
C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Compiler Optimization

Mirko Köster

Seminar
Effiziente Programmierung in C

Fachbereich Informatik
Universität Hamburg

2012-11-29

1/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Overview

Key Aspects

What is the compiler capable of?
What are its weaknesses?
How can you make use of it?

Content

Automatic Optimization
Profile Guided Optimization
Aiding Optimizations
’Safe’ / ’Unsafe’ Optimizations
OpenMP

2/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Preface

Compiler

Some examples are from the GNU C compiler
There are lots of other good compilers available
But I’ll just give you an overview of the concepts
Refer to the manual of your compiler for specific
optimizations

Architecture

In this presentation I’ll focus on the x86 architecture
If you are developing for another architecture get
familiar with it (but the basic concepts will work there as
well)

3/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Automatic Optimization

Definition

Changes that don’t affect the result
May optimize

Execution speed
File size of the executable
or even power consumption

activated by compiler options / flags

How does it work?

1 Analyse source code
2 Assume stricter rules as the c-language
3 Prove assumptions
4 Apply optimization(s)

4/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Automatic Optimization

How to use it

activated by -0[level]
or manually by the specific flag

-o1
-fauto-inc-dec

-fcompare-elim

-fcprop-registers

-fdce

-fdefer-pop

-fdelayed-branch

-fdse

-fguess-branch-
probability

-fif-conversion2

-fif-conversion

-o1
-fipa-pure-const

-fipa-profile

-fipa-reference

-fmerge-constants

-fsplit-wide-types

-ftree-bit-ccp

-ftree-builtin-call-dce

-ftree-ccp

-ftree-ch

-ftree-copyrename

-ftree-dce

-o1
-ftree-dominator-opts

-ftree-dse

-ftree-forwprop

-ftree-fre

-ftree-phiprop

-ftree-slsr

-ftree-sra

-ftree-pta

-ftree-ter

-funit-at-a-time

5/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Automatic Optimization

-o2 (includes all from -01)

-fthread-jumps

-falign-functions -falign-jumps

-falign-loops -falign-labels

-fcaller-saves

-fcrossjumping

-fcse-follow-jumps -fcse-skip-blocks

-fdelete-null-pointer-checks

-fdevirtualize

-fexpensive-optimizations

-fgcse -fgcse-lm

-fhoist-adjacent-loads

-finline-small-functions

-findirect-inlining

-o2 (includes all from -01)

-fipa-sra

-foptimize-sibling-calls

-fpartial-inlining

-fpeephole2

-fregmove

-freorder-blocks -freorder-functions

-frerun-cse-after-loop

-fsched-interblock -fsched-spec

-fschedule-insns -fschedule-insns2

-fstrict-aliasing -fstrict-overflow

-ftree-switch-conversion -ftree-tail-merge

-ftree-pre

-ftree-vrp

6/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Automatic Optimization

-o3 (includes all from -02)

-finline-functions

-funswitch-loops

-fpredictive-commoning

-fgcse-after-reload

-ftree-vectorize

-fvect-cost-model

-ftree-partial-pre

-fipa-cp-clone

-o0 (default)
Reduce compilation time and make debugging
produce the expected results

-os (Optimize for size)
disables

-falign-functions

-falign-jumps

-falign-loops

-falign-labels

-freorder-blocks

-freorder-blocks-and-partition

-fprefetch-loop-arrays

-ftree-vect-loop-version

7/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Automatic Optimization

Some optimizations are very time-consuming

Some problems are np hard
Some problems are even undecidable
Tradeoff: in those cases the compiler won’t give the
optimal result but a good result (to save time/space
during compilation)

8/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Architecture Independent Optimizations

Definition

Do not rely upon knowledge of the underlying
architecture
Can be applied under any circumstances after the
assumptions have been proven

9/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Loop Invariant Code Motion

Definition

Moves code out of a loop if it is invariant of the loop variable

unoptimized

1 int sum=0, x;
for(int i = 0; i < n; i++) {

3 sum += i;
x = 5;

5 }

optimized

1 int sum=0, x = 5;
for(int i = 0; i < n; i++) {

3 sum += i;
}

10/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Const Propagation (with Loop Optimization)

Definition

Evaluation of expressions with known values at compile time

unoptimized

int N = 10, sum = 0;
2 for(int i = 0; i < N; i++)

sum += i;
4

printf("sum = %d\n", sum);

optimized

1 printf("sum = %d\n", 45);

