C preprocessor

Henrik Friedrichsen

Arbeitsbereich Wissenschaftliches Rechnen
Fachbereich Informatik
Fakultat fir Mathematik, Informatik und Naturwissenschaften
Universitat Hamburg

2013-11-14

1form
i'h‘ Universitdt Hamburg dle ZUKunﬂ

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Introduction S C s 1 Summar

Outline

Introduction

Introduction el Summary

Introduction

‘ Preprocessor H Compiler H Assembler \—>] Linker \

Typical order of compilation processes

Preprocessor statements are interpreted and expanded before
compilation

Is not limited to C, can virtually used be for every text-related task

Preprocessor statements are not actual C code but instead instruct the
preprocessor to do simple text substitutions

Statements are rather simple

Included in the C standard
Several macros (constants) are already predefined, e.g.:

m _DATE_ _, _FILE._, _LINE__, _TIME , ..
m Platform specific macros: __LINUX__, _WIN32, ..

Introduction Syntax nce Summar
000!)C 8

Outline

Syntax

Introduction nce Summary

Syntax (overview)

Syntax and use-cases:
m File inclusion: #include
Conditional compilation: #if, #ifdef, ...

Macro definition: #define, #undefine

[
m Compiler instructions: #pragma, #error, #warning
| |
m Stringification, Concatenation: #, ## Operator

Summary

Introduction Synta:

File inclusion: #include <file>

Includes a files content at the position of the statement.
From include path:

#include <file.h>

or a local file:

‘

#include

Introduction Syntax e Summary

Conditional compilation: #if, #ifdef, ...

There are predefined macro definitions. For instance:
m the platform/architecture, compiler (+version)
m mathematical constants (Pl in math.h)

#ifdef __LINUX__
< /

#elif _WIN32
<

#else

#endif

29

Introduction C Summary

Compiler instructions: #pragma, #error, #warning

m Used to influence compiler behaviour

m Pass parameters to the compiler per-source-file similar to compilation
flags

m Often compiler specific, e.g. not defined by the C standard
Add -02 (level 2 optimization) to the compiler flags
#pragma GCC optimize ()

.. or initiate an OpenMP environment:

Generator a compilation error on Windows platforms:

#ifdef _WIN32
#
#endif

Summary

Used to define simple "functions” or constants:
Object-like macro (often used for constants):

#define <identifier> <replacement>

Function macro:

#define <identifier>(parameters) <replacement>

Deleting a macro:

#undef <identifier>

Summary

#include <stdio.h>
#include
#define EXITCODE_OKAY 1

int (int ; EaEr®

(

return

10/29

Summary
0@00

Macro definition: #define, #undefine

Testing out example (with and without DEBUG defined):

11/29

Introduction Syntax e Summary

Macro definition: #define, #undefine

assert(exp) defined in assert.h works similar to this:

assert(3) from the Linux Programmer’s Manual (manpage)

If the macro NDEBUG was defined at the moment <assert.h> was last
included, the macro assert() generates no code, and hence does nothing at
all.

Otherwise, the macro assert() prints an error message to standard error
and terminates the program by calling abort(3) if expression is false (i.e.,
compares equal to zero).

Expressions that change the environment can lead to heisenbugs.

Example: assert(FreeResources())

12/29

Introduction Summary

Stringification, Concatenation: #, ## Operator

Stringification: (converts a parameter to a string literal)

#define LOG_COND (cond)\
¢ #

((2 + 4 == 6));

Results in: expression (2 + 4 == 6) is: 1

Concatenation: (concatenate macro tokens)
#define HEX(v) (Ox##v)

(: ());
Results in: value: OxDEF

13/29

Introduction S Caveats d Summar
: 0 J :

Outline

Caveats

14/29

Introduction S Caveats e nce Summary

Caveats

Things to watch out for:
m Double evaluation
m Debugging
m Forseeability
m Operator Precedence

15/29

Introduction Syntax Caveats Performance Summary References
[©] 0000000000 [e]e] le]e]ele]e]e] [e]e]e]e]e]

Double evaluation

Due to the nature of preprocessor macros the programmer
can run into difficult situations. For instance:

#include <stdio.h>
#define MAX(Ca, b) (a > b ? a : b)

int (int , char¥ [{
= 11, = 12;

return 1;

}

Introduction Caveats

Double evaluation

#define MAX(Ca, b) (a > b ? a

-> (C , ++)
--> (> ?

