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Motivation

High performance computing

B Optimization of algorithms applied to solve complex problems

Technological advance =- improve performance

B Higher number of cores per socket (processor)

Large number of processors and cores = High energy consumption

Tools to analyze performance and power to reduce energy consumption
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m Parallel scientific applications
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Environment to identify sources of power inefficiency
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W Parallel apps., e.g., dense linear algebra: Cholesky, QR and LU factorizations

m Tools for power and energy analysis
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Environment to identify sources of power inefficiency

m Approach:

B Energy-aware techniques: Leverage the available energy saving techniques: software
and hardware.

Energy savings



Tools for performance and power tracing

Why traces?
m Details and variability are important (along time, processors, etc.)

m Extremely useful to analyze performance of applications, also at power level!

MPI/Multi-threaded| MPI/Multi-threaded MPI/Multi-threaded
Scientific Application Scientific Applicaton Compilersinker Scientific Application
+ :
Annotations
app.c app’ .c app.x

pm library

Extrae library

Other libraries:
Computational

Extrae API:
Extrae_init ()

Communication
Ext £ini () -

m Scientific application app.c
m Application with annotated code app’.c

m Executable code app.x



Performance and power measurement framework

m Extrae+Paraver: instrumentation and visualization tools from Barcelona
Supercomputing Center (BSC)
m pmlib library:

B Power measurement package of Jaume | University (Spain)
B Interface to interact and use self-design and commercial power meters

Power tracing
server

Application node

USB External Computer
powermeter

Power tracing r
@—07 supply

daemon
Internal
powermeter

Mainboard

Ethernet

B Server daemon: collects data from power meters and send to clients
m Client library: enables communication with server and synchronizes with start-stop
primitives



Code execution

Basic execution schema for tracing performance and power:

Scientific application
(instrumented with pmlib)

Target platform Power
tracing
server

Perfomance tracing tool Power tracing tool
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trace file trace file
l Trace visualization tool
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Example results

Cholesky factorization from MKL (dpotrf)
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Parallel analyzer to detect power bottlenecks

Inspection tool

m Automates and accelerates the

[ Trace wol | . .
Lﬁ inspection process
Performance trace

B Comparison between the application

_— performance trace and the C-states
. HEEm traces per core

C-states trace

m Flexible analyzer

P TR T e = The user can define:

Discrepancies trace

B Task type that is "useful” work
B Lenght of the analysis interval
i = Discrepancy threshold

Power trace




Operation and implementation

Performance trace —>Extrae

t

C-states trace —> | ntermal -pmiib daemon ——>Reading the MSRs of the target system at a configurable frequency

Implementation:
m Intervals of length t

m Python multithreaded analyzer
Result:

m Analytical = (c, t;, tr, %divergence)

m Graphical = Paraver
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_____________________________________________________
Example 1: ILUPACK

m ILUPACK: Concurrent solution of sparse linear systems

B Multilevel preconditioners for general and Hermitian positive definite
problems
m Parallelization:

Task partitioning of the sparsity graph
I

Task acyclic graph capturing dependencies

Tasks mapped to threads on-demand at runtime

m Work by default: An idle thread polls the queue till a ready task becomes
available

m Test platform:

m Two Intel Xeon E5504 (4 cores, total of 8 cores) at 2.00 GHz
B 32 GB of RAM
B Linux Ubuntu 12.04



_____________________________________________________
Example 1: ILUPACK

Performance trace
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Example 2: LU Factorization

m LU factorization with partial pivoting of a dense matrix
m FLA_LU routine of libflame library

m Parallelized with the Supermatrix runtime
Hybrid CPU-GPU computation:

m CPU = Intel MKL
m GPU = NVIDIA CUBLAS

m Test platform CPU-GPU:

m Intel Xeon i7-3770 with 16 GB of RAM
m NVIDIA Tesla C2050 (“Fermi”)



