Paving the Way towards

Energy-Aware High Performance Computing

Manuel Dolz

manuel.dolz@informatik.uni-hamburg.de

1form
i'h‘ Universitit Hamburg dle ZUKunft

DER FORSCHUNG | DER LEHRE | DER BILDUNG

October 22nd, 2014

mailto:manuel.dolz@informatik.uni-hamburg.de

Motivation

High performance computing

B Optimization of algorithms applied to solve complex problems

Technological advance =- improve performance

B Higher number of cores per socket (processor)

Large number of processors and cores = High energy consumption

Tools to analyze performance and power to reduce energy consumption

Motivation

High performance computing

B Optimization of algorithms applied to solve complex problems

Technological advance =- improve performance

B Higher number of cores per socket (processor)

Large number of processors and cores = High energy consumption

Tools to analyze performance and power to reduce energy consumption

Energy Efficient High Performance Computing

Outline

Introduction

m Parallel scientific applications

W Parallel apps., e.g., dense linear algebra: Cholesky, QR and LU factorizations

m Tools for power and energy analysis

m Power-performance profiling/tracing tools, e.g., Extrae+Paraver

Environment to identify sources of power inefficiency

Introduction

m Parallel scientific applications

W Parallel apps., e.g., dense linear algebra: Cholesky, QR and LU factorizations

m Tools for power and energy analysis

m Power-performance profiling/tracing tools, e.g., Extrae+Paraver

Environment to identify sources of power inefficiency

m Approach:

B Energy-aware techniques: Leverage the available energy saving techniques: software
and hardware.

Energy savings

Tools for performance and power tracing

Why traces?
m Details and variability are important (along time, processors, etc.)

m Extremely useful to analyze performance of applications, also at power level!

MPI/Multi-threaded| MPI/Multi-threaded MPI/Multi-threaded
Scientific Application Scientific Applicaton Compilersinker Scientific Application
+ :
Annotations
app.c app’ .c app.x

pm library

Extrae library

Other libraries:
Computational

Extrae API:
Extrae_init ()

Communication
Ext £ini () -

m Scientific application app.c
m Application with annotated code app’.c

m Executable code app.x

Performance and power measurement framework

m Extrae+Paraver: instrumentation and visualization tools from Barcelona
Supercomputing Center (BSC)
m pmlib library:

B Power measurement package of Jaume | University (Spain)
B Interface to interact and use self-design and commercial power meters

Power tracing
server

Application node

USB External Computer
powermeter

Power tracing r
@—07 supply

daemon
Internal
powermeter

Mainboard

Ethernet

B Server daemon: collects data from power meters and send to clients
m Client library: enables communication with server and synchronizes with start-stop
primitives

Code execution

Basic execution schema for tracing performance and power:

Scientific application
(instrumented with pmlib)

Target platform Power
tracing
server

Perfomance tracing tool Power tracing tool

ower
trace file trace file
l Trace visualization tool

el

N e e

o

N

Example results

Cholesky factorization from MKL (dpotrf)

MFLOPS

TR 1 n
Ly I
TR 3

. u
TR 5

TR 7

s u
THReRD 9 O
B R R e e e e R

THREAD 12
b BT
L2 cache misses

VATTS
- M
4

541777 us

Parallel analyzer to detect power bottlenecks

Inspection tool

m Automates and accelerates the

[Trace wol | . .
Lﬁ inspection process
Performance trace

B Comparison between the application

_— performance trace and the C-states
. HEEm traces per core

C-states trace

m Flexible analyzer

P TR T e = The user can define:

Discrepancies trace

B Task type that is "useful” work
B Lenght of the analysis interval
i = Discrepancy threshold

Power trace

Operation and implementation

Performance trace —>Extrae

t

C-states trace —> | ntermal -pmiib daemon ——>Reading the MSRs of the target system at a configurable frequency

