
Introduction and motivation OOP features and concepts Quick application Conclusions

Object Oriented Programming in C

Radu Grigoras
radu.grigoras10@gmail.com

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences

Department of Informatics

Seminar ”Effiziente Programmierung in C”, December, 2012

1 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Can it be done?

What is OOP?

- programming paradigm
- sets of common features (attributes) =>classes
- particular instances of classes =>objects
- manipulating objects =>methods

2 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Can it be done?

What is OOP?
- programming paradigm

- sets of common features (attributes) =>classes
- particular instances of classes =>objects
- manipulating objects =>methods

2 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Can it be done?

What is OOP?
- programming paradigm
- sets of common features (attributes)

=>classes
- particular instances of classes =>objects
- manipulating objects =>methods

2 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Can it be done?

What is OOP?
- programming paradigm
- sets of common features (attributes) =>classes

- particular instances of classes =>objects
- manipulating objects =>methods

2 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Can it be done?

What is OOP?
- programming paradigm
- sets of common features (attributes) =>classes
- particular instances of classes

=>objects
- manipulating objects =>methods

2 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Can it be done?

What is OOP?
- programming paradigm
- sets of common features (attributes) =>classes
- particular instances of classes =>objects

- manipulating objects =>methods

2 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Can it be done?

What is OOP?
- programming paradigm
- sets of common features (attributes) =>classes
- particular instances of classes =>objects
- manipulating objects

=>methods

2 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Can it be done?

What is OOP?
- programming paradigm
- sets of common features (attributes) =>classes
- particular instances of classes =>objects
- manipulating objects =>methods

2 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Can it be done?

Can OOP be achieved using only ANSI-C code?

- yes.
- paradigm vs. language feature
- OO-languages (C++, Java, Python etc.) offer syntactic
sugar to achieve OO-code

C++ code

object->method(some args);

C code

method(object, some args);

3 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Can it be done?

Can OOP be achieved using only ANSI-C code?
- yes.

- paradigm vs. language feature
- OO-languages (C++, Java, Python etc.) offer syntactic
sugar to achieve OO-code

C++ code

object->method(some args);

C code

method(object, some args);

3 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Can it be done?

Can OOP be achieved using only ANSI-C code?
- yes.
- paradigm vs. language feature

- OO-languages (C++, Java, Python etc.) offer syntactic
sugar to achieve OO-code

C++ code

object->method(some args);

C code

method(object, some args);

3 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Can it be done?

Can OOP be achieved using only ANSI-C code?
- yes.
- paradigm vs. language feature
- OO-languages (C++, Java, Python etc.)

offer syntactic
sugar to achieve OO-code

C++ code

object->method(some args);

C code

method(object, some args);

3 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Can it be done?

Can OOP be achieved using only ANSI-C code?
- yes.
- paradigm vs. language feature
- OO-languages (C++, Java, Python etc.) offer syntactic
sugar to achieve OO-code

C++ code

object->method(some args);

C code

method(object, some args);

3 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Can it be done?

Can OOP be achieved using only ANSI-C code?
- yes.
- paradigm vs. language feature
- OO-languages (C++, Java, Python etc.) offer syntactic
sugar to achieve OO-code

C++ code

object->method(some args);

C code

method(object, some args);

3 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Can it be done?

Can OOP be achieved using only ANSI-C code?
- yes.
- paradigm vs. language feature
- OO-languages (C++, Java, Python etc.) offer syntactic
sugar to achieve OO-code

C++ code

object->method(some args);

C code

method(object, some args);

3 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Can it be done?

How can it be done?

- with structs, pointers and other wonderful things

4 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Can it be done?

How can it be done?
- with structs,

pointers and other wonderful things

4 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Can it be done?

How can it be done?
- with structs, pointers

and other wonderful things

4 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Can it be done?

How can it be done?
- with structs, pointers and other wonderful things

4 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Why do it?

What is OOP good for?

- data representation and functionality separated from usage
- divide and conquer
- re-use of code
- enhanced code readibility

5 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Why do it?

What is OOP good for?
- data representation and functionality separated from usage

- divide and conquer
- re-use of code
- enhanced code readibility

5 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Why do it?

What is OOP good for?
- data representation and functionality separated from usage
- divide and conquer

- re-use of code
- enhanced code readibility

5 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Why do it?

What is OOP good for?
- data representation and functionality separated from usage
- divide and conquer
- re-use of code

- enhanced code readibility

5 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Why do it?

What is OOP good for?
- data representation and functionality separated from usage
- divide and conquer
- re-use of code
- enhanced code readibility

5 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Why do it?

