
Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Energy-Aware Programming Techniques

Dominik Lohmann

Universität Hamburg
Fakultät für Informatik, Mathematik und Naturwissenschaften

Fachbereich Informatik

64-174 Seminar Energy-Efficient Programming

2014-12-03

1 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Outline

1 Introduction
Motivation
Energy-Awareness
Performance

2 Computational Efficiency

3 Energy-to-Solution

4 Energy-Awareness in Practice

2 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Motivation

Q: How many of you had to charge their phone today?

3 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Energy-Awareness

What is energy-aware programming?

• Focus on efficiency: Performance achieved
Maximum performance achievable

• Optimization criterion should be decided based on TCO

• Applications need to be aware of their environment, such as
power states

4 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Performance

What does it mean to improve performance?

• The software is going to run on a specific, real machine

• There is some theoretical limit on how quickly it can work

Improving energy-efficiency by improving performance is called
computational efficiency

”Every circuit not used on a processor is wasting power”
– Chandler Carruth

5 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Outline

1 Introduction

2 Computational Efficiency
Algorithms
Data Efficiency: Hardware Characteristics
Loops
Multithreading
Performance Libraries/Extensions
Compiler Optimizations
Programming Language

3 Energy-to-Solution

4 Energy-Awareness in Practice
6 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Algorithms

• Complexity theory allows comparing algorithm speed

• Use algorithms that allow the CPU to idle

• Note: recursive algorithms are often energy-inefficient

Improving algorithmic efficiency means solving the underlying
problem in another way

7 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Example: Sub-String Searching

• Initially, consider a trivial O(n ∗m) algorithm

• Boyer-Moore algorithm is O(n + m) and can do the same
thing (using the end of the needle)

Algorithmic changes can make a huge difference, but are not
something that can necessarily be found by everyone

8 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Data Efficiency: Hardware Characteristics

One cycle on a 1 GHz CPU 1 ns

L1 Cache reference 0.5 ns

Branch mispredict 5 ns

L2 Cache reference 7 ns

Mutex lock/unlock 25 ns

Main memory reference 100 ns

Send 1kB over 1Gbps network 10,000 ns

Read 4kB randomly from SSD 150,000 ns

Read 1MB sequentially from memory 250,000 ns

Read 1MB sequentially from SSD 1,000,000 ns

9 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Example: Linked Lists

• Nodes are separately allocated

• Traversal operations chase pointers to totally new memory

• In most cases, every step is a cache miss

• Only use Linked Lists when you rarely traverse the list, but
frequently update it

Linked Lists are rarely what you want to use

10 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Loops

• Minimize the use of tight loops

• Convert polling loops to be event-driven

• Have the lowest polling frequency usable, if polling must be
used

• Eliminate busy wait (spin-locks) when possible

11 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Multithreading

• Modern CPUs are able to run things in parallel, allowing faster
computation with parallelelized algorithms

• Often requires a (partial) rewrite of legacy applications

• Balancing load across threads allows the CPU to be throttled
while maintaining the performance

• Threading done right provides a massive performance boost
while having almost no energy impact

• OpenMP, pthreads, TBB and PPL are examples of often used
implementations

12 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Performance Libraries/Extensions

• Using (architecture specific) instruction sets such as SSE2 and
Intel AVX can often result in increased performance

• Reducing the amount of CPU instructions per calculation
directly relates to the applications energy-efficiency

• Certain applications can be optimized using hardware
acceleration

• Focuses mostly on graphics

13 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Compiler Optimizations

• By default, compilers optimize for the average processor

• When possible, enable the use of architecture-specific
instruction sets using -mtune=X and/or -march=X (in gcc)

• Enable general compiler optimization using -Ox

• Read your compilers man-page for more details

Proebsting’s Law: Compiler advances double computing power
every 18 years.