Implementation:
m Intervals of length t

m Python multithreaded analyzer
Result:

m Analytical = (c, t;, tr, %divergence)

m Graphical = Paraver

Operation and implementation

Performence trace —>Extrae

Thread 1

t

C-states trace —>| nterna —pmiib daemon ——> Reading the MSRs of the target system at a configurable frequency

Implementation:
m Intervals of length t

m Python multithreaded analyzer
Result:

m Analytical = (c, t;, tr, %divergence)

m Graphical = Paraver

Example 1: ILUPACK

m ILUPACK: Concurrent solution of sparse linear systems

B Multilevel preconditioners for general and Hermitian positive definite
problems
m Parallelization:

Task partitioning of the sparsity graph
I

Task acyclic graph capturing dependencies

Tasks mapped to threads on-demand at runtime

m Work by default: An idle thread polls the queue till a ready task becomes
available

m Test platform:

m Two Intel Xeon E5504 (4 cores, total of 8 cores) at 2.00 GHz
B 32 GB of RAM
B Linux Ubuntu 12.04

Example 1: ILUPACK

Performance trace

Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8

4
i
3
3
i3
2
2
g

Ous 57.275

Computation roing [

C-states trace

Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8

Ous 57.275.209 us

Discrepancies trace

Thread |
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread §

Ous 57.275.209 us

piscrepancies |

Example 2: LU Factorization

m LU factorization with partial pivoting of a dense matrix
m FLA_LU routine of libflame library

m Parallelized with the Supermatrix runtime
Hybrid CPU-GPU computation:

m CPU = Intel MKL
m GPU = NVIDIA CUBLAS

m Test platform CPU-GPU:

m Intel Xeon i7-3770 with 16 GB of RAM
m NVIDIA Tesla C2050 (“Fermi”)

Example 2: LU Factorization

Performance trace

Ous 12.470.206 us

Extrae tx to gpu [N sv_opu [cemm gpu B et from_gpu Factorization_cpu

C-states trace

Thread |
12.470.206 us

Discrepancies trace

Thread 1
12.470.206 us

Discrepancies -

Impact of power sinks

Statistical information for ILUPACK

Computation [EIIIF3 C1 C6 Discrepancies
THREAD 1 72.00% 25.56% | 99.33% | 0.29% 0.39% 27.49%
THREAD 2 96.45% 2.50% | 99.25% | 0.26% 0.50% 4.77%

THREAD 3 59.90% 39.14% | 99.53% | 0.10% 0.37% 40.59%
THREAD 4 70.81% 28.13% | 99.48% | 0.10% 0.42% 30.11%
THREAD 5 74.00% 25.14% | 99.29% | 0.90% 0.61% 26.61%
THREAD 6 99.18% 0.00% | 99.34% | 0.22% 0.45% 0.00%
THREAD 7 61.52% 37.17% | 99.53% | 0.12% 0.35% 38.84%
THREAD 8 75.03% 23.69% | 99.27% | 0.10% 0.64% 25.74%

Estimation of the costs of the power sinks

m Time that cores are performing “useless” work = Wasting power

m Potential savings:

B (Power(“guilty” core) - Power(power-saving state)) * total duration power sinks

How we can avoid power sinks?
Leverage HW energy-aware mechanisms

16/1

Outline

Hardware

Energy-aware hardware techniques

ACPI (Advanced Configuration and Power Interface):
Industry-standard interfaces enabling OS-directed
configuration, power/thermal management of platforms

18/1

Hardware

Energy-aware hardware techniques

ACPI (Advanced Configuration and Power Interface):
Industry-standard interfaces enabling OS-directed
configuration, power/thermal management of platforms

Performance states (P-states):
m Py Highest performance and power
m P;, i > 0: As j grows, more savings but lower performance

P-state P; ||V CC;| fi | Server AMD:
Two AMD Opteron 6128 cores @

Po 1.23 12.00 5 o GHz (16 cores)
Py 117 {1.50
Py 1.12 |1.20
Ps 1.09 {1.00
ry 1.06 [0.80
P=g@'n — > DVFS!

