| Efficienc

Energy-Aware Programming Techniques

Dominik Lohmann

Universitat Hamburg
Fakultat fur Informatik, Mathematik und Naturwissenschaften
Fachbereich Informatik

64-174 Seminar Energy-Efficient Programming

2014-12-03

1form
i'h‘ Universitdt Hamburg dle ZI.Ikunft

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Outline

@ Introduction
Motivation
Energy-Awareness
Performance

/27

Introduction

Motivation

I
~
H

Q: How many of you had to charge their phone today?

Introduction Comp cy € o-Solution

Energy-Awareness

What is energy-aware programming?

- . Performance achieved
e Focus on efﬁCIenCy' Maximum performance achievable

e Optimization criterion should be decided based on TCO

e Applications need to be aware of their environment, such as
power states

Introduction

Performance

What does it mean to improve performance?
e The software is going to run on a specific, real machine

e There is some theoretical limit on how quickly it can work

Improving energy-efficiency by improving performance is called
computational efficiency

"Every circuit not used on a processor is wasting power”
— Chandler Carruth

Introduction Computational Efficiency ~to-Solution

Outline

@® Computational Efficiency
Algorithms
Data Efficiency: Hardware Characteristics
Loops
Multithreading
Performance Libraries/Extensions
Compiler Optimizations
Programming Language

27

Introduction nal Efficiency ~to-Solution

Algorithms

e Complexity theory allows comparing algorithm speed
e Use algorithms that allow the CPU to idle

e Note: recursive algorithms are often energy-inefficient

Improving algorithmic efficiency means solving the underlying
problem in another way

Introduction Com onal Efficiency o-Solution
000 00

Example: Sub-String Searching

e Initially, consider a trivial O(n* m) algorithm

¢ Boyer-Moore algorithm is O(n+ m) and can do the same
thing (using the end of the needle)

Algorithmic changes can make a huge difference, but are not
something that can necessarily be found by everyone

Introduction onal Efficiency o-Solution

Data Efficiency: Hardware Characteristics

One cycle on a 1 GHz CPU

L1 Cache reference

Branch mispredict

L2 Cache reference

Mutex lock/unlock

Main memory reference

Send 1kB over 1Gbps network

Read 4kB randomly from SSD

Read 1MB sequentially from memory
Read 1MB sequentially from SSD

25

100
10,000
150,000
250,000
1,000,000

~N 01 O =

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

27

Introduction Computational Efficiency ~to-Solution

Example: Linked Lists

Nodes are separately allocated

Traversal operations chase pointers to totally new memory

In most cases, every step is a cache miss

Only use Linked Lists when you rarely traverse the list, but
frequently update it

Linked Lists are rarely what you want to use

10/27

Introduction nal Efficiency ~to-Solution wareness in Pra

Loops

e Minimize the use of tight loops

Convert polling loops to be event-driven

Have the lowest polling frequency usable, if polling must be
used

Eliminate busy wait (spin-locks) when possible

11 /27

Introduction Computational Efficiency ~to-Solution

Multithreading

e Modern CPUs are able to run things in parallel, allowing faster
computation with parallelelized algorithms

e Often requires a (partial) rewrite of legacy applications

e Balancing load across threads allows the CPU to be throttled
while maintaining the performance

e Threading done right provides a massive performance boost
while having almost no energy impact

e OpenMP, pthreads, TBB and PPL are examples of often used
implementations

12 /27

Introduction ergy-to-Solution wareness in Practice

Performance Libraries/Extensions

e Using (architecture specific) instruction sets such as SSE2 and
Intel AVX can often result in increased performance
e Reducing the amount of CPU instructions per calculation
directly relates to the applications energy-efficiency
e Certain applications can be optimized using hardware
acceleration
e Focuses mostly on graphics

13 /27

Introduction ergy-to-Solution wareness in Practice

Compiler Optimizations

By default, compilers optimize for the average processor

e When possible, enable the use of architecture-specific
instruction sets using -mtune=X and/or -march=X (in gcc)

Enable general compiler optimization using -Ox

Read your compilers man-page for more details

Proebsting's Law: Compiler advances double computing power
every 18 years.