Example 2: LU Factorization

Performance trace

Ous 12.470.206 us

Extrae tx to gpu [N sv_opu [ cemm gpu B et from_gpu Factorization_cpu

C-states trace

Thread |
12.470.206 us

Discrepancies trace

Thread 1
12.470.206 us

Discrepancies -



_____________________________________________________
Impact of power sinks

Statistical information for ILUPACK

Computation [EIIIF3 C1 C6 Discrepancies
THREAD 1 72.00% 25.56% | 99.33% | 0.29%  0.39% 27.49%
THREAD 2 96.45% 2.50% | 99.25% | 0.26% 0.50% 4.77%

THREAD 3 59.90% 39.14% | 99.53% | 0.10% 0.37% 40.59%
THREAD 4 70.81% 28.13% | 99.48% | 0.10% 0.42% 30.11%
THREAD 5 74.00% 25.14% | 99.29% | 0.90% 0.61% 26.61%
THREAD 6 99.18% 0.00% | 99.34% | 0.22% 0.45% 0.00%
THREAD 7 61.52% 37.17% | 99.53% | 0.12% 0.35% 38.84%
THREAD 8 75.03% 23.69% | 99.27% | 0.10% 0.64% 25.74%

Estimation of the costs of the power sinks

m Time that cores are performing “useless” work = Wasting power

m Potential savings:

B (Power(“guilty” core) - Power(power-saving state)) * total duration power sinks

How we can avoid power sinks?
Leverage HW energy-aware mechanisms
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Hardware

Energy-aware hardware techniques

ACPI (Advanced Configuration and Power Interface):
Industry-standard interfaces enabling OS-directed
configuration, power/thermal management of platforms
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Hardware

Energy-aware hardware techniques

ACPI (Advanced Configuration and Power Interface):
Industry-standard interfaces enabling OS-directed
configuration, power/thermal management of platforms

Performance states (P-states):
m Py Highest performance and power
m P;, i > 0: As j grows, more savings but lower performance

P-state P; ||V CC;| fi | Server AMD:
Two AMD Opteron 6128 cores @

Po 1.23 12.00 5 o GHz (16 cores)
Py 117 {1.50
Py 1.12 |1.20
Ps 1.09 {1.00
ry 1.06 [0.80
P=g@'n — > DVFS!

E=[Pdt=g(V?)

To DVFS or not? General concensus!
m Not for compute-intensive apps.: reducing frequency increases execution time linearly!
m Yes for memory-bounded apps. as cores are idle a significant fraction of the time.

But take care! = In some platforms (AMD) reducing frequency via DVFS also reduces memory
bandwidth proportionally!

P-states can be managed at socket level in Intel and at core level in AMD!




Hardware

Energy-saving states: P/C-states

Power states (C-states):
m Co: normal execution (also a P-state)

m G, i > 0: no instructions being executed. As i grows, more savings but longer latency to
reach CO

Active state
Core clock

PLL

Core caches
Shared cache

Wakeup time*

Core Idle power*

*Rou

How to exploit C-states?

m Is impossible to change C-state at code level!

m Solution = Set necessary conditions so that hw promotes cores to energy-saving C-states



Examples: P-states/C-states

Power dissipated as function of number of active cores
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Problem! Not straight-forward. No direct user control over C-states!



Software

Energy-aware software techniques

Energy-aware techniques focused only on the “processors”!

@ XX




Software

Energy-aware software techniques

Energy-aware techniques focused only on the “processors”!

Two approaches:

m Slack Reduction Algorithm (SRA): Search for “slacks” (idle periods) in the DAG associated
with the algorithm, and try to minimize them applying e.g. DVFS

m Race-to-Idle (RIA): Complete execution as soon as possible by executing tasks of the
algorithm at the highest frequency to “enjoy” longer inactive periods

Which is better?
m SRA: For memory-bounded apps., but take care of AMD platforms!

m RIA: For compute-intensive apps. like dense linear algebra algorithms



Software

SRA vs. RIA

Impact of SRA/RIA on simulated time/energy for LUPP:

Time Energy
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m SRA: Time is compromised, increasing the consumption for largest problem sizes

Increase in execution time due to SRA being oblivious to actual resources

m RIA: Time is not compromised and consumption is reduced for large problem sizes
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Software