E=[Pdt=g(V?)

To DVFS or not? General concensus!
m Not for compute-intensive apps.: reducing frequency increases execution time linearly!
m Yes for memory-bounded apps. as cores are idle a significant fraction of the time.

But take care! = In some platforms (AMD) reducing frequency via DVFS also reduces memory
bandwidth proportionally!

P-states can be managed at socket level in Intel and at core level in AMD!

Hardware

Energy-saving states: P/C-states

Power states (C-states):
m Co: normal execution (also a P-state)

m G, i > 0: no instructions being executed. As i grows, more savings but longer latency to
reach CO

Active state
Core clock

PLL

Core caches
Shared cache

Wakeup time*

Core Idle power*

*Rou

How to exploit C-states?

m Is impossible to change C-state at code level!

m Solution = Set necessary conditions so that hw promotes cores to energy-saving C-states

Examples: P-states/C-states

Power dissipated as function of number of active cores

350
Idle-wait at 2.00 GHz +
Busy-wait at 2.00 G x
) B - ” L Busy-wait#1.0GHz = = ==]
m “Do nothing, efficiently... 300 Busy-waital | 0GHz @ proee
' > Busy-waitat | 00GHz = -
(V. Pallipadi, A. Belay) Bm_»-w:u;:)»«]i/
m “Doing nothing well” (D. E. Culler) ; et i
. P
T S o e
g
150 F
[SRV S —
140 T T
S e 100 -
TR e
120 | —
S 50
100 | e i 0 12 3 4 5 6 7 8 9 10111213 141516
$ o # active cores
g G i erver AMD
é
60 14 i
% x "
“or] Opportunities
20 L L i

> - . S to save energy
dacivcoes via C-states!

Problem! Not straight-forward. No direct user control over C-states!

Software

Energy-aware software techniques

Energy-aware techniques focused only on the “processors”!

@ XX

Software

Energy-aware software techniques

Energy-aware techniques focused only on the “processors”!

Two approaches:

m Slack Reduction Algorithm (SRA): Search for “slacks” (idle periods) in the DAG associated
with the algorithm, and try to minimize them applying e.g. DVFS

m Race-to-Idle (RIA): Complete execution as soon as possible by executing tasks of the
algorithm at the highest frequency to “enjoy” longer inactive periods

Which is better?
m SRA: For memory-bounded apps., but take care of AMD platforms!

m RIA: For compute-intensive apps. like dense linear algebra algorithms

Software

SRA vs. RIA

Impact of SRA/RIA on simulated time/energy for LUPP:

Time Energy
12 12
RIA - -~ RIA --X--
115 L SRA ke K. . 115 | SRA - _
5 ¥ g 5
*
11 X** X 11
] ’ *.1 B X XK X
£ 105 XK 2 105 *
= H * %
2 1ok 5) ="
g 2
2 2 X X
o o G -
R E 09 VR SR S TIE S
= ot x- X
B =
09 09
0085 oo u 0.85 ¥ i
0.8) N S [N S N IS N [I A N N S S W 0.8) NN S N T N Y N N N S U N N N S
I8859 23823z e8&8I8ILLY IR LIZIREITIEYIBBIRELEY
SE0RSIRE=5885383835883 RS E3REgEsc8823838s853
SER2ERRREINB8LLLRERE SSuNelRBIRBYLIELER8
Matrix size (n] Matrix size (n)

m SRA: Time is compromised, increasing the consumption for largest problem sizes

Increase in execution time due to SRA being oblivious to actual resources

m RIA: Time is not compromised and consumption is reduced for large problem sizes

N
N
-

Software

SRA vs. RIA

Impact of SRA/RIA on simulated time/energy for LUPP:
only power/energy due to workload

Time Application energy
12 12
RIA - - RIA - -
115 b SRA - *.. - 115% SRA ¥ J
L i .
X K *] o
11 *oiigg —42 11f
o « *.| < X
£ 105 * X2 105
= 3 ¥
§ L =
2 * Loy
§ ! g0
2 c
£ oo5 45 oo}
K K
09 | £ o9l
= * . *
® K ® X
085 085 g
0.8 S S S I IS N S A N IS S S A | 0.8 | Y S N N N IS S I N N A |
T oL N2 ToON®YoOoN® T O ® T 00N ®TOCN®ITOLN®RS OO
IggsgggseLgsigsggsggegy 23889 8ggsageggggsggessy
§S8RR23228zs5883888885%83 Le8RIBEESEREISBBESRQ
SSEER2R888388892835238 S92 288388889¢825238
Matrix size (n) Matrix size (n)

m SRA: Time is compromised, increasing the consumption for largest problem sizes
B Increase in execution time due to SRA being oblivious to actual resources

m RIA: Time is not compromised and consumption is reduced for large problem sizes

Software

Energy-aware software techniques

Dense linear algebra applications:

m Task-parallel execution of dense linear algebra algorithms: 1ibflame+SuperMatrix

Algorithm

/ Worker Th. 1

Dispatch Worker Th. 2
—n0E|D ommm~ - ;

Symbolic \ . .
Analysis Queue of pending Queue of ready Worker Th. p
tasks (no dependencies)

tasks + dependencies
(DAG)

Problem:

m Naive runtime: Idle threads (one per core) continuously check the ready list for work
Busy-wait or polling = Energy consumption!

Solution:

m Race-to-idle: Detect and replace “busy-waits” by “idle-waits”: avoid idle processors doing
polling!

Software

Results: Dense linear algebra

Energy-aware techniques on multicore platforms:
m RIA1: Reduce operation frequency when there are no ready tasks: DVFS ondemand governor

m RIA2: Remove polling when there are no ready tasks (while ensuring a quick recovery):
POSIX Semaphores

On multicore: FLA_LU (LUpp fact.) from libflame + SuperMatrix runtime

Time Energy

12

RIAT - RIAT .-
s R X 1 sl RiA2 X 1
RIATHRIA ® Criat+RiA2 5
L {1 ut +
& g
L 4 & st £
-, . : £
% Koo e nend ° 5 £
i T = E b %
¥ H S S a
£ oss % x -
® * i
L 09 ” £
085 085
1) S P 1 S S S
g 5 8 2 § 8§ £ 8 E 588388 :E§LE
g)

e (o

m Consistent savings around 5% for total energy and 7-8% for application energy

m Poor savings? Dense linear algebra operations exhibit little idle periods!

Software

Results: Dense linear algebra

Why CPU+GPU (for some compute-intensive apps.)?
m High performance computational power / Affordable price / High FLOPS per watts ratio

Energy-aware techniques for hybrid CPU+GPU platforms:
m EAL: blocking for idle threads without task: POSIX Semaphores
m EA2: blocking for idle threads waiting for GPU task completion
Set blocking operation mode (synchronous) for CUDA kernels

On hybrid CPU+GPU: FLA_Chol (Cholesky fact.) from libflame+SuperMatrix

115

iupuMJlnx with EAL - SuperMatrix with EAL ¢«
iperMatrix w“lh a.} * 1.4 SuperMatrix with EA2 .« -

11 supumuu with EA 1= SuperMatrix with EAT+EAZ

5

o H

E 105t {8 12 n

E B £

= 1. e IR o » =

g 2 5 S

E

= 095 | E

® S 08} . * e » s
S

2

12288
15360 |
18432
21504 |
2576 |-
27648 |-
30720

12288

15360 |-

18R

21504 |-

24576 |-
7648 |-

30720

5

Execution of tasks in GPU makes CPU cores inactive during significant time!