Why should I use C in my program?

- mostly because it’s faster
- environment where C++ or other compilers not available
- you just like it.

6 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Why do it?

Why should I use C in my program?
- mostly because it’s faster

- environment where C++ or other compilers not available
- you just like it.

6 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Why do it?

Why should I use C in my program?
- mostly because it’s faster
- environment where C++ or other compilers not available

- you just like it.

6 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Why do it?

Why should I use C in my program?
- mostly because it’s faster
- environment where C++ or other compilers not available
- you just like it.

6 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Why do it?

Are there any disadvantages with this approach?

- rather complex code
- possible loss of type safety
- programmer time
- error prone
- manual memory management

7 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Why do it?

Are there any disadvantages with this approach?
- rather complex code

- possible loss of type safety
- programmer time
- error prone
- manual memory management

7 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Why do it?

Are there any disadvantages with this approach?
- rather complex code
- possible loss of type safety

- programmer time
- error prone
- manual memory management

7 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Why do it?

Are there any disadvantages with this approach?
- rather complex code
- possible loss of type safety
- programmer time

- error prone
- manual memory management

7 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Why do it?

Are there any disadvantages with this approach?
- rather complex code
- possible loss of type safety
- programmer time
- error prone

- manual memory management

7 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Why do it?

Are there any disadvantages with this approach?
- rather complex code
- possible loss of type safety
- programmer time
- error prone
- manual memory management

7 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Classes, objects, methods, constructors and destructors

Listing 1: C++ class example

1 // includes and stuff

2 class Rectangle {

3 private:

4 int x, y;

5 int width;

6 int height;

7 public:

8 //getters , setters , if

needed

9 void draw();

10 };

11 void Rectangle ::draw() {

12 std::cout << "Just drew a

nice " << width << " by

" << height << "

rectangle at position

(" << x << ", " << y <<

")!";

13 }

Listing 2: C class example

1 // includes and stuff

2 typedef struct Rectangle {

3 int x,y;

4 int width;

5 int height;

6 } Rectangle;

7 void draw(Rectangle* obj) {

8 printf("I just drew a nice

%d by %d rectangle at

position (%d, %d)!",

obj ->width ,

obj ->height , obj ->x,

obj ->y);

9 }

8 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Classes, objects, methods, constructors and destructors

Listing 3: C++ object example

1 // pretend that everything we

already wrote is here

2 //and create an object where

needed

3 Rectangle* r = new

Rectangle ();

Listing 4: C object example

1 // pretend that everything we

already wrote is here

2 //and create an object where

needed

3 Rectangle* r =

(Rectangle *) malloc(sizeof

Rectangle);

9 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Classes, objects, methods, constructors and destructors

Listing 5: C++ methods example

1 //again , previously defined

stuff is here , even if

you cannot see it!

2 void Rectangle ::draw() {

3 std::cout << "Just drew a

nice " << width << " by

" << height << "

rectangle at position

(" << x << ", " << y <<

")!";

4 }

5 // create a Rectangle object

6 Rectangle* r = new

Rectangle ();

7 //then just call one if its

methods

8 r->draw();

Listing 6: C methods example

1 //again , previously defined

stuff is here , even if

you cannot see it!

2 void draw(Rectangle* obj) {

3 printf("I just drew a nice

%d by %d rectangle at

position (%d, %d)!",

obj ->width ,

obj ->height , obj ->x,

obj ->y);

4 }

5 // create a Rectangle object

6 Rectangle* r =

(Rectangle *) malloc(sizeof

*Rectangle);

7 //then just call a function

that receives it as a

param

8 draw(r);

10 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Classes, objects, methods, constructors and destructors

Listing 7: C++ constructor exam-
ple

1 // previously defined stuff is

here , as usual

2 Rectangle :: Rectangle (int

initx , int inity , int

initw , int inith) {

3 x = initx;

4 y = inity;

5 width = initw;

6 height = inith;

7 }

8 //and this is how you would

use it

9 Rectangle* r = new

Rectangle (1,2,3,4);

Listing 8: C constructor example

1 // previously defined stuff is

here , as usual

2 Rectangle* Rectangle_init(int

initx , int inity , int

initw , int inith) {

3 struct Rectangle* obj =

malloc(sizeof *obj);

4 obj ->x = initx;

5 obj ->y = inity;

6 obj ->width = initw;

7 obj ->height = inith;

8

9 return obj;

10 }

11 //and this is how you would

use it

12 Rectangle* r =

Rectangle_init (1,2,3,4);

11 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Classes, objects, methods, constructors and destructors

About destructors in C++

∼Rectangle();
-implicitly defined and called
when the object is no longer
needed
-can be defined explicitly and
manually called if needed

About destructors in C

- there is no automatic memory
management in C
- you should use free() or wrap
your own function around it
- manually call it when needed

12 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Classes, objects, methods, constructors and destructors

About destructors in C++

∼Rectangle();
-implicitly defined and called
when the object is no longer
needed
-can be defined explicitly and
manually called if needed

About destructors in C

- there is no automatic memory
management in C
- you should use free() or wrap
your own function around it
- manually call it when needed

12 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Encapsulation

- object data is contained and hidden inside of the object
- acces to data is restricted to members of that class or other
particular classes
- organising code so that operations on an object type are close to
the definition of that type
- lowers the possibility of a user messing up
- reduces the amount of details needed to know when trying to use
a type
- provides decoupling: usage is separated from implementation

13 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Encapsulation

About encapsulation in C++

- offers some syntatic sugar to
help achieve encapsulation
- public, protected, private
- this is checked by the compiler
(at compile time)
- you can stab the compiler in
the back and do what you want
to the code at run time anyway

About encapsulation in C

- C does not offer the same
syntatic sugar
- use naming conventions to help
associate types with their
methods
- integrate functions into structs
using function pointers
- private variables vs. private
methods
- also keep in mind that pointers
to structs can be used without
knowledge of the struct
declaration

14 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Encapsulation

About encapsulation in C++

- offers some syntatic sugar to
help achieve encapsulation
- public, protected, private
- this is checked by the compiler
(at compile time)
- you can stab the compiler in
the back and do what you want
to the code at run time anyway

About encapsulation in C

- C does not offer the same
syntatic sugar
- use naming conventions to help
associate types with their
methods
- integrate functions into structs
using function pointers
- private variables vs. private
methods
- also keep in mind that pointers
to structs can be used without
knowledge of the struct
declaration

14 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Inheritance

- captures the ”is-a” relationship
- a pointer to a derived class is type-compatible with a pointer to
its base class
- i.e. Rectangle ”is-a” Shape
- Rectangle inherits properties from Shape
- this allows code re-use and a better structure for your program

15 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Inheritance

Listing 9: C++ inheritance exam-
ple

1 class Shape {

2 /* Shape class members */

3 };

4 class Rectangle : public

Shape {

5 /* Rectangle class members

*/

6 };

Listing 10: C inheritance example

1 struct Shape {

2 /* base class members */

3 };

4 struct Rectangle {

5 struct Shape super;

6 /* derived class members

*/

7 };

16 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Polymorphism

- allows values of different data types to be handled using an
uniform interface
- a polymorphic function can be evaluated or applied to values of
different types
- polymoprhism takes advantage of inheritance

17 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Polymorphism

Listing 11: C++ polymorphism example

1 class Shape { // abstract interface

2 public:

3 virtual void draw() = 0; // pure virtual function

4 };

5 class Rectangle : public Shape { // inheritance

6 //other stuff here too of course

7 public:

8 virtual void draw(); // implement this along the way

9 };

10 //some function that handles a shape polymorphically

11 void handleShape(Shape* s) {

12 s->draw(); //then do something to the shape

13 }

14 //usage

15 Shape* shape;

16 shape = new Rectangle ();

17 handleShape(s);

18 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Listing 12: C++ OOP full example

1 #include <iostream >

2

3 /* Shape abstract interface */

4

5 class Shape {

6 public:

7 virtual void draw() = 0;

8 virtual void moveTo(int newx , int newy) = 0;

9 };

19 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

10 /* Rectangle class */

11

12 class Rectangle : public Shape {

13 private:

14 int x, y;

15 int width;

16 int height;

17 public:

18 Rectangle(int initx , int inity , int initw , int inith);

19 int getX() { return this ->x; }

20 int getY() { return this ->y; }

21 int getWidth () { return this ->width; }

22 int getHeight () { return this ->height; }

23 void setX(int newx) { this ->x = newx; }

24 void setY(int newy) { this ->y = newy; }

25 void setWidth(int neww) { this ->width = neww; }

26 void setHeight(int newh) { this ->height = newh; }

27 virtual void draw();

28 virtual void moveTo(int newx , int newy);

29 };

20 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

30 Rectangle :: Rectangle(int initx , int inity , int initw , int

inith) {

31 x = initx;

32 y = inity;

33 width = initw;

34 height = inith;

35 }

36

37 void Rectangle ::draw() {

38 std::cout << "Just drew a nice " << width

39 << " by " << height

40 << " rectangle at position (" << x

41 << ", " << y << ")!" << std::endl;

42 }

43

44 void Rectangle :: moveTo(int newx , int newy) {

45 x = newx;

46 y = newy;

47 std::cout << "Moving your rectangle to (" << x

48 << ", " << y << ")!" << std::endl;

49 }

21 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

50 /* Circle class */

51 class Circle : public Shape {

52 private:

53 int x,y;

54 int radius;

55 public:

56 Circle(int initx , int inity , int initr);

57 virtual void draw();

58 virtual void moveTo(int newx , int newy);

59 int getX() { return this ->x; }

60 int getY() { return this ->y; }

61 int getRadius () { return this ->radius; }

62 void setX(int newx) { this ->x = newx; }

63 void setY(int newy) { this ->y = newy; }

64 void setRadius(int newr) { this ->radius = newr; }

65 };

22 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

66 Circle :: Circle(int initx , int inity , int initr) {

67 x = initx;

68 y = inity;

69 radius = initr;

70 }

71

72 void Circle ::draw() {

73 std::cout << "Just drew a perfect circle of radius "

74 << radius << " at position ("

75 << x << ", " << y << ")!" << std::endl;

76 }

77

78 void Circle :: moveTo(int newx , int newy) {

79 x = newx;

80 y = newy;

81 std::cout << "Moving your circle to (" << x

82 << ", " << y << ")!" << std::endl;

83 }

23 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

84 /* A function that uses a Shape polymorphically */

85

86 void handleShape(Shape* s) {

87 std::cout << "Bad shape! Go to the corner!" << std::endl;

88 s->moveTo (0,0);

89 }

24 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

90 int main() {

91 /* using shapes polymorphically */

92

93 Shape * shapes [2];

94 shapes [0] = new Rectangle (20, 12, 123, 321);

95 shapes [1] = new Circle (21, 12, 2012);

96

97 for (int i = 0; i < 2; ++i) {

98 shapes[i]->draw();

99 handleShape(shapes[i]);

100 }

101

102 /* access a specific class function */

103

104 Rectangle* r = new Rectangle (1, 2, 3, 4);

105 r->setWidth (5);

106 r->draw();

107

108 return 0;

109 }

25 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Listing 13: C OOP full example

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <assert.h>

4 /* Shape abstract interface */

5 struct Shape {

6 struct ShapeFuncTable *funcTable;

7 };

8 struct ShapeFuncTable {

9 void (*draw) (struct Shape* obj);

10 void (* moveTo) (struct Shape* obj , int newx , int newy);

11 void (* destructor_) (struct Shape *obj);

12 };

13 struct Shape *Shape_init () { assert (0); }

14 void Shape_destroy(struct Shape *obj) { }

26 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

15 /* Rectangle class */

16

17 struct Rectangle {

18 struct Shape super;

19

20 int x, y;

21 int width;

22 int height;

23 };

24

25 void Rectangle_draw(struct Shape* obj) {

26 struct Rectangle* rdata = (struct Rectangle *) obj;

27

28 printf("I just drew a nice %d by %d rectangle at position

(%d, %d)! \n",

29 rdata ->width , rdata ->height , rdata ->x, rdata ->y);

30 }

27 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

31 void Rectangle_moveTo(struct Shape* obj , int newx , int

newy) {

32 struct Rectangle * rdata = (struct Rectangle *) obj;

33

34 rdata ->x = newx;

35 rdata ->y = newy;

36

37 printf("Moving your rectangle to (%d, %d)\n",

38 rdata ->x, rdata ->y);

39 }

40

41 void Rectangle_setWidth(struct Shape* obj , int neww) {

42 struct Rectangle * rdata = (struct Rectangle *) obj;

43

44 rdata ->width = neww;

45 }

28 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

46 void Rectangle_destroy(struct Shape *obj) {

47 Shape_destroy(obj);

48 free(obj);

49 }

50 struct RectangleFuncTable {

51 struct ShapeFuncTable super;

52 void (* setWidth) (struct Shape* obj , int neww);

53 } rectangleFuncTable = { {

54 Rectangle_draw ,

55 Rectangle_moveTo ,

56 Rectangle_destroy },

57 Rectangle_setWidth

58 };

59 struct Shape* Rectangle_init(int initx , int inity , int

initw , int inith) {

60 struct Rectangle* obj = (struct Rectangle *)

malloc(sizeof(struct Rectangle));

61 obj ->super.funcTable = (struct ShapeFuncTable *)

&rectangleFuncTable;

62 obj ->x = initx;

63 obj ->y = inity;

64 obj ->width = initw;

65 obj ->height = inith;

66 return (struct Shape *)obj;

67 } 29 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

68 /* Circle class */

69 struct Circle {

70 struct Shape super;

71 int x, y;

72 int radius;

73 };

74 void Circle_draw(struct Shape* obj) {

75 struct Circle* cdata = (struct Circle *) obj;

76 printf("Just drew a perfect circle of radius %d at

position (%d, %d)!\n",

77 cdata ->radius , cdata ->x, cdata ->y);

78 }

79

80 void Circle_moveTo(struct Shape* obj , int newx , int newy) {

81 struct Circle* cdata = (struct Circle *) obj;

82 cdata ->x = newx;

83 cdata ->y = newy;

84 printf("Moving your circle to (%d, %d)\n",

85 cdata ->x, cdata ->y);

86 }

30 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

87 void Circle_destroy(struct Shape *obj) {

88 Shape_destroy(obj);

89 free(obj);

90 }

91 struct CircleFuncTable {

92 struct ShapeFuncTable super;

93 } circleFuncTable = { {

94 Circle_draw ,

95 Circle_moveTo ,

96 Circle_destroy }

97 };

98 struct Shape* Circle_init(int initx , int inity , int initr) {

99 struct Circle* obj = (struct Circle *)

malloc(sizeof(struct Circle));

100 obj ->super.funcTable = (struct ShapeFuncTable *)

&circleFuncTable;

101 obj ->x = initx;

102 obj ->y = inity;

103 obj ->radius = initr;

104 return (struct Shape *)obj;

105 }

31 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

106 #define Shape_DRAW(obj) (((struct

Shape*)(obj))->funcTable ->draw((obj)))

107 #define Shape_MOVETO(obj , newx , newy) \

108 (((struct Shape*)(obj))->funcTable ->moveTo ((obj), (newx),

(newy)))

109

110 #define Rectangle_SETWIDTH(obj , width) \

111 ((struct RectangleFuncTable *)((struct

Shape*)(obj))->funcTable)->setWidth(\

112 (obj), (width))

113

114 #define Shape_DESTROY(obj) (((struct

Shape*)(obj))->funcTable ->destructor_ ((obj)))

115 /* A function that uses a Shape polymorphically */

116 void handleShape(struct Shape* s) {

117 Shape_MOVETO(s, 0, 0);

118 }

32 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

119 int main() {

120 int i;

121 struct Shape* shapes [2];

122 struct Shape* r;

123 /* using shapes polymorphically */

124 shapes [0] = Rectangle_init (20 ,12 ,123 ,321);

125 shapes [1] = Circle_init (21 ,12 ,2012);

126 for (i = 0; i < 2; ++i)

127 {

128 Shape_DRAW(shapes[i]);

129 handleShape(shapes[i]);

130 }

131 /* accessing Rectangle specific data */

132 r = Rectangle_init (1, 2, 3, 4);

133 Rectangle_SETWIDTH(r, 5);

134 Shape_DRAW(r);

135 Shape_DESTROY(r);

136

137 for (i = 1; i >= 0; --i)

138 Shape_DESTROY(shapes[i]);

139 }

33 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

OOC vs. C

Pros

- better, more logical structuring
of code
- decoupling: separating
implementation from usage
- code recycling

Cons

- requires in-depth programming
knowledge
- code is more complex and
harder to write
- manual memory management
(manual *everything* actually...)
- no syntatic sugar to help write
OO-code =>more lines of code
=>more time

34 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

OOC vs. C

Pros

- better, more logical structuring
of code
- decoupling: separating
implementation from usage
- code recycling

Cons

- requires in-depth programming
knowledge
- code is more complex and
harder to write
- manual memory management
(manual *everything* actually...)
- no syntatic sugar to help write
OO-code =>more lines of code
=>more time

34 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Further reading

- Object Oriented Programming with ANSI C, by Axel-Tobias
Schreiner (free ebook)
- Google is your friend

35 / 36

Introduction and motivation OOP features and concepts Quick application Conclusions

Thank you!

Thank you for not falling asleep!
Any questions?

36 / 36

	Introduction and motivation
	Can it be done?
	Why do it?

	OOP features and concepts
	Classes, objects, methods, constructors and destructors
	Encapsulation
	Inheritance
	Polymorphism

	Quick application
	Conclusions
	OOC vs. C
	Further reading
	Thank you!

