Energy-Efficiency and Performance Trade-offs of Data-reduction techniques

Tim Dobert

Arbeitsbereich Wissenschaftliches Rechnen Fachbereich Informatik Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg

17.12.2014

1 Motivation

- **2** Compression
- 3 Data Deduplication
- **4** Recomputation
- **5** Conclusion

Motivation

Sections:

- Motivation
- Compression
- Deduplication
- Recomp
- Conclusion

Data reduction should be considered for three main reasons:

• Storage/Hard drives constantly use power

Component	Peak power	Count	Total	Percentage
CPU	40 W	2	80 W	37.6 %
Memory	9 W	4	36 W	16.9 %
Disk	12 W	1	12 W	5.6 %
PCI slots	25 W	2	50 W	23.5 %
Motherboard	25 W	1	25 W	11.7 %
Fan	10 W	1	10 W	4.7 %
System total			$213 \mathrm{W}$	

Table I. Component peak power breakdown for a typical server . [1]

- Transmitting data costs energy
- Growing speed gap between CPUs and memory

- Motivation Compression Deduplication Recomp
- Conclusion

General Approach

Using additional computing power to reduce data.

- This creates a time/energy overhead
- Reduces needed hard drives, could replace with SSDs
- Reduce transmission energy (important on mobile devices)

This can be done using three different techniques.

	tion

Compression

Deduplication

Recomp

Conclusion

Compression

- Motivation
- Compression
- Deduplication
- Recomp
- Conclusion

General Idea

Encoding output data to reduce redundancy and therefore size

- This involves encoding output, decoding input
- Best case: Integrated into file I/O (i.e. ZFS)
- Compression must be lossless

- Motivation
- Compression
- Deduplication
- Recomp
- Conclusion

Whether it's worth it depends on:

- Computational overhead vs. space savings
- Compression algorithm used
- Computing power

Motivation

Compression

Deduplication

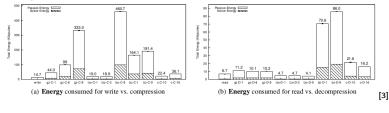
Recomp

Conclusion

Energy Consumption for:

Text file

25


200

150

100

Binary file

Data Reduction

Tim Dobert

Uni Hamburg

17.12.2014

8/22

In Practice

Motivation

Compression

Deduplication

Recomp

Conclusion

There are different approaches for optimizing energy consumption for a whole system or just parts of it.

- Lots of data transmission \Rightarrow overall savings might outweigh increase on nodes
- Asymmetric compression for single devices

Just choosing the fastest algorithm or the one with the best compression ratio is rarely ideal.

Motivation

Compression

Deduplication

Recomp

Conclusion

Data Deduplication

- Motivation Compression
- Deduplication
- Recomp
- Conclusion

The Goal is to reduce redundancy across all files.

This is how it's done:

- Data is divided into blocks
- Calculate fingerprints, store in hash table
- Every block is only stored once

This approach is most effective for data centers, HPC and backups.

- Motivation
- Compression

Deduplication

- Recomp
- Conclusion

Parameters and Trade-offs

A deduplication system can have the following parameters:

- Size of the blocks:
 - static
 - variable
- Block size affects the size of the Table
 - Big, static \Rightarrow small Table
 - Small, variable \Rightarrow Big Table

Normally a block size of 16kB is used.

• Smaller tables are faster to work with

Like with compression, there is a reduction-overhead trade off.

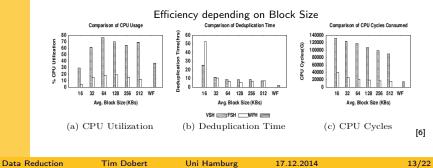
Motivation

Compression

Deduplication

Evaluation:

Recomp


Conclusion

DEDUPLICATION RATIO USING CONTENT-DEFINED CHUNKING WITH AN AVERAGE CHUNK SIZE OF 8 KB ON DIFFERENT HPC DATA SETS.

Data set	Ratio	Data set	Ratio
BSC-BD	7.0%	DKRZ-B5	29.5%
BSC-MOD	21.3%	DKRZ-B6	22.5%
BSC-PRO	29.3%	DKRZ-B7	14.1%
BSC-SCRA	38.3%	DKRZ-B8	13.9%
DKRZ-A	17.9%	DKRZ-K	49.3%
DKRZ-B1	19.7%	DKRZ-M1	15.0%
DKRZ-B2	27.6%	DKRZ-M2	21.1%
DKRZ-B3	74.4%	RENCI	23.8%
DKRZ-B4	27.1%	RWTH	23.2%

[5]

In Practice

Motivation
Compression
Deduplication
Recomp
Conclusion

Recomputation

- Compression
- Deduplication

Recomp

Conclusion

The result of a computation is not saved. It will be recomputed when needed.

- Only store input, maybe partial results
- Perform computation every time the data is needed
- Advances in hard- and software may make future computations more efficient

Example: Online video transcoding

Trade-offs

Sections:

- Motivation Compression
- Deduplication
- Recomp
- Conclusion

Of the three techniques, this is the most situational.

- Computing is obviously costly, slow
- Only applicable to rarely used data
- Computation must be deterministic
- Code preservation, emulation needed

It's difficult to say in advance, if the trade-off will be worth it.

Motivatio	n
Compress	ion
Deduplica	tion
Recomp	
Conclusio	n

Conclusion

Conclusion

Sections:

- Motivation Compression
- Deduplication
- Recomp
- Conclusion

All of the presented techniques come at a cost. In the end, you should keep in mind:

- More reduction is more computationally expensive
- The effectiveness depends on the application and parameters
- Deduplication is not very effective when compression is already being used
- If nothing else, try a light compression method

Motivation Compression Deduplication Recomp

Conclusion

Processing a 4k bitmap image with and without compression. Compression algorithm: Iz4 (https://code.google.com/p/lz4/)Uncompressed file size: 24.9MB

	normal	compression	compressed size	
Picture	read: 0.010s	read: 0.030s		
	write: 0.027s	write: 0.123s	22.0 MB	
	total: 0.100s	total: 0.220s		
Black	-	read: 0.017s		
	-	write: 0.004s	97.6 kB	
	-	total: 0.076s		
Random	-	read: 0.020s		
	-	write: 0.030s	25.0 MB	
	-	total: 0.110s		

One more thought:

Compressing on the GPU. It's generally less efficient, though ${}_{[9]}$

Experiments

Sections: Motivation

Compression Deduplication

Recomp

Conclusion

I	
'n	[1] A Survey on Techniques for Improving the Energy Efficiency of Large Scale Distributed Systems https://www.fsl.cs.sunysb.edu/docs/greencomp/green-compress.pdf
	[2] Benefits of Data Compression in HPC Storage http://wr.informatik.uni- hamburg.de/_media/research/publications/2014/epbodcihss14- evaluating_power_performace_benefits_of_data_compression_in_hpc_storage_servers.pd
	[3] Energy and Performance Evaluation of Lossless File Data Compression on Server Systems https://www.fsl.cs.sunysb.edu/docs/greencomp/green-compress.pdf
	[4] Energy-aware lossless data compression http://dl.acm.org/citation.cfm?id=1151692
	[5] Deduplication in HPC Storage http://wr.informatik.uni- hamburg.de/_media/research/publications/2012/asoddihssm12- a_study_on_data_deduplication_in_hpc_storage_systems.pdf
	[6] Demystifying Data Deduplication http://dl.acm.org/citation.cfm?id=1462739

- Motivation
- Compression
- Deduplication
- Recomp
- Conclusion

[7] Maximizing Efficiency By Trading Storage for Computation https://www.usenix.org/legacy/event/hotcloud09/tech/full_papers/adams_html/ (09.12.14)

[8] Exascale Storage Systems http://superfri.org/superfri/article/download/20/6

[9] Parallel Lossless Data Compression on the GPU http://www.idav.ucdavis.edu/func/return_pdf?pub_id=1087

Zip graphic:

http://wikimediafoundation.org/wiki/File:Simple_Comic_zip.png

Sources II

- Motivation
- Compression
- Deduplication
- Recomp
- Conclusion

- Less data means less energy consumption
- Three main techniques for data reduction
 - Compression
 - Deduplication
 - Recomputation
- Compression works on single files and can be integrated into the file system
- Deduplication works across all files, can be costly though
- Recomputation is highly situational

	Processor	Memory	Network	Storage
Re-computation of results	-	-	-	+
Deduplication	-		0	+
Compression (client side)	-	0	+	++
Compression (server side)	-	0	0	++
User education	+	+	+	+

 $\label{eq:table 7. Benefits and penalties of different concepts for data reduction (+ benefits; - penalties)$

Data Reduction

[8]