Software

Results: Sparse linear algebra

Sparse linear algebra applications:
m Task-parallel implementation of ILUPACK for multicore processors with ad-hoc runtime

m Sparse linear system from Laplacian eqn. in a 3D unit cube

Energy-aware techniques:
m Application of RIA14+RIA2 techniques into ad-hoc runtime

Software

Results: Sparse linear algebra

Polling vs. blocking for idle threads when obtaining ILU preconditioners:

w " MWWWWM“WW%
Task exec. [Busy-wait [Blocking [N

Blocking vs polling for idle threads ...but take into account that
m Saving around 7% of total ener
€ ° &y m Idle time: 23.70%, Dynamic power: 39.32%

Negligible i t tion ti
® Tegligibie impact on execution time m Upper bound of savings: 39.32 - 0.2370 = 9.32%

28/1

Exa2Green Project

Energy-aware Sustainable Computing

Exa 2 r on Future Technology

Paving the Road to Exascale Computing

energy-aware numerics

ENERGY-AWARE
NUMERICS
EXA2GREEN

o B

& uyvERSIT
m..xl!gml.l-u . h

f STEINGBELS: ETH
ZenTRUM

Exa2Green

" Develop new multiabjective
m:mlwpuﬂonf ’d d

‘mﬁwgmr

‘Dvnloplq\v.nﬂdpﬁh-wng

‘ndm:;ﬂ"wmﬁmm

| C'hudvdﬂmotmﬂm?‘“

aerasols and roactive frace gases.

<hs o

appucation || APPucmoNz I APPLICATION n

PARALLEL SOLVERS
T - 7
NUMERICAL BUILDING BLOCKS

x - r
BASIC LINEAR ALGEBRA
S
KERNEL
T

Exa2Green is co-financed by the European
Commission under the 7th Framework Programme

m

30/1

Conclusions

Tools for power/energy analysis
m Detect code inefficiencies in order to reduce energy consumption
m Automatic detection of power bottlenecks:

Performance inefficiency = hot spots in hardware and power sinks in code

Energy-aware software

m A battle to be won in the core arena

B More concurrency
B Heterogeneous designs

m A related battle to be won in the power arena

B “Do nothing, efficiently...”, V. Pallipadi, A. Belay
B “Doing nothing well”, D. E. Culler

Related publications

M. Barreda, M. F. Dolz, R. Mayo, E. S. Quintana-Orti, R. Reyes
Binding Performance and Power of Dense Linear Algebra Operations
The 10th IEEE International Symposium on Parallel and Distributed Processing with Applications, 2012

P. Alonso, R. M. Badia, J. Labarta, M. Barreda, M. F. Dolz, R. Mayo, E. S. Quintana-Orti, R. Reyes
Tools for Power and Energy Analysis of Parallel Scientific Applications
The 41st International Conference on Parallel Processing, 2012

M. Barreda, S. Cataldn, M. F. Dolz, R. Mayo, E. S. Quintana-Orti
Tracing the Power and Energy Consumption of the QR Factorization on Multicore Processors
12th International Conference on Computational and Mathematical Methods in Science and Engineering, 2012

S. Barrachina, M. Barreda, S. Catalan, M. F. Dolz, R. Mayo, E. S. Quintana-Orti
An Integrated Framework for Power-Performance Analysis of Parallel Scientific Workloads
The Third International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies, 2013

Maria Barreda, Sandra Cataldn, Manuel F. Dolz, Rafael Mayo, Enrique S. Quintana-Orti
Automatic Detection of Power Bottlenecks in Parallel Scientific Applications
4th International Conference on Energy-Aware High Performance Computing, 2013

P. Alonso, M. F. Dolz, F. D. lgual, R. Mayo, E. S. Quintana-Ort{
Reducing energy consumption of dense linear algebra operations on hybrid CPU-GPU platforms

) & & @

The 10th IEEE International Symposium on Parallel and Distributed Processing with Applications, 2012

Thanks for your attention!

Questions?

	Introduction
	Tools for performance and power tracing
	Energy-aware hardware and software
	Hardware
	Software

	Exa2Green Project
	Conclusions