SRA vs. RIA

Impact of SRA/RIA on simulated time/energy for LUPP:
only power/energy due to workload

Time Application energy
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m SRA: Time is compromised, increasing the consumption for largest problem sizes
B Increase in execution time due to SRA being oblivious to actual resources

m RIA: Time is not compromised and consumption is reduced for large problem sizes



Software

Energy-aware software techniques

Dense linear algebra applications:

m Task-parallel execution of dense linear algebra algorithms: 1ibflame+SuperMatrix

Algorithm

/ Worker Th. 1

Dispatch Worker Th. 2
—n0E|D ommm~ - ;

Symbolic \ . .
Analysis Queue of pending Queue of ready Worker Th. p
tasks (no dependencies)

tasks + dependencies
(DAG)

Problem:

m Naive runtime: Idle threads (one per core) continuously check the ready list for work
Busy-wait or polling = Energy consumption!

Solution:

m Race-to-idle: Detect and replace “busy-waits” by “idle-waits”: avoid idle processors doing
polling!



Software

Results: Dense linear algebra

Energy-aware techniques on multicore platforms:
m RIA1: Reduce operation frequency when there are no ready tasks: DVFS ondemand governor

m RIA2: Remove polling when there are no ready tasks (while ensuring a quick recovery):
POSIX Semaphores

On multicore: FLA_LU (LUpp fact.) from libflame + SuperMatrix runtime

Time Energy

12

RIAT - RIAT .-
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m Consistent savings around 5% for total energy and 7-8% for application energy

m Poor savings? Dense linear algebra operations exhibit little idle periods!



Software

Results: Dense linear algebra

Why CPU+GPU (for some compute-intensive apps.)?
m High performance computational power / Affordable price / High FLOPS per watts ratio

Energy-aware techniques for hybrid CPU+GPU platforms:
m EAL: blocking for idle threads without task: POSIX Semaphores
m EA2: blocking for idle threads waiting for GPU task completion
Set blocking operation mode (synchronous) for CUDA kernels

On hybrid CPU+GPU: FLA_Chol (Cholesky fact.) from libflame+SuperMatrix

115

iupuMJlnx with EAL - SuperMatrix with EAL ¢«
iperMatrix w“lh a.} * 1.4 SuperMatrix with EA2 .« -
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Execution of tasks in GPU makes CPU cores inactive during significant time!



Software

Results: Sparse linear algebra

Sparse linear algebra applications:
m Task-parallel implementation of ILUPACK for multicore processors with ad-hoc runtime

m Sparse linear system from Laplacian eqn. in a 3D unit cube

Energy-aware techniques:
m Application of RIA14+RIA2 techniques into ad-hoc runtime



Software

Results: Sparse linear algebra

Polling vs. blocking for idle threads when obtaining ILU preconditioners:

w " MWWWWM“WW%
Task exec. [ Busy-wait [ Blocking [N

Blocking vs polling for idle threads ...but take into account that
m Saving around 7% of total ener
€ ° &y m Idle time: 23.70%, Dynamic power: 39.32%

Negligible i t tion ti
® Tegligibie impact on execution time m Upper bound of savings: 39.32 - 0.2370 = 9.32%
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Exa2Green Project

Energy-aware Sustainable Computing

Exa 2 r on Future Technology

Paving the Road to Exascale Computing

energy-aware numerics
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NUMERICS
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Exa2Green
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Exa2Green is co-financed by the European
Commission under the 7th Framework Programme

m
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Conclusions

Tools for power/energy analysis
m Detect code inefficiencies in order to reduce energy consumption
m Automatic detection of power bottlenecks:

Performance inefficiency = hot spots in hardware and power sinks in code

Energy-aware software

m A battle to be won in the core arena

B More concurrency
B Heterogeneous designs

m A related battle to be won in the power arena

B “Do nothing, efficiently...”, V. Pallipadi, A. Belay
B “Doing nothing well”, D. E. Culler
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Thanks for your attention!

Questions?
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