objp, member_name)

list_for_each_entry(objp, headp, member_name) {

/* use objp */

}

32 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

list example

Example: list demo.c

33 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Other list implementations

Other list implementations

<linux/klist.h>: A wrapper around list head for thread safe
access and modification

<linux/llist.h>: A singly-linked, lock-less list

<linux/plist.h>: A priority list

34 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

rbtree

<linux/rbtree.h>: An intrusive red-black tree

struct rb_root {

struct rb_node *rb_node;

};

struct rb_node {

unsigned long __rb_parent_color;

struct rb_node *rb_left;

struct rb_node *rb_right;

}

#define rb_entry(nodep, contnr_t, member_name) \

container_of(nodep, contnr_t, member_name)

35 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Using an rbtree

There is no predefined function to search an rbtree. You can walk
through the tree using these methods:

nodep = nodep->rb_left;

nodep = nodep->rb_right;

nodep = rb_parent(nodep);

rb_next(), rb_prev(), rb_first(), rb_last()

Inserting a node is a two step process

rb_link_node(nodep, parentp, &parentp->rb_left);

rb_insert_color(nodep, rootp);

Deleting a node

rb_erase(nodep, rootp);

36 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

rbtree example

Example: rbtree demo.c

(rbtree is also very well documented in Documentation/rbtree.txt)

37 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Other tree implementations

Other tree implementations

<linux/btree.h>: A B+Tree

<linux/radix-tree.h>: Maps integers to pointers

38 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

hashtable

<linux/hashtable.h>: An intrusive hashtable

A hashtable is an array (!) of hlist heads

#define DEFINE_HASHTABLE(name, bits) \

struct hlist_head name[1 << (bits)] = { \

[0 ... ((1<<(bits))-1)] = HLIST_HEAD_INIT \

}

#define hash_add(tbl, node, key) \

hlist_add_head(node, \

&tbl[hash(key,ARRAY_SIZE(tbl))])

39 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

hashtable example

struct obj {

struct data data;

struct hlist_node hash_node;

int id;

};

static DEFINE_HASHTABLE(tbl, 8); //tbl has 256 buckets

struct obj *swap_out(struct obj *in, int out_id) {

struct obj *obj;

int i;

hash_add(tbl, &in->hash_node, in->id);

hash_for_each_possible(tbl, obj, hash_node, out_id) {

if(obj->id == out_id) {

hash_del(tbl, obj->hash_node);

return obj;

}

}

} 40 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

idr

<linux/idr.h>: Maps unique ids to pointers

Initializing and destroying an idr

struct idr id_map;

idr_init(&id_map);

idr_destroy(&id_map);

Allocating, finding and removing unique ids

int uid, err;

do {

if(!idr_pre_get(&id_map, GFP_FLAGS))

return -ENOSPC;

err = idr_get_new(&id_map, ptr, &uid);

while(err == -EAGAIN);

ptr = idr_find(&id_map, uid);

idr_remove(&id_map, uid);

41 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Contents

1 What is the Memory Subsystem?
Memory Addresses in the Kernel
Memory Zones
Memory Zones
High Memory
Virtual Memory
Pages
Memmap

2 Kernel Memory Allocators
Page Allocator
SLAB Allocator
kmalloc Allocator
vmalloc Allocator
(Physically Continuous) Large Buffers
Debugger

3 Kernel Data Structures
Queues
Lists
Trees
Maps

4 Summary

5 Literature

42 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Summary

Allocator
Property

physically contiguous typ. size max size

Page Allocator Yes 8 MB
SLAB Allocator No
kmalloc Yes 128 KB 4 MB
vmalloc No arbitrary 128 MB on 32bits
Large Buffers Yes

include <linux/slab.h>

void *kmalloc(size t size, int flags);

flags: GFP KERNEL, GFP ATOMIC, GFP DMA

void kfree(const void *objp);

declared in <linux/vmalloc.h>

void *vmalloc(unsigned long size);

void vfree(void *addr);
43 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Summary

The Linux kernel has generic implementations of the most
used data structures

They are implemented in lib/

Look through the header files, and if you are unsure about
something, the implementation.

<linux/kfifo.h>:

<linux/list.h>:

<linux/rbtree.h>

<linux/hashtable.h>

44 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Thank you for listening.

Questions?

45 / 47



What is the Memory Subsystem? Kernel Memory Allocators Kernel Data Structures Summary Literature

Contents

1 What is the Memory Subsystem?
Memory Addresses in the Kernel
Memory Zones
Memory Zones
High Memory
Virtual Memory
Pages
Memmap

2 Kernel Memory Allocators
Page Allocator
SLAB Allocator
kmalloc Allocator
vmalloc Allocator
(Physically Continuous) Large Buffers
Debugger

3 Kernel Data Structures
Queues
Lists
Trees
Maps

4 Summary

5 Literature

46 / 47



Literature

Jonathan Corbet.
idr - integer id management.
2004.

Jonathan Corbet.
Contiguous memory allocation for drivers.
2010.

Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman.
Linux Device Drivers, 3rd Edition.
O’Reilly Media, Inc., 2005.

Jake Edge.
A generic hash table.
2012.

Linux Kernel and Driver Development Training.
Free Electrons, 2015.

Robert Love.
Linux Kernel Development.
Developer’s library : essential references for programming professionals.
Addison-Wesley, 2010.


	What is the Memory Subsystem?
	Memory Addresses in the Kernel
	Memory Zones
	Memory Zones
	High Memory
	Virtual Memory
	Pages
	Memmap

	Kernel Memory Allocators
	Page Allocator
	SLAB Allocator
	kmalloc Allocator
	vmalloc Allocator
	(Physically Continuous) Large Buffers
	Debugger

	Kernel Data Structures
	Queues
	Lists
	Trees
	Maps

	Summary
	Literature