11/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Dead Code Elimination

Definition

Removes code that is unnecessary or never executed

unoptimized

1 unsigned int x = foobar();
if(x < 0) {

3 printf("never executed\n");
} else {

5 printf("x: %u\n", x);
}

optimized

printf("x: %u\n", foobar());

12/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Common Subexpression Elimination

Definition

Reduces occurences of multiple common subexpressions

unoptimized

1 void foo(int *a, int n) {
for(int i = 0; i < n; i++)

3 a[i] += a[i]/n + a[i]*n;
}

optimized

void foo(int *a, int n) {
2 int temp;

for(int i = 0; i < n; i++)
4 temp = a[i]

a[i] += temp/n + temp*n;
6 }

13/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Interprocedural Optimization

Definition

looks at multiple functions and how they work together

Arguments in Registers

passing arguments in registers instead of
pushing/popping them to/from stack
reduces call/return overhead
requires modification of caller and callee

14/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Inlining

Definition

For small functions the overhead of calling may be
larger in relation to the body.
Inlining replaces the call to the function with the body.

unoptimized

int foo(int a) {
2 return a * (a+1);
}

4 ...
int a[5];

6 for(int i = 0; i < 5; i++)
a[i] = foo(i);

optimized

1 int a[5];

3 a[0] = 0 * 1;
a[1] = 1 * 2;

5 a[2] = 2 * 3;
a[3] = 3 * 4;

7 a[4] = 4 * 5;

15/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Interprocedural Constant Propagation

Definition

Evaluation of expressions with known values at compile
time taking multiple functions into account

unoptimized

1 static int square(int x) {
return x*x;

3 }

5 printf("5^2=%d\n",square(5));

optimized

1 static int square(int x) {
return x*x;

3 }

5 printf("5^2 = %d\n", 25);

16/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Architecture Dependent Optimizations

Definition

Target-specific optimizations
The compiler has to know the target architecture
caution: the executable may not run on older machines

What makes a target architecture?

Instruction set (e.g. x86)
Number of (special purpose) registers
Cache size & type
possibly some instruction set extensions (MMX, SSE...)

17/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Instruction Set

Overview History

1985 x86 32bit
1989 x87 FPU (Co-Processor)
1993 MMX
1997 SSE, 3DNow!
2000 SSE2
2003 x86-64 64bit
2004 SSE3
2007 SSE4a
2011 SSE5/AVX
2013 AVX2, FMA3

18/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

-mtune & -march

-mtune

This option optimizes for the given architecture, making the
code faster on those machines. But it will still run on other
architectures.

-march

This option will make the most of the given architecture.
May not run on other architectures.

example options

i386
pentium
corei7
amdfam10

19/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

gcc: 32 vs 64 Bit

Advantage of compiling for 64bit machines

The compiler can make use of
at least MMX, SSE and SSE2, since every x86-64
machine supports these.
16 registers (64 bit) instead of 8 registers (32 bit)
larger virtual address space (at least 48 bit = 256 TiB)

20/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Automatic Vectorization

Definition

The compiler makes use of SIMD

source

1 float a[128];
...

3 for(int i=0; i < 128; i++)
a[i] *= 2.5f;

Example Optimization
using AVX

Width of SIMD
registers: 256bit
Float uses 32bit
-> 8 calculations in
parallel
16 * 8 simultaneous
multiplications instead
of 128 in sequence

21/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Profile Guided Optimization

Definition

The execution of the program is profiled, so the compiler
can learn from the ’behaviour’ of the code

Steps

compile and link it with profiling enabled
run the program - make sure all the time-critical parts
are executed
profiling data will be written to disk
recompile making use of the profiling data

22/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Function Ordering

Definition

Re-orders functions to improve instruction cache hit rate

unoptimized

int foo() {
2 ... //several lines of code
}

4 float someFunction() {
... //several lines of code

6 }
... //more functions

8 int bar() {
... //several lines of code

10 }

optimized

int foo() {
2 ... //several lines of code
}

4 int bar() {
... //several lines of code

6 }
float someFunction() {

8 ... //several lines of code
}

10 ... //more functions

23/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Basic Block Ordering

Definition

Similar to function ordering
Same goal: improve instruction cache hit rate
Re-orders blocks

24/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Switch Statement Optimization

Definition

Sorts the cases in a switch statement by frequency of
execution

unoptimized

switch(expression)
2 {

case constant1:
4 statements; break;

case constant2:
6 statements; break;

case constant3:
8 statements; break;

default:
10 statements;