14 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Programming Language

Consider choosing a programming language, which

• is idle-friendly

• lets you program without any further abstraction layers

• has a minimal runtime

• supports multithreading

• is fast

Languages like Fortran, C and C++ are highly recommended

15 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Outline

1 Introduction

2 Computational Efficiency

3 Energy-to-Solution
Total Cost of Ownership
Energy-to-Solution
Adaptive Run-Time Systems

4 Energy-Awareness in Practice

16 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Total Cost of Ownership

• Defines the total operation costs of a computing environment
like an HPC cluster

• For most applications, increasing the computational efficiency
decreases the TCO

• However, some applications require solution-specific changes

17 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Energy-to-Solution

• Applications need to be aware of their environment
• For HPC: Adapting CPU clock speed based on application
• For Mobile: Respecting power states and energy saving modes

to allow switching into low-power modes

• Computational efficiency is not always the optimal solution

• Multiple approaches exist to this
• Throttling of CPU frequency and threads
• Adaptive run-time based

18 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Adaptive Run-Time Systems

• Measure performance slowdown against CPU energy savings
• Evaluate β-effectiveness on (current) savings
• Adapt CPUs on an HPC cluster based on current
β-effectiveness

Figure: The actual performance slowdown and CPU energy savings of
CPU2000 benchmarks using the presented run-time system

19 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Outline

1 Introduction

2 Computational Efficiency

3 Energy-to-Solution

4 Energy-Awareness in Practice
Testing for Energy-Efficiency
Recommendations
Conclusion

20 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Testing for Energy-Efficiency

• Profile system power during application runtime
• Understand the impact of Idle and Running states
• Examine timer interrupts
• Examine disk and file access

• Measure using tools like Extrae

• Check for cache misses and hits using e.g. perf

• Focus on optimizing code that is executed a lot
• This can be checked using e.g. gprof

21 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Example: Extrae and pmlib

Figure: Power consumption and C-states

22 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Example: perf

perf stat -B -e cache-references,cache-misses

-e cycles,instructions,branches sleep 5

Performance counter stats for ’sleep 5’:

10573 cache-references

1949 cache-misses # 18.34 % of all cache refs

1077328 cycles # 0.000 GHz

715248 instructions # 0.66 isns per cycle

151188 branches

5.002714139 seconds time elapsed

23 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Recommendations

Practical recommendations regarding some things said in the
previous slides:

• Algorithms: Do not reinvent the wheel
• You are less likely to get it right by yourself
• Many programming languages already come with an abstract

algorithms library

• Testing: Never trust your instincts, measure instead

24 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Conclusion

By adopting an energy-aware approach to programming, huge
energy-savings can be achieved while often also optimizing the
performance at the same time.

Programmers need to be aware that even simple to implement
things such as the cache-efficient use of data structures or compiler
optimizations can often have a huge impact on their applications
energy consumption.

25 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Literature I

Arndt Bode.
Energy to solution: a new mission for parallel computing.

Chandler Carruth.
Efficiency with Algorithms, Performance with Data Structures.

Wu-Chun Feng.
The Green Computing Book: Tackling Energy Efficiency at
Large Scale.

Petter Larsson.
Energy-Efficient Software Guidelines.

T. A. Proebsting.
T.A. Proebsting’s Law: Compiler Advances Double Computing
Power Every 18 Years.

26 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Literature II

Rüdiger Kapitza Timo Hönig, Christopher Eibel and Wolfgang
Schröder-Preikschat.
Energy-Aware Programming Utilizing the SEEP Framework
and Symbolic Execution.

27 / 27


	Introduction
	Motivation
	Energy-Awareness
	Performance

	Computational Efficiency
	Algorithms
	Data Efficiency: Hardware Characteristics
	Loops
	Multithreading
	Performance Libraries/Extensions
	Compiler Optimizations
	Programming Language

	Energy-to-Solution
	Total Cost of Ownership
	Energy-to-Solution
	Adaptive Run-Time Systems

	Energy-Awareness in Practice
	Testing for Energy-Efficiency
	Recommendations
	Conclusion


