Energy-Efficiency of Long-term Storage

Irina Tolokonnikova

Seminar "Energy-Efficient Programming" Arbeitsbereich Wissenschaftliches Rechnen Fachbereich Informatik Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg

2015-01-14

Data Storage Devices	State of Research 000000	Conclusion 000	

Agenda

1 Archive

- 2 Data Storage Devices
 - data storage methods
 - tape
 - HDD
 - MAIDs
- 3 State of Research

4 Conclusion

5 References

Archive ●00	Data Storage Devices	State of Research 000000	Con clusion 000	
Archive				

- storage of digital data for many years
- requirements:
 - preservation
 - retrieval
 - auditing
- archival data \neq backup data
- needs to be cheap to obtain, cheap to operate, easy to expand
- high costs for energy consumption
 - \rightarrow room for improvement

Archive 0●0	Data Storage Devices	State of Research 000000	Conclusion 000	
Google				

How much data are we talking about?

Ar ch iv e 0●0	Data Storage Devices	State of Research 000000	Conclusion 000	
Google				

How much data are we talking about? DKRZ: > 100 PetaBytes total capacity [1]

Archive 0●0	Data Storage Devices	State of Research 000000	Conclusion 000	
Google				

How much data are we talking about?

- DKRZ: > 100 PetaBytes total capacity [1]
- Google: \sim 15 ExaBytes (in 2013) = 15000 Petabytes (only estimation)

Archive 00●	Data Storage Devices	State of Research 000000	Con clusion 000	
_				

Google

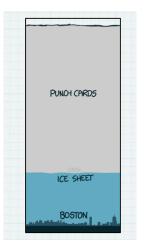


Figure: 15 ExaBytes of punch cards would be enough to cover New England, to a depth of about 4.5 kilometers

lrina Tolokonnikova

Energy-Efficiency of Long-term Storage 4 / 28

Data Storage Devices ●000000000000000	State of Research 000000	Con clusion 000	

Figure: LP [wikipedia.org]

Irina Tolokonnikova

Energy-Efficiency of Long-term Storage 5 / 28

Data Storage Devices 0●0000000000000	State of Research 000000	Conclusion 000	References

			F	24	1	>			Y	+		11	())																																								1	2P	0.	1
C-I	CWE WEE	NT.	ON TON DAY STORM		-								-				1		F	0	F	2-	г	R	A	2	1		0		Т	A	Т	E	N	18	1	7	Т															-			1
010	00	0	0	0	0 1	0 0	0	0	1	0	0		0 0	0	0	0 0	0	0	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0 0	0 0	0	0 0	0	0	0 0	0 0	0	0 0	0 0	0	0	0 0	0	0	0 0	0 0	0	0	0 0) (00	0	0 0	0 0	0 0	0	(
141	11	3	11	1		11	1	1	1 1	1	1	11	3 3	1	1	1.1	123	26	22 2	1 1	1	1	12	33 3	1 1	5 36	1	38 3	1 1	1	1	11	1	5	11	8 45	50	51 5	2 53	1	55 3	56 S	1 55	1	11	1 62	1	1	11	60	1 1	1	07	1 72	1 1	175	1
212	2 2	2	2 2	2	2 2	2 2	2	2 2	2 2	2	2	2 1	2 2	2	2 :	2 2	2	2	2 2	2 2	2	2	2	2	2 2	2	2	2	2 2	2 2	2	2 2	2	2	2 2	2 2	2	2 2	2 2	2	2	2 2	2	2	2 2	2 2	2	2	2	2 2	2 2	2	2 2	2 2	2	2 2	
33	3 3	3	3 3	3	3 3	3	3	3 3	3 3	3	3	3 3	3	3	3 :	3 3	3	3	3 3	3 3	3	3	3	3 :	3 3	3 3	3	3	3 3	3 3	3	3 3	3	3	3 3	3 3	3	3 :	3 3	3	3	3 3	3	3	3 :	3 3	3	3	3	3 :	3 3	3	3 :	3 3	3	3 3	
44	4.4	4	1 4	4	14	4	4	4 4	4	4	4	4 4	4	4	4	14	4	4	4 4	1 4	4	4	4	4	4 4	4	4	4	4 4	4	4	4 4	4	4	4 4	1.4	4	4	4 4	4	4	4 4	4	4	4	4 4	4	4	4	4	44	4	4	4 4	4	4 4	
515	5 5	5 5	5			5	5	5 5	5	5	5	5	5	I	5 5	5 5	5	5	5 5	5 5	5	5	5	5 !	5 5	5 5	5	5	5 5	5 5	5	5 :	5 5	5	5 5	5 5	5	5 !	5 5	5	5	5 5	i 5	5	5 :	5 5	5	5	5	5	5 5	5	5	5 5	5	5 5	
6 6 8	6 6	6 8	6	6 1	6	6		6 8	6	I	6	6	6	6	6 0	5 6	6	6	6 8	6 6	6	6	6	6 1	6 8	6 6	6	6	6 8	6 6	6	6 (6 6	6	6 8	6 6	6	6	6 6	6	6	6 1	6 6	6	6 1	6 6	6	6	6	6	6 6	6	6	6 6	6	6	1
717 7	17	7 7	7	71	7	7	1	11	7	7	7	77	1	7	11	17	7	1	77	17	7	7	7	7	7 7	7	7	7	7 7	17	7	1	1	1	7	17	7	7	7 7	1	1	1	11	7	7	17	17	7	1	7	11	1	7	17		7 1	
8 8 8	8	8 8	8		1	8			8	I	8	8	8	I	8 8	8 8	8	8	8 8	3 8	8	8	8	8 1	8 8	8 8	8	8	8 8	3 8	8	8 1	8 8	8	8 1	8 8	8	8	8 8	8	8	8	8 8	8	8	8 8	3 8	8	8	8	8 8	8	8	8 8	8 8	8 1	3
9999	9	99	7	99	9 10	9	9 9	9 9	9	9 10	9 1	9 9	98	9	9 9	9 9	9 10	9	9 9	9 9	9	9	9	9 !	9 9	9 35	9	9 38 3	9 9	3 9	9.2	9 9	9 9	9	9 9	9 9	9	9	9 9	9	9	9 9	3 9	9	9	9 9	3 5	9	9 15	9	99	9	9	9 9	9 9	74	9

Figure: punch card [wikipedia.org]

Irina Tolokonnikova

Energy-Efficiency of Long-term Storage

6 / 28

Data Storage Devices	State of Research 000000	Con clusion 000	

Figure: a United States National Archives Records Service facility in 1959. Each carton could hold 2000 cards [wikipedia.org]

Irina Tolokonnikova

Energy-Efficiency of Long-term Storage

7 / 28

Data Storage Devices 000●0000000000	State of Research 000000	Conclusion 000	

Figure: 3,5-inch floppy disk

Irina Tolokonnikova

Data Storage Devices	Conclusion	
00000000000000000000000000000000000000		

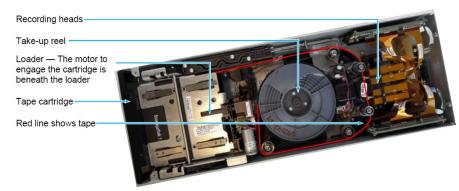
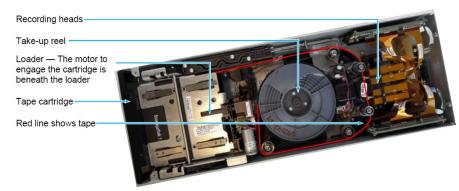


Figure: compact cassette [wikipedia.org]

Irina Tolokonnikova


	Data Storage Devices ○○○○○●○○○○○○○	State of Research 000000	Conclusion 000	References
Tape				

- used as a cartridge with a single reel
- holds several tens to thousands of GB (state wikipedia.org 13.01.15)

	Data Storage Devices	State of Research 000000	Conclusion 000	
Tape				

- used as a cartridge with a single reel
- holds several tens to thousands of GB (state wikipedia.org 13.01.15)
- Oracle StorageTek T10000 T2 hold 8,5 TB

	Data Storage Devices ○○○○○●○○○○○○	State of Research 000000	Conclusion 000	
DKRZ				

- 7 automated Oracle/StorageTek SL8500 tape libraries
- 8 robots per library
- over 67000 slots for magnetic tape cassettes

Figure: Inside the Tape library of DKRZ [1]

lrina Tolokonnikova

	Data Storage Devices ○○○○○○●○○○○○	State of Research 000000	Con clusion 000	
lifetime	e and costs			

- lifetime: 30 years
- costs: less than 1 cent per GB
- 238X less energy over 12 years than HDD

10 TB Example Over 15 Years

Data Storage Devices	State of Research 000000	Con clusion 000	

pros and cons

Pros	Cons
cheap	needs special
	expensive equipment
long lifetime	sequential access pattern
no power needed when not accessed	

	Data Storage Devices ○○○○○○○●○○○○	State of Research 000000	Conclusion 000	
Hard D	rives			

- easy and fast to access data storage
- searching, consistency checking and inter-media reliability operations
- costs: 0.07 \$per GB and falling
- lifetime: 10 years, but easy to break mechanics

Data Storage Devices ○○○○○○○○○○○	State of Research 000000	Conclusion 000	

pros and cons

Pros	Cons
easy access, simply system	needs much power,
	even when turned off
matches requirements of big data	easy to break
higher bandwidth (200X)	needs extra space
	for redundancy

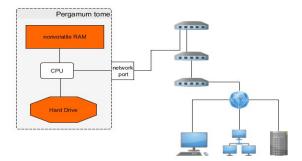
Colarelli, Grunwald et al.(2002)

- massive array of idle disks = MAIDs
- aim: storage densities matching those of tape, with reduced energy consumption
- but operating same data volume in disks costs 10X more than in tape
- idea: use a cache manager to keep only part of disks in an array powered up
- varying spin-down delays

	Data Storage Devices ○○○○○○○○○○○○	State of Research 000000	Conclusion 000	References
Results				

- good trade off in performance and energy efficiency
- read performance still effected by the spin-down delay
- but 82% of read requests were satisfied by the cache
- least energy consumed with 4 sec spin-down delay

Data Storage Devices 00000000000000	State of Research 000000	Con clusion 000	


SSD

- costs: 0.66 \$per GB , yet too expensive
- \blacksquare lifetime depends on usage, ${\sim}10$ years
- yet unclear, how unused data behaves on SSD
- coming soon?

Data Storage Devices	State of Research	Conclusion	
	• 00 000		

Pergamum tomes by Storer et al. (2008)

- interfaces and protocols change slowly
- using inter- and intra-device redundancy
- work energy efficient, by not spinning up idle disks
- \rightarrow intelligent, self managing storage device

Figure: Pergamum tome, redrawn

Data Storage Devices	State of Research ○●○○○○	Conclusion 000	
(D			

Results of Pergamum

- size of the hard drive
- nonvolatile RAM handles many types of requests(e.g. hashes) without spinning up the disk
- using signatures for redundancy checking in entire inter-disk group
- using trees of hash values to reduce signature data
- once added to the network, the tome automatically joins a redunancy group or builds new one
- ightarrow makes storage management easier
 - using intra-device redundancy, recovering from small errors without other devices
 - aim to be price-competitive with tape

Problems and improvments

- still not included in data archives(?)
- redundancy overhead, but much energy saved
- "disposable" tomes
- encoding time 10X longer than on laptop processor BUT 10X less power consumed
- future work:
 - better algorithms
 - parallel processes (distributed searching)

ArchiveData Storage DevicesState of ResearchConclusionReferences000000000000000000000000000

A Spin-Up Saved is Energy Earned, Greenan et al. (2008)

- idea: use redundancies on active devices instead of waking up inactive ones
- → Power aware coding
 - three conditions needed:

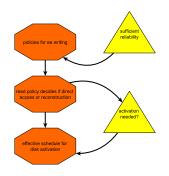


Figure: Three conditions for a power-aware system

rin a	To	loka	nn	ik ov a
u				ncovu

Power Aware Techniques

- rules known from Pergamum tome
- Power Schedule
 - each code instance should have own write policy
 - write parallel across disk groups
- Power-Aware Read Algorithm
 - minimize the number of disk activations
 - first find out, if lost data is recoverable
 - like solving a matrix where inactive devices are treated as erased
- Disk Activation Algorithm
 - perform search to find best activation
 - how and when is a spin-down performed?

Data Storage Devices	State of Research	Conclusion	
	00000		

observation while testing

mind the trade-off trilemma!

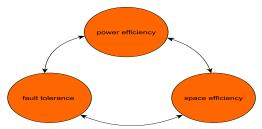


Figure: the trade-off when trying power aware coding

open questions:

which environments will benefit from power aware coding?

- how to find optimal policies?
- robust metrics have to be developed for evaluation the power-reliability-performance trade-off

24 / 28

Data Storage Devices	State of Research 000000	Con clu sion ●○○	

Conclusion

	Disk	Таре
Max shelf life (bit rot)	10 years	30 years
Best practices for data migration to new technology	3-5 years	8-12 years
Uncorrected Bit Error Rate, Probability (avg 1 error in x TB)	10 ⁻¹⁴ (~10's of TB)	10 ⁻¹⁹ (~1 million TB)
Power and cooling	238X	Х

Figure: Disk compared to Tape [3]

Irina Tolokonnikova

Archive 000	Data Storage Devices	State of Research 000000	Con clu sion ○●○	
Canala				

Conclusion

Pergamum tomes by Storer et al.

- Pergamum tomes added to networks
- redundancy overhead used to recover errors
- energy saved by not spinning up other disks
- self managing system with "disposable" nodes
- Power Aware Programming
 - try to use less disks as efficient as you can
 - mind the trade-off trilemma between fault tolerance, space efficiency and power efficiency
 - "Initial results show that power-aware coding may be well suited for the write-once, read-maybe workload of long-term archival storage systems."

Data Storage Devices	State of Research 000000	Con clu sion ○○●	
 11 .			

How would you store...

...(your own) private medical data?
...research data of a medical study?
...data of all patients of a hospital?

	Data Storage Devices	State of Research 000000	Conclusion 000	References
Referen	ices			

- [1] https://www.dkrz.de/Klimarechner-en/datenarchiv (13.01.2015)[2] https://what-if.xkcd.com/63/ (13.01.2015)
- [3] Dr. Mark L Watson: Advanced Tape Technologies for Future Archive Storage Systems. MSST - Media II (Tape Media and Libraries), 2013
- [4] Colarelli, Dennis, Dirk Grunwald, and Michael Neufeld. *The case for massive arrays of idle disks (maid)*. The 2002 Conference on File and Storage Technologies. 2002.
- [5] Storer, Mark W., et al. *Pergamum: Replacing tape with energy efficient, reliable, disk-based archival storage.* Proceedings of the 6th USENIX Conference on File and Storage Technologies. USENIX Association, 2008.
- [6] Greenan, Kevin M., et al. A Spin-Up Saved Is Energy Earned: Achieving Power-Efficient, Erasure-Coded Storage. HotDep. 2008.