}

optimized

1 switch(expression)
{

3 case constant3:
statements; break;

5 case constant1:
statements; break;

7 case constant2:
statements; break;

9 default:
statements;

11 }
25/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Improved Register Allocation

Definition

Keeps the locally most frequently used variables in registers

note

The problem of register allocation is np-hard without
profiling

26/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Aiding Optimizations

Why this is useful

The compiler ’enforces rules of the C-Standard’ to
ensure correct programs
Often the compiler has to make conservative
assumptions
If it had more knowledge about the code, it could
optimize more aggressively
The programmer can help the compiler

27/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Data Layout

Definition

A good data layout uses memory space and cache more
efficiently

unoptimized

1 struct foo {
char a;

3 float x[8];
char b;

5 float y[8];
char c;

7 float z[8];
};

optimized

struct foo {
2 float x[8];

float y[8];
4 float z[8];

char a;
6 char b;

char c;
8 };

28/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Pragma Vector Aligned

Definition

Communicates data layout information to the compiler
Some architectures contain instructions that execute
faster if the data is guaranteed to be aligned on specific
memory boundaries

source

float a[128];
2 ...
#pragma vector aligned

4 for(int i=0; i < 128; i++)
a[i] *= 2.5f;

options

aligned
unaligned
always

29/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

’Safe’ / ’Unsafe’ Optimizations

’normal’ behaviour

Most optimizations won’t change the result of
computations
especially not the -o[level] options
the compiler is conservative

more optimizations

compiler options that might change the results
but the computations may be faster
caution: only use them if you don’t need the precision
e.g. -ffast-math

30/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

OpenMP

Definition

Shared-Memory Multithreading Programming Interface

unoptimized

1 void foobar(int *a, int n) {
for (int i = 0; i < n; i++)

3 a[i] = 2 * i;
}

optimized

void foobar(int *a, int n) {
2 #pragma omp parallel for

for (int i = 0; i < n; i++)
4 a[i] = 2 * i;
}

31/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

What we’ve learned today

Remember

Which optimizations the compiler can do by himself ->
readability over manual optimization
Tell the compiler details about the destination
architecture
Where the compiler needs some help (aided
optimization)
Optimize manually, where the compiler can’t help - but
only if you can expect a real performance impact.
if not -> readability over manual optimization
or: "Premature Optimization is the root of all evil"

32/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Questions?

Thank you for your attention

Questions?

33/34



C-Compiler

Mirko Köster

Automatic
Optimization

Architecture
Independent

Inter-
Procedural

Architecture
Dependent

Profile Guided
Optimization

Aiding
Optimizations

’Safe’ /
’Unsafe’
Optimizations

OpenMP

Conclusion

Questions?

Sources

Sources

Resources I used to prepare this presentation

http://en.wikipedia.org/wiki/Optimizing_
compiler

http://gcc.gnu.org/onlinedocs/gcc-4.7.2/
gcc/Optimize-Options.html

http://gcc.gnu.org/onlinedocs/gcc/
i386-and-x86_002d64-Options.html

http://www.embedded.com/design/
mcus-processors-and-socs/4008892/
Tuning-C-C--compilers-for-optimal-parallel-performance-in-multicore-apps-Part-1

34/34

http://en.wikipedia.org/wiki/Optimizing_compiler
http://en.wikipedia.org/wiki/Optimizing_compiler
http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/Optimize-Options.html
http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/Optimize-Options.html
http://gcc.gnu.org/onlinedocs/gcc/i386-and-x86_002d64-Options.html
http://gcc.gnu.org/onlinedocs/gcc/i386-and-x86_002d64-Options.html
http://www.embedded.com/design/mcus-processors-and-socs/4008892/Tuning-C-C--compilers-for-optimal-parallel-performance-in-multicore-apps-Part-1
http://www.embedded.com/design/mcus-processors-and-socs/4008892/Tuning-C-C--compilers-for-optimal-parallel-performance-in-multicore-apps-Part-1
http://www.embedded.com/design/mcus-processors-and-socs/4008892/Tuning-C-C--compilers-for-optimal-parallel-performance-in-multicore-apps-Part-1

	Automatic Optimization
	Architecture Independent
	Architecture Dependent

	Profile Guided Optimization
	Aiding Optimizations
	'Safe' / 'Unsafe' Optimizations
	OpenMP
	Conclusion
	Questions?
	Sources