14 /27

Introduction Computational Efficiency ~to-Solution

Programming Language

Consider choosing a programming language, which
e is idle-friendly
e lets you program without any further abstraction layers
e has a minimal runtime
e supports multithreading

e s fast

Languages like Fortran, C and C++ are highly recommended

15 /27

al Efficienc Energy-to-Solution wareness in Pr

Outline

© Energy-to-Solution
Total Cost of Ownership
Energy-to-Solution
Adaptive Run-Time Systems

16 /27

Introduction

| Efficiency Energy-to-Solution

Total Cost of Ownership

e Defines the total operation costs of a computing environment
like an HPC cluster

e For most applications, increasing the computational efficiency
decreases the TCO

e However, some applications require solution-specific changes

17 /27

Introduction Compu al Efficiency Energy-to-Solution wareness in Practice

Energy-to-Solution

e Applications need to be aware of their environment
e For HPC: Adapting CPU clock speed based on application
e For Mobile: Respecting power states and energy saving modes
to allow switching into low-power modes
e Computational efficiency is not always the optimal solution
e Multiple approaches exist to this

e Throttling of CPU frequency and threads
e Adaptive run-time based

18 /27

Energy-to-Solution
[J

Adaptive Run-Time Systems

e Measure performance slowdown against CPU energy savings

e Evaluate (-effectiveness on (current) savings

e Adapt CPUs on an HPC cluster based on current
(-effectiveness

25%

FlSlowdown [Savings

20%

15%

Figure: The actual performance slowdown and CPU energy savings of

CPU2000 benchmarks using the presented run-time system
19/27

Energy-Awareness in Practice

Outline

@ Energy-Awareness in Practice
Testing for Energy-Efficiency
Recommendations
Conclusion

20 /27

Introduction Compu al Efficiency ergy-to-Solution Energy-Awareness in Practice

Testing for Energy-Efficiency

Profile system power during application runtime

e Understand the impact of Idle and Running states
e Examine timer interrupts
e Examine disk and file access

e Measure using tools like Extrae

Check for cache misses and hits using e.g. perf
Focus on optimizing code that is executed a lot
e This can be checked using e.g. gprof

21/27

Energy-Awareness in Practice
[J

Example: Extrae and pmlib

trace - -

C-states rmeno B

Legend ol o o B

Figure: Power consumption and C-states

22/27

Introduction g | Efficiency o-Solution Energy-Awareness in Practice

Example: perf

perf stat -B -e cache-references,cache-misses
-e cycles,instructions,branches sleep 5

Performance counter stats for ’sleep 5’:

10573 cache-references

1949 cache-misses # 18.34 % of all cache refs
1077328 cycles # 0.000 GHz
715248 instructions # 0.66 isns per cycle

151188 branches

5.002714139 seconds time elapsed

23 /27

Efficiency to-Solution y-Awareness in Practice

Recommendations

Practical recommendations regarding some things said in the
previous slides:

e Algorithms: Do not reinvent the wheel

e You are less likely to get it right by yourself
e Many programming languages already come with an abstract
algorithms library

e Testing: Never trust your instincts, measure instead

24 /27

ional Efficiency to-Solution Energy-Awareness in Practice

Conclusion

By adopting an energy-aware approach to programming, huge
energy-savings can be achieved while often also optimizing the
performance at the same time.

Programmers need to be aware that even simple to implement
things such as the cache-efficient use of data structures or compiler
optimizations can often have a huge impact on their applications
energy consumption.

25 /27

Literature |

Arndt Bode.
Energy to solution: a new mission for parallel computing.

Chandler Carruth.
Efficiency with Algorithms, Performance with Data Structures.

Wu-Chun Feng.
The Green Computing Book: Tackling Energy Efficiency at
Large Scale.

Petter Larsson.
Energy-Efficient Software Guidelines.

T. A. Proebsting.
T.A. Proebsting's Law: Compiler Advances Double Computing
Power Every 18 Years.

26 /27

Introduction Computational Efficienc erg -Solution nergy-Awareness in Practice

Literature Il

[d Riidiger Kapitza Timo Hénig, Christopher Eibel and Wolfgang
Schroder-Preikschat.
Energy-Aware Programming Utilizing the SEEP Framework
and Symbolic Execution.

27 /27

	Introduction
	Motivation
	Energy-Awareness
	Performance

	Computational Efficiency
	Algorithms
	Data Efficiency: Hardware Characteristics
	Loops
	Multithreading
	Performance Libraries/Extensions
	Compiler Optimizations
	Programming Language

	Energy-to-Solution
	Total Cost of Ownership
	Energy-to-Solution
	Adaptive Run-Time Systems

	Energy-Awareness in Practice
	Testing for Energy-Efficiency
	Recommendations
	Conclusion

