GEORG-AUGUST-UNIVERSITAT ®
= 7\ GOTTINGEN &/t e

Seminar with Practical: Scalable Computing Systems
and Applications in Al, Big Data and HPC

Comparing Open-Source File Recovery
Techniques on ext4: Hash-Exact

Evaluation and a Combined-Tool
Workflow

Salaheldin Soliman

MatrNr: [25845983|
Supervisor: Patrick Hohn

Georg-August-Universitat Gottingen
Institute of Computer Science

September 30, 2025

Abstract

We evaluate open-source file recovery techniques for ext4 under realistic data loss: random
deletions and byte-level corruptions (first 512 B). The study compares metadata-aware
extraction (The Sleuth Kit), content-based carving (PhotoRec, Scalpel), and a combined
workflow that chains repair, metadata extraction, and carving with hash de-duplication.
We score recovery strictly by SHA-256 equality against a post-simulation manifest [1].
Theoretical context draws on filesystem analysis, file carving, and repair/journaling sources
[2-6]. Across images from 100 MB to 50 GB, results show that recovery is scenario-specific
and that combining complementary techniques yields the broadest exact-match coverage.

Declaration on the use of ChatGPT and comparable tools
in the context of examinations

In this work I have used ChatGPT or another Al as follows:
(] Not at all
1 During brainstorming
[J When creating the outline
0 To write individual passages, altogether to the extent of 0% of the entire text
(] For the development of software source texts
V1 For optimizing or restructuring software source texts
1 For proofreading or optimizing
(] Further, namely: -

I hereby declare that I have stated all uses completely.
Missing or incorrect information will be considered as an attempt to cheat.

11

Contents

List of Tables
List of Figures
1 Introduction

2 Recovery Techniques
2.1 Metadata-Aware Filesystem Recovery
2.2 Content-Based Carving
2.3 Journal-Aided Recovery onextd
2.4 Structural Repair (Partitions, Superblocks) and Imaging

3 Methodology and Pipeline

4 Results
4.1 Overall recovery vs. sizeo
4.2 Deleted recovery vs. size
4.3 Corrupted recovery vs. size
4.4 Runtime vs. size
4.5 Deleted recovery heatmap

5 Usability

6 Discussion
6.1 Techniqueroles
6.2 On strict hashing L
6.3 Threats to Validity

7 Conclusion
References

A Code samples

111

iv

iv

10
10
10
10

11

12

Al

List of Tables

1 Overall exact-match recovery by image size (counts/total). N denotes
total files per size: 0.1 GB—458, 1.0—4,580, 5.0—22.900, 20.0—91,600,
50.0—229,000.

2 Deleted exact-match recovery by image size (counts/N). N is the deleted
class size (20% of total): 92, 916, 4,580, 18,320, 45,800.

3 Corrupted exact-match recovery by image size (counts/N). N is the corrupted
class size (10% of total): 46, 458, 2,290, 9,160, 22)900.

4 Runtime (minutes) by image size. Values are synthetic but reflect rela-
tive scaling: PhotoRec < Scalpel < TSK; Combined approximates staged
pipeline time.

5 Deleted recovery heatmap (counts/N per tool x size). N as in the deleted
table (20% of total persize).

List of Figures

1 (ext4, 100 MB-50 GB) Overall exact-match recovery vs. image size. Com-
bined outperforms any single tool.
2 Deleted exact-match recovery vs. image size. Carvers (PhotoRec, Scalpel)
contribute non-zero exact matches; Combined integrates these gains.
3 Corrupted exact-match recovery vs. image size. TSK and Combined overlap
near 100% (allocated corrupted files match the simulated hash); carvers
seldom achieve hash-identical results when headers are damaged.
4 Runtime (minutes) vs. image size. PhotoRec scales fastest; Scalpel benefits
from multi-threading; Combined reflects staged pipeline time.
5 Deleted exact-match recovery heatmap (%). Tools x sizes (100 MB-50 GB).

v

File Recovery on ext4

1 Introduction

When files are deleted or a filesystem is corrupted, data often persists until blocks are
reused. Recovery proceeds via two main strategies: (i) metadata-based methods that parse
filesystem structures to restore referenced content [2|, and (ii) content-based carving that
scans raw media for file signatures when metadata is absent or damaged [3|. In practice,
responders also rely on partition/filesystem repair and journaling artifacts to restore access
before carving [5, 6]. We adopt a conservative metric: a recovery counts only if recovered
bytes exactly match the simulated ground-truth hash (SHA-256) [1].

2 Recovery Techniques

2.1 Metadata-Aware Filesystem Recovery

Filesystem parsers enumerate superblocks, inodes, directory entries, allocation state, and
block references. When references remain valid, recovery preserves filenames/timestamps
and can re-extract allocated objects byte-for-byte (hash-identical). The Sleuth Kit (TSK)
provides a well-tested toolchain for this workflow: fls lists directory trees (including
deleted entries when metadata persists), istat inspects inodes, icat extracts content by
inode, and tsk_recover performs bulk export of allocated files [2, 7].

On ext4, the primary on-disk structures are the superblock, group descriptors, inode
tables, extent trees (which map file offsets to physical block runs), and directory entries
[4]. Deletion typically clears the directory entry and may also drop or zero the extent
mapping in the inode. Two implications follow.

e If an inode still has valid extent mappings and the file is marked allocated, TSK will
re-extract the exact bytes (this explains near-100% exact matches for the corrupted-
but-allocated class when only the first 512 B were altered in our simulation).

e If pointers are removed or the inode is re-used, byte-exact recovery via metadata
becomes impossible; responders must switch to carving or journal-aided techniques

[5]
Practical strengths and limits.

e Strengths: preserves filenames, paths, times; fastest end-to-end for allocated content;
results are byte-identical when metadata is consistent.

e Limits: weak “undelete” on ext4 once extent mappings are cleared; fragmented
deleted files cannot be reconstructed without valid metadata; directory entries can
disappear early, even when data still resides on disk.

e Typical tools: tsk_recover for bulk export; fls/icat/istat for targeted inspec-
tion; used first in the combined workflow to capture all allocated content.

Section 2 Salaheldin Soliman 1

File Recovery on ext4

2.2 Content-Based Carving

Carvers ignore the filesystem and scan raw media for recognizable byte patterns (magic
headers, optional footers, or internal structure) to delimit files. JPEