
Universität Hamburg
Department Informatik
Scientific Computing, WR

Performance analysis using Great Performance
Tools and Linux Trace Toolkit next generation

Seminar Paper

Seminar: Performance analysis in Linux

Heye Vöcking
Matr.Nr. 6139373

9voeckin@informatik.uni-hamburg.de

Tutor: Julian Kunkel

April 3, 2012

Heye Vöcking Performance analysis using GPerfTools and LTTng

Contents

1 Introduction 3
1.1 Overview . 3
1.2 Motivation . 3
1.3 Related Tools . 3

1.3.1 Tools discussed in this work . 4

2 Related Work 4

3 History 4

4 Great Performance Tools in depth 4
4.1 Field of application . 5

4.1.1 Supported operating systems . 5
4.1.2 Supported programming languages 5

4.2 Install / Setup . 5
4.3 How it works and how to use it . 5

4.3.1 CPU Profiler . 5
4.3.2 TCMalloc . 6
4.3.3 Heap Leak Checker . 6
4.3.4 Heap Profiler . 7
4.3.5 Profiler Insides . 8

4.4 Post-Processing with pprof . 8
4.4.1 Analyzing CPU Profiles . 8
4.4.2 Analyzing Memory Leaks . 10
4.4.3 Analyzing Heap Profiles . 10

5 Linux Trace Toolkit next generation in depth 10
5.1 Field of application . 10

5.1.1 Supported operating systems . 10
5.1.2 Supported architectures . 10
5.1.3 Supported programming languages 10

5.2 Install / Setup . 11
5.3 How it works . 11

5.3.1 Tracing . 12
5.3.2 Tracepoints . 12
5.3.3 Probes, Trace Sessions, and Channels 13
5.3.4 Storage and Trace Modes . 13

5.4 Post-Processing and Analysis . 14
5.4.1 Babeltrace . 14
5.4.2 LTT Viewer . 14
5.4.3 IDE integration . 14

5.5 Performance Impact . 15

6 Areas of Application 15

7 Summary 15

1 of 17

Heye Vöcking Performance analysis using GPerfTools and LTTng

8 Conclusion 16

9 Outlook 16

2 of 17

Heye Vöcking Performance analysis using GPerfTools and LTTng

Abstract Todays systems are getting more and more complex. Especially
through the trend to software running on multi-core setups. In order to find
bugs and improve performance of the software we develop, we need good tools
for tracing the programs execution efficiently. By monitoring, recording, and
analyzing the programs behavior we can diagnose problems, tune for more per-
formance, and understand the interaction of our software with libraries and the
operating system better. In this work we want to present the Great Performance
Tools and the Linux Trace Toolkit next generation.

1 Introduction

When we develop software we often en-
counter bugs or code that performs poorly.
To debug and tune our code we can ob-
serve the programs execution. There are
several more or less efficient ways to accom-
plish this. Tracing is one of them which can
be performed using LTTng, another way is
profiling which is possible with gperftools.

1.1 Overview

At first we will mention some tools avail-
able for tracing as well as discuss and com-
pare the Great Performance Tools (section
4) and the Linux Trace Toolkit next genera-
tion (section 5) in detail. We will show what
features they offer, describe how to install
and integrate them, show how to use them,
and give an insight of how they work. The
areas of application are discussed in section
6.

1.2 Motivation

There is more to developing software than
just to make it work. Even though the pro-
cessing power of computers is still rising a
developer should write efficient code and use

the advantage of multi-core systems. Effi-
ciency is a crucial subject because it saves
time and energy during runtime. Another
important part is software safety. To avoid
dead locks, segmentation faults, or mem-
ory the programmer needs a good under-
standing of the software he writes and the
libraries he uses. In order to Here we want
to show what tools can help developers to
write efficient code.

1.3 Related Tools

gprof (1982) gprof extended the 1979 re-
leased Unix tool “prof”, by providing
a complete call graph analysis. [gpr12]

EDGE (1999) The Mentor Embedded
EDGE Developer Suite is an IDE built
upon the Eclipse framework and pro-
vides tools that give an insight into
the kernel and a debugger as well as
some other features. [Men99]

QNX Momentics Tool Suite (2001)
This tool suite can be used to get
a view of real-time interactions and
memory profiles as well as porting
software from single- to multi-core
systems. [QNX01]

3 of 17

Heye Vöcking Performance analysis using GPerfTools and LTTng

Valgrind (2002) Originally designed to be
a free memory debugging toll for
Linux on x86, Valgrind is now a
generic framework for creating dy-
namic analysis tools. [Val12]

1.3.1 Tools discussed in this work

In this work we are going to discuss
and compare the Great Performance Tools
(GPerfTools) and the Linux Trace Toolkit
next generation (LTTng). Both projects
where started in 2005, available for free on
the Internet, and by now both are commu-
nity driven.

2 Related Work

Peter Smith manages to achieve a 30%
speed gain by fixing poorly performing code
that he located by profiling his 3D applica-
tion with GPerfTools and kCachegrind as
described in his work [Smi11].

In his article [Tou11] Toupin describes
how to use tracing to diagnose or monitor
single and multicore systems.

The author and maintainer of LTTng,
Mathieu Desnoyers, has written his PhD.
thesis [Des09] on software tracing with LT-
Tng

Romik Guha Anjoy and Soumya Kanti
Chakraborty evaluated in their Master The-
sis [RGA10] the efficiency of LTTng for
employing it within the telecommunication
company Ericsson

3 History

Performance analysis is no recent problem.
Tools for analyzing performance have been
around since the early 1970s. They where
usually based on timer interrupts to de-
tect “hot spots” in the program code. The
first profiler driven analysis tool was prof in
1979. In 1994 instrumentation by inserting
profiling code in programs during compile
time came up with the ATOM platform.
Instrumentation of the Linux kernel using
a method called “Kprobes” is implemented
since July 2002 (Kernel 2.5.26) and still
present today (Kernel 3.3). In early 2008
“Kernel Markers” where developed to re-
place Kprobes with no success, because the
so called “Tracepoints” found their way into
the Kernel not even a year later and man-
aged to replace the Kernel Markers com-
pletely since December 2009. Tracepoints
are still popular and used for example in
Systemtap and LTTng which is discussed in
section 5. [Mö12]

4 Great Performance Tools
in depth

The Google Performance Tools project was
launched in March 2005 [SR08]. In 2011
Craig Silverstein, in the gperftools project
better known as “csilvers”, who was the
main developer, decided to step down. As
a part of that Google decided to make the
project completely community run, there-
fore with the beginning of version num-
ber 2 (released in February 2012), the tools

4 of 17

Heye Vöcking Performance analysis using GPerfTools and LTTng

changed their name from “google-perftools”
to “gperftools”, where the “g” now stands
for “great”. The gperftools are now main-
tained by David Chappelle who was the only
other active developer in the past. [CS12]

4.1 Field of application

4.1.1 Supported operating systems

The gperftools can be used in Linux, Mac,
as well as in Windows environments.

4.1.2 Supported programming
languages

Supported programming languages are C
and C++. But the gperftools can be used
with any language that can call C code.

4.2 Install / Setup

Setup in a Linux environment is fairly
straight forward. You should be able to
find the corresponding packages using your
package manager. In Arch Linux for ex-
ample you can use a tool called yaourt
to install packages from the AUR (Arch
User Repository). The command “yaourt -
S google-perftools” will download, compile,
and install the gperftools as well as all re-
quired packages. Additionally you can in-
stall perl5, dot, and gv if you want to visu-
alize the collected data with pprof.

4.3 How it works and how to use
it

The gperftools are a set of open-source tools
for profiling, leak checking, and memory

allocation distributed under BSD license.
They offer:

1. cpu_profiler, a profiler for monitor-
ing the performance of functions

2. tcmalloc, a thread caching memory
allocator as a fast replacement for

3. heap_checker, a heap checker for leak
detection

4. heap_profiler, a profiler for moni-
toring heap allocations CMalloc

We will discuss these below.

4.3.1 CPU Profiler

The CPU profiler collects information dur-
ing runtime, namely the number of func-
tion calls with caller and callee methods and
classes. There are multiple ways to use the
CPU profiler:

1. Through linking -lprofiler into
your executable.

2. Through $LD_PRELOAD by us-
ing % env LD_PRELOAD=”/usr/lib/

libprofiler.so” /path/to/binary.
But doing so is not recommended.

Note that CPU profiling has to be
turned on manually before execution.
This is done by defining the environ-
ment variable $CPUPROFILE to the file
you want to save the collected informa-
tion to. Surround the code you want
to profile with ProfilerStart(”profile

name”) and ProfilerStop(). Sev-
eral more advanced functions are
available like ProfilerFlush() and
ProfilerStartWithOptions().

5 of 17

Heye Vöcking Performance analysis using GPerfTools and LTTng

Using the environment variables
$CPUPROFILE_FREQUENCY

and
$CPUPROFILE_REALTIME

you can control the behavior of the CPU
profiler during runtime.
See section 4.4 for analysis of the gener-

ated profiles. [Ghe08]

4.3.2 TCMalloc

tcmalloc acts as a replacement for the stan-
dard malloc provided in clib. It is designed
to provide an efficient memory management
for multi-threaded applications, it reduces
memory overhead especially for small ob-
jects. The heap checker as well as the heap
profiler depend on tcmalloc. For brevities
sake we are not looking further into how tc-
malloc works in the inside, because we are
more focusing on performance analysis. But
the interested reader might want to take a
look it this [SG07].
There are multiple ways to use tcmalloc:

1. Through linking -ltcmalloc into
your executable. (The heap leak
checker depends on tcmalloc so in
order to use it you have to link
-ltcmalloc into your binary)

2. Through $LD_PRELOAD by us-
ing % env LD_PRELOAD=”/usr/lib/

libtcmalloc.so” /path/to/binary.
But doing so is not recommended.

4.3.3 Heap Leak Checker

As the name says, the heap leak checker
helps finding memory leaks during execu-

tion. So it records every allocation and
checks on exit if all allocated memory has
been freed. If not all memory has been freed
it reports a leak.
In order to run a program with the

heap leak checker you have to use tcmal-
loc, see section 4.3.2 and you have to
define the $HEAPCHECK environment vari-
able with the mode you want to use e.g.
HEAPCHECK=normal.
There are 4 different modes of leak check-

ing:

1. minimal ignores all allocations before
main().

2. normal reports all objects allocated
during runtime that are still “alive”
at the end of execution.

3. strict is basically like normal but
also reports memory leaked in global
destructors.

4. draconian is tracking every bit of
memory. If not all allocated memory
has been freed it reports a leak.

5. as-is offers a very flexible mode,
where you can choose all options pre-
cisely by setting environment vari-
ables.

6. local will activate leak checking not
for the whole program, but explic-
itly. In order to do so, you cre-
ate a HeapLeakChecker object where
you want to start leak checking, and
end it with a call to NoLeaks(). In
order to turn leak checking on you

6 of 17

Heye Vöcking Performance analysis using GPerfTools and LTTng

still have to start the program with
HEAPCHECK=local.

You can also explicitly turn off leak check-
ing for certain objects or code pieces. To do
this, bracket the code you want to ignore
with the following heap-checking construct:

...

{

HeapLeakChecker::Disabler disabler;

<code you want to ignore>

}

...

This will lead the heap leak checker to ig-
nore all objects and any objects reachable
from these objects, including any routines
called from the bracketed region to be ig-
nored.

It is also possible to turn of leak check-
ing for single objects and everything reach-
able by following pointers inside these
objects. To do this simply pass the
pointer of the object you want to ignore to
IgnoreObject(). By passing the pointer
to UnIgnoreObject() the effect can be un-
done.

Via environment variables the leak
checker can be tuned when run in as-is

mode. For a complete overview of all avail-
able options have a look at [Lif07].

The leak report is printed on the
command-line, but it can also be visualized
by pprof, see section 4.4 for details. [Lif07]

4.3.4 Heap Profiler

The heap profiler can be used, to find out
more about the memory management of a
certain program. This is useful for analyz-
ing the program heap, finding memory leaks
and make out places that allocate a lot of
memory. The profiler keeps track of all allo-
cations done by malloc, calloc, realloc,
and new.

To use the heap profiler tcmalloc must
be used. Take a look at section 4.3.2 to see
how to include tcmalloc in your applica-
tion. You also have to set the environment
variable $HEAPPROFILE to the path where
you want to save your profile to.

In your code you can call
HeapProfilerStart(”prefix”) to start
heap profiling. The profiled data will be
written in to files called prefix.XXXX.heap,
where XXXX is a whole number starting
at 0000 and increasing with every pe-
riodic dump. With HeapProfileDump()

or GetHeapProfile() you can exam-
ine the profile. Whenever the pro-
filer is running IsHeapProfilerRunning()

will return true. To stop profiling call
HeapProfilerStop().

It is possible to manually check for leaks
using the profiler, but it is easier to use the
heap leak checker discussed in section 4.3.3
for this task.

During execution the heap profiler will
write periodical outputs to the specified
path. These can be analyzed using the pprof
tool, see section 4.4 for details. [Ghe12]

7 of 17

Heye Vöcking Performance analysis using GPerfTools and LTTng

4.3.5 Profiler Insides

The profiler collects information about the
program stack. In order to do so it grabs
information provided in the program stack
during execution. In the following source
code we want to show the basic idea behind
this.

main() {

foo();

}

foo() {

bar();

}

bar() {

// Code inserted for profiling the

// program stack

int size = 10;

void* result[size];

int sizes[size];

int depth = GetStackFrames(

result, sizes, size, 1);

}

The method bar() and the call to
GetStackFrames() will be skipped, so
in this case the result returned by
GetStackFrames() will be 2. The array
result will contain two elements

result[0] = foo

result[1] = bar

The two elements are instruction pointers
that point at the program stack where foo

and bar are located.
The sizes array will also contain two el-

ements

sizes[0] = 16

sizes[1] = 16

Which are the corresponding frame sizes
of the functions.

4.4 Post-Processing with pprof

The program called “pprof” was written by
Google Inc. in the programming language
go. It is under the BSD license and its
source is located inside the gperftools repos-
itory.
It can be used to analyze the collected

data. It offers a number of different output
formats: Raw text, postscript via gv, dot,
pdf, gif, source-code listings, and disassem-
bly. Note that you might need to install
dot, gv, and ps2pdf. To reduce cluttering
some edges might be dropped but this as
well as the granularity of the output can be
controlled at the command-line.

4.4.1 Analyzing CPU Profiles

After a program has been run with the CPU
profiler enabled the output file can be ana-
lyzed using pprof. When calling pprof with
the –gv option, a call graph annotated with
timing information will be displayed. In fig-
ure 1 you can see an example of approximat-
ing the value of a gaussian distribution using
the direct approximation (original_exp), a
gradient, the exponential function, and a
lookup table. The sizes of the nodes reflect

8 of 17

Heye Vöcking Performance analysis using GPerfTools and LTTng

g e r m a n - o p e n
Total samples: 1625
Focus ing on: 181
Dropped nodes wi th <= 0 abs (samples)
Dropped edges w i th <= 0 s ample s

_ _ l i b c _ s t a r t _ m a i n
0 (0 .0%)

of 181 (100 .0%)

m a i n
0 (0 .0%)

of 181 (100 .0%)

1 8 1

_ s t a r t
0 (0 .0%)

of 181 (100 .0%)

1 8 1

d o E x p e r i m e n t
0 (0 .0%)

of 181 (100 .0%)

o r i g i n a l _ e x p
1 (0 .6%)

of 88 (48 .6%)

8 8

e x p o n e n t i a l _ e x p
2 (1 .1%)

of 36 (19.9%)

3 6

l ookup_exp
4 (2 .2%)

of 30 (16 .6%)

3 0

g r a d i e n t _ e x p
2 (1 .1%)

of 20 (11.0%)

2 0

1 8 1

1

Tools
Genera lProbabi l i s t icTool

g a u s s
16 (8 .8%)

of 61 (33 .7%)

2 3

s t d
b a s i c _ o s t r e a m

_M_inser t
8 (4 .4%)

of 61 (33 .7%)

3 1

Tools
Genera lProbabi l i s t icTool

get_probabi l i ty_at
5 (2 .8%)

of 22 (12 .2%)

2 2

1 6

s t d
log
0 (0 .0%)

of 23 (12 .7%)

2 3

Tools
Genera lProbabi l i s t icTool

r a n d o m
5 (2 .8%)

of 14 (7 .7%)

1 4

8

s t d
n u m _ p u t

d o _ p u t
0 (0 .0%)

of 51 (28 .2%)

5 1

s t d
n u m _ p u t

_M_inser t_f loat
8 (4 .4%)

of 51 (28 .2%)

8

s t d
u s e _ f a c e t

2 (1 .1%)
of 17 (9 .4%)

1 7

5 1

1 47

2

s t d
e x p

0 (0 .0%)
of 15 (8 .3%)

1 2

1 48

4

__logf_finite
21 (11.6%)

2 1

5

3

2 1

1 08

2

2

__dynamic_cas t
6 (3 .3%)

of 15 (8 .3%)

1 4

5

__expf_finite
14 (7.7%)

1 4

5

1 4

Figure 1: Output produced by pprof

9 of 17

Heye Vöcking Performance analysis using GPerfTools and LTTng

their time consume. Each node contains the
function name (first line), the time spend in
the function itself (second line), the total
time which is composed of the cumulated
time of the functions called and the time
displayed in the second line. The time is
provided in units where one unit is equiva-
lent to one sample. For example: 88 units at
100 samples per second equate to 0.88 sec-
onds spend in the corresponding function.

The edges are drawn from the caller to the
callee, located at the arrow of the connect-
ing edge. The weight of the edges reflect
the time spend in the function that is be-
ing called. Some edges and nodes might be
dropped to reduce clutter, so the sum might
not always add up to 100 percent. [Ghe08]

4.4.2 Analyzing Memory Leaks

To help track down memory leaks pprof can
be used to display a call graph of the re-
ported leak. [Lif07]

4.4.3 Analyzing Heap Profiles

The pprof tool can also be used to analyze
the profiles generated by the heap profiler.
Calling pprof with the –gv option will open
a gv window displaying a weighted directed
graph showing what portions of the code al-
located how much memory.

To find gradual memory leaks you can use
pprof and compare two profiles. The mem-
ory usage in the first profile will be sub-
tracted from the second profile. [Ghe12]

5 Linux Trace Toolkit next
generation in depth

The LTTng was written by Mathieu
Desnoyers after he started to maintain the
predecessor called “Linux Trace Toolkit”
since 2005. It offers both user space, as well
as kernel space tracing. It claims to trace
with a very low impact on the system. It is
able to output the recorded data directly to
disk or to the network. An overview over the
whole LTTng architecture can be achieved
by looking at figure 2.

5.1 Field of application

5.1.1 Supported operating systems

LTTng is only available for Linux.

5.1.2 Supported architectures

LTTng has at the moment full support for
x86-32, x86-64, PowerPC 32/64, ARMv7
OMAP3, MIPS, sh, sparc64, s390 with a
timestamp precision of typically ∼ 1ns (cy-
cle counter). Other Linux architectures are
supported as well, but LTTng might only
have a limited timestamp precision on these.
LTTng also supports arbitrary architecture
endianness. [LTT12]

5.1.3 Supported programming
languages

Supported programming languages are C
and C++. But LTTng can be used with
any language that can call C code, for ex-
ample it can be used with Java or Erlang
through the LTTng VM adaptor.

10 of 17

Heye Vöcking Performance analysis using GPerfTools and LTTng

liblttngctl (LGPLv2.1)

LTTngCommandLine
Interface
(GPLv2)

liblttngctl (LGPLv2.1)

liburcu (LGPLv2.1)
liblttngctl (LGPLv2.1)

liblttng-ust-ctl (GPLv2)
liblttng-consumer (GPLv2)

LTTngmodules
(GPLv2/LGPLv2.1)
- Tracepoint Probes*

liburcu (LGPLv2.1)
liblttng-ust (LGPLv2.1)

LTTng VM adaptor
- Tracepoint Probes*
liburcu (LGPLv2.1)

liblttng-ust (LGPLv2.1)

J ava/Erlang
Application

- Tracepoint*

Local storage
CTF†

SSH connexion

Host-Side User Interfaces

libbabeltrace (MIT/BSD)

libbabeltrace (MIT/BSD)

EclipseTracingand
MonitoringFramework (EPL)
- Trace display and analysis
- Trace control
- Allowopen source
and proprietary plugins

Host Target

CTF† over TCP/UDP/SSH

Linux kernel
- Tracepoint*
- Dynamic probes
(kprobes)

C/C++Application
- Tracepoint*
- Tracepoint Probes*

LTTngConsumerDaemon (GPLv2)
- Zero-copydata transport or aggregator
- Export raw trace data, statistics and summarydata
- Snapshots fromin-memory flight recordermode
- Store all trace data, discard on overrunCustomControl Software

- Interface with proprierary
clustermanagement infrastructures

LTTV (GPLv2)
- Trace display and analysis
- Trace control
- Allowopen-source plugins

Babeltrace (MIT/BSD)
- Trace converter
- Trace pretty printer
- Allowopen source
and proprietaryplugins

LTTngSessionDaemon (GPLv2)
- Control multiple tracing sessions
- Centralized tracing status
management

Posix sharedmemory
and pipe

Posix sharedmemory
and pipe

Memory-mapped
buffers or splice,

poll, ioctl

Instrumentation

Control

Trace Data

Libraries

*TracepointandProbes Characteristics
- Lowoverhead, no trap, no systemcall,
- Re-entrant: Signal, thread andNMI-safe,
- Wait-free read-copy update,
- Can be used in real-time systems,
- Use GCC asmgoto and Linux kernel
static jumps,
- Cycle-level time-stamp,
- Runtime activation of statically
and dynamically inserted instrumentation,
- Non-blocking atomic operations,
- Allow tracing of proprietary applications
and proprietary control software
(LGPLv2.1 license).

† CommonTraceFormat(CTF)
- Compact binary format,
- Self-described,
- Handles HW&SW tracing,
- TCP andUDP network streaming,
- Flexible data layouts for
expressiveness and
highest throughput,
- Layout allows fast seek and
processing of very large traces
(>10GB).

liblttng-ust-ctl (GPLv2)

liburcu (LGPLv2.1)

Figure 2: LTTng 2.0 architecture [LTT12]

5.2 Install / Setup

The installation of LTTng 2.0 is fairly sim-
ple, given you are using Ubuntu. You can
simply install it from the PPA (Personal
Package Archives) and reboot. That’s it.

5.3 How it works

LTTng consists of three parts: The kernel
part which controls kernel tracing, the user
space command-line application called lttctl,
and the user space daemon called lttd which
waits for the data to write it on the disk.
Moreover LTTng is modular, it consists of 5
modules:

1. ltt-heartbeat which generates periodic
events for monotonic increasing time-
base.

2. ltt-facilities is a collection of event
types.

3. ltt-statedump generates events to de-
scribe kernels state at start time.

4. ltt-core handles a number of LT-
Tng control events and therefore
controls the previously mentioned
ltt-heartbeat, ltt-facilities, and ltt-
statedump.

5. ltt-base which is a built in kernel ob-
ject that contains symbols and data
structures.

[DD06]
All these modules work together to ob-

serve and persist the data while tracing.

11 of 17

Heye Vöcking Performance analysis using GPerfTools and LTTng

5.3.1 Tracing

Tracing is an efficient way to monitor the
execution of a program and record the ob-
served data. We observe in particular oper-
ating system kernel events [YD00] such as:

• System Calls

• Interrupt Requests

• Scheduling Activities

• Network Activities

Events can have an arbitrary number of ar-
guments, therefore the event sizes might dif-
fer. All events are ordered accurately, yet
across multiple cores or CPUs, except if the
hardware makes it impossible.
The data recorded saves the event as well

as its attributes and the timestamp. There
are several ways to do this.

• Static tracepoints are located at
source code level and therefore hard-
wired in a compiled binary file of a
program or in the kernel. They have
to be activated prior to execution.

• Dynamic breakpoints can be inserted
without recompiling via a system call,
trap, or dynamic jump, and added in
the Linux kernel via kprobe.

A breakpoint interrupt causes big overhead,
so LTTng uses Tracepoints to record raw
data which is analyzed in a post-processing
step to keep the overhead during execution
low. [Tou11] [RGA10]

5.3.2 Tracepoints

A tracepoint is a small piece of code basi-
cally similar to this:
if (tracepoint_1_activated)

(*tracepoint_1_probe)(arg1, arg2);

Tracepoints are already available in the
Linux kernel and in many Linux applica-
tions. But in order to use them they have
to be activated prior to execution and con-
nected to a probe. A probe is the function
called by an activated tracepoint during ex-
ecution. See figure 3 for a digram of the
tracing architecture. With custom probes
tracing can be bound to a condition. In or-
der to keep the overhead of tracepoints to a
minimum, they are implemented very care-
fully so the magnitude of an inactive trace-
point is practically zero. In the kernel they
use code modification and in user space the
evaluation on booleans is fairly fast. When
active a the tracepoints overhead is compa-
rable to a C function call. [Tou11]. [LTT12]

Probes

Instrumentation

Analysis

Merge−sort

Data extraction

....Input/Output

Post−processing

Tracing

On−site

Scalability to multi−cores

Deterministic real−time effect

Low−latency

Low−overhead

Portability

Off−site

Cross−architecture

Scalability to large traces

12 of 17

Heye Vöcking Performance analysis using GPerfTools and LTTng

Figure 3: Trace Architecture Diagram
[Des09] Probes are called by
the instrumented portions of a
program or the kernel. They
collect the data, hand it over
to the lttd which takes care of
the data persistence. After the
execution is over the collected
data is prepared for the analysis
and displayed in an appropriate
viewer.

5.3.3 Probes, Trace Sessions, and
Channels

A probe can be connected to more than one
tracepoint. When an active tracepoint is
reached, it calls the probe it is connected
to. The probe then reads the trace session
and writes the events into a channel. The
probes are not implemented through traps
or system calls and are therefore very effi-
cient.

A trace session can be attached to several
channels and keeps the trace configuration
which consists of the event filters to be ap-
plied and a boolean value which states if the
session is active or not.

A channel is used as an abstract I/O de-
vice. Data written into a channel is at first
stored in a buffer and when needed exported
by lttd to the disk or to the network.

An overview of the different trace compo-
nents can be seen in figure 4.

Figure 4: Tracer Components Overview
[Des09] The notation used for
the edge connecting Trace session
and Channels indicates, that a
trace session can contain multiple
channels.

5.3.4 Storage and Trace Modes

In order to minimize the performance im-
pact on the system and ensure an effective
use of memory bandwidth, LTTng is de-
signed to take a zero copy approach. That
means that no data is moved between mem-
ory locations during tracing phases. All
recorded data is sent into channels which
store the data in buffers and depending on
the trace mode store the data independent
from tracing. The data in the channels can
be written on disk or streamed over the net-
work. Furthermore it is highly optimized to
keep it as compact as possible.
The following Tracing modes are avail-

able:

write-to-disk the recorded data is written,
whenever the circular buffer is full.

13 of 17

Heye Vöcking Performance analysis using GPerfTools and LTTng

Therefore no trace data is lost.

flight recorder the recorded data is not
written when the circular buffer is full,
but whenever the recording does not
impact performance or after the trace
has ended. The flight recorder mode
activation is per-channel. Some data
might be overwritten in this mode.

Still under development are stream to re-
mote disk and live monitoring, remote or lo-
cal. Since I/O operations are costly they are
not done by the probes, but by threads spe-
cialized for I/O operations which can persist
the data while tracing is in progress or after
the trace session has been ended. [RGA10]

5.4 Post-Processing and Analysis

The trace dump must not necessarily be
viewed in the same environment where the
data has been recorded. The trace output
itself is a binary file which is self describing
and therefore portable.

5.4.1 Babeltrace

Babeltrace offers libraries for parsing traces
to human readable text logs and vice versa.
It is distributed by EfficiOS which is run by
Mathieu Desnoyers, the author and main-
tainer of LTTng. Babeltrace works with
logs in CTF (Common Trace Format) and
is command-line based, so it offers no GUI.
For a visual representation of a trace the
LTT Viewer can be used.

5.4.2 LTT Viewer

The LTT Viewer, or short LTTV, can be
used to view recorded traces by either the
kernel space tracer or the user space trace.
It is written in C using glib and the GTK
and independent from LTTng. Developers
can easily extend the LTTV by writing plug-
ins. The GUI of LTTV offers control flow
charts and resource viewers. In figure 5 you
can see a trace recorded by LTTng of a pro-
gram which performs a one second sleep.
At the position of the cursor we observe
a syscall and page faults by different pro-
cesses. In the “Traceset” view we can select
statistics of the whole system and of our
program. For example Traps, Interrupts,
and Syscalls.
As of now, it is not possible to view traces

generated with LTTng 2.0 because they are
saved in CTF which is not yet supported by
LTTV.

5.4.3 IDE integration

Through the TMF (Tracing and Monitor-
ing Framework, also known as “LTTng plug-
in”) traces can be viewed and analyzed di-
rectly in eclipse. TMF is part of the Linux
Tools project and can be installed using the
built in software manager in eclipse. It re-
quires the LTTng trace reading library to be
installed. It offers the following functions:

Control Flow visualizes the state transi-
tion of the processes.

Resources visualizes the state transition of
system resources.

14 of 17

Heye Vöcking Performance analysis using GPerfTools and LTTng

Figure 5: An example trace recorded with LTTng analyzed with LTTV

Statistics provides statistics on occur-
rences of events.

5.5 Performance Impact

The performance impact of LTTng is rea-
sonably small. On a busy system the CPU
time added by tracing under medium and
high load goes from 1.54% to 2.28%. Only
under very high load the impact is notice-
able with 9.46%. An overview of the impact
under different scenarios can be seen in ta-
ble 1. The load in the third column shows
the usage of the CPU by all processes in-
cluding probes and lttd. Adding up the time
in the probes and the lttd column gives us
the whole overhead caused by LTTng. The
data rate is the amount of data outputted
and processed by the lttd (LTTng Daemon
in user space) every second. And Event lists
the number of events recorded every second.
[DD06]

6 Areas of Application

Google is using their gperftools themselves
for profiling, leak checking, as well as mem-
ory allocation. The LTTng is used by a
variety of companies for performance mon-
itoring and debugging. These include IBM,
for solving issues in distributed file systems,
Autodesk, for real time issues in application
development, Siemens, for internal debug-
ging and performance monitoring. Further-
more the LTTng included in the packages
of many Linux distributions. To only name
a few: Ubuntu, Montavista, Wind River,
STLinux and Suse. [RGA10] [LTT12]

7 Summary

We have mentioned several different tools
for performance analysis and discussed the
Linux Trace Toolkit next generation and the
Great Performance Tools in detail. We ex-
plained how to use them and gave an insight

15 of 17

Heye Vöcking Performance analysis using GPerfTools and LTTng

Load size Test Series CPU time (%) Data rate Events/sload probes lttd (MiB/s)
Small mozilla (browsing) 1.15 0.053 0.27 0.19 5,476
Medium find 15.38 1.150 0.39 2.28 120,282
High find + gcc 63.79 1.720 0.56 3.24 179,255
Very high find + gcc + ping flood 98.60 8.500 0.96 16.17 884,545

Table 1: LTTng benchmarks under different loads [DD06]

to some basic functionality. The use of the
gperftools is very straight forward and the
collected information can be analyzed using
pprof by outputting it to many different for-
mats. There are several tools for the analy-
sis of data collected by the LTTng.

8 Conclusion

The need for more speed drives the trend
to systems that are getting more and more
complex and should yet perform faster and
more efficient. At the same time the com-
plexity of software running on those system
is also increasing. In order to improve com-
prehension of the behavior of the systems we
need to use tools that help us understanding
how the different parts work together we can
use tools that help us. In this work we have
discussed two of the many tools offered for
profiling and tracing. We explained how the

LTTng and the gperftools work and further
showed how use them and how to analyze
their output.

9 Outlook

With the demand for more performance
profiling and tracing will remain a crucial
task for speed improvement. When we look
at the history of tracing we can see that due
to the rising demand tracing is getting more
and more comfortable. Also the perfor-
mance impact of tracing is getting smaller
and smaller. But it is not only the speed
that matters but also the safety and security
of software. It is hard to imagine debugging
software with interacting threads by hand
and since the drift to parallel programs is
growing we will depend on good tracing and
profiling tools in the future.

16 of 17

Heye Vöcking Performance analysis using GPerfTools and LTTng

References
[CS12] Craig Silverstein, David C.: Great Performance Tools. (2012).

http://code.google.com/p/gperftools/

[DD06] Desnoyers, Mathieu ; Dagenais, Michel R.: The LTTng tracer: A low impact
performance and behavior monitor for GNU/Linux. In: Linux Symposium (2006)

[Des09] Desnoyers, Mathieu: Low-Impact Operating System Tracing, Université de Mon-
tréal, Diss., December 2009

[Ghe08] Ghemawat, Sanjay: Gperftools CPU Profiler. (2008), May.
http://gperftools.googlecode.com/svn/trunk/doc/cpuprofile.html

[Ghe12] Ghemawat, Sanjay: Gperftools Heap Profiler. (2012), February.
http://gperftools.googlecode.com/svn/trunk/doc/heapprofile.html

[gpr12] gprof: GNU prof. (2012). http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html

[Lif07] Lifantsev, Maxim: Gperftools Heap Leak Checker. (2007), July.
http://gperftools.googlecode.com/svn/trunk/doc/heap_checker.html

[LTT12] LTTng: http://www.lttng.org. (2012)

[Men99] Mentor: An In-Depth and Comprehensive look at The Mentor Embedded Linux
Development Platform, 1999

[Mö12] Möller, Hajo: Instrumentierung des Kernels. (2012)

[QNX01] QNX: QNX. http://www.qnx.com/products/tools/. Version: 2001

[RGA10] Romik Guha Anjoy, Soumya Kanti C.: Efficiency of LTTng as a Kernel and
Userspace Tracer on Multicore Environment, School of Innovation, Design and
Engineering Mälardalen University Västerås, Sweden, Diplomarbeit, June 2010

[SG07] Sanjay Ghemawat, Paul M.: TCMal-
loc : Thread-Caching Malloc. (2007), February.
http://gperftools.googlecode.com/svn/trunk/doc/tcmalloc.html

[Smi11] Smith, Peter: Using the CPU to Improve Performance in 3D Applications. 2011.
– Forschungsbericht

[SR08] Sean Rose, Riley A.: An Evaluation of Performance Analysis Tools, University
of Ottawa, Diplomarbeit, April 2008

[Tou11] Toupin, Dominique: Using Tracing to Diagnose or Monitor Systems. In: Soft-
ware, IEEE 28 issue:1 (2011), S. 87–91

[Val12] Valgrind: (2012). http://www.valgrind.org

[YD00] Yaghmour, Karim ; Dagenais, Michel R.: The Linux Trace Toolkit. In: Linux
Journal (2000)

17 of 17