Passing function calls is problematic as well! Why?

Summary

29

Caveats Summary

0000®

Double evaluation (workaround)

A workaround would be to instantiate variables for the parameters like such:

Example taken from the GNU GCC extensions manual

typeof is a GCC extension and not part of the C standard.

18/29

Introduction S Caveats e nce Summary

Debugging

Debugging can be painful when the code uses a lot of macros.
Why?

m Macros are expanded, meaning the code changes before/during
compilation.

m Some debuggers are unable to process this
m Locating bugs can prove difficult

19/29

Introduction Caveats Summary

Forseeability

It is hard for the developer to oversee the effects of macro expansion.
This can lead to problems:

#include <stdio.h>

define LOG_NULLPTR(x)\
if(x ==)

(int

20/29

Summary

Forseeability

To prevent situations like this make sure that the code generated by the
macro will not influence the code where it is included.

One technique is to wrap the code in it's own block.
For example by putting it in a loop that will only iterate once:

#define LOG_NULLPTR(x)\
do {\

if(
} while(®)

21/29

ction < Caveats orn Summary

Operator Precedence

Caution is required when using mathematical expressions in macros.

Assume we have this definition of CUBE(x):

#define CUBE(X) X*X*X

The following examples demonstrate a few problems:

Fix: Use parentheses around parameters as well as whole macro result
#define CUBE(x) ((x)*(x)*(x))

@2+ 2)

=> ((2+2)*(2+2)*(2+2)) = 64

“4 -3
=> 5%((4-3)*(4-3)*(4-3)) =5

22/29

In n s Performance

Outline

Performance

23/29

Introduction Performance Summary

Improving performance

Can we improve performance with the aid of C preprocessor macros?

If so, how?

®m inline keyword vs. usage of macros

m inline keyword is only a suggestion to the compiler
m With the help of macros one can force the compiler to inline code, because
in reality there is no function call.

24/29

Introduction Syntax

[©] 0000000000

Reducing Stack Overhead

Example:

<stdio.h>
<limits.h>
<math.h>

_INLINE
double
{

(double

return
}
#else
#
#endif

int
int
for (o <
(150.5,

(int

200.5,
return 1;

3

Caveats
000000000

Performance
[e]e] Jole)

Summary

Forcing code-inlining with macros

, double y, double 2z)

*z2);

(C*x) + M*) + (2)*(2))

D {

++)
300.0);

References

Summary

Performance differences

Significant difference in this case:

23.5 seconds vs. 8 seconds!
m However: A very constructed case

m Only significant when we have a lot of stack overhead due to function
calls
m Why? Reduction of severe overhead, for instance:

m Pushing arguments to the stack

m Grabbing arguments off the stack

m Pushing/popping return-address (at least for x86 call)
m Location jumps

26/29

Performance Summary
0000@

Tradeoff

However, it's not always this simple. A lot of other factors play a role:

m With inlining the code size increases

m Code size might be larger than instruction cache

m — Instruction cache miss

m Code needs to be loaded into construction every time
m — Performance loss?

m This usually applies to large/complex functions

m In most cases the compiler is smart (or smarter) enough to determine
whether functions should be inlined

Results in a Tradeoff between code size and function call overhead.

27/29

Introduction S o nce Summary

Summary

Text substition like functionality

Can serve as a handy tool to simplify code

Access to platform/compile(-time) information (useful for portability)
To be used with care (see caveats)

Performance improvement of code is possible by force-inlining code

28/29

Introduction Ca s d ance Summar References

References

m Mainly: GNU GCC Documentation
m Linux @ CERN
m GNU/Linux manpages

29/29

http://gcc.gnu.org/onlinedocs/cpp/Macros.html
http://linux.web.cern.ch/linux/scientific4/docs/rhel-cpp-en-4/macro-pitfalls.html

	Introduction
	Syntax
	Caveats
	Performance
	Summary
	References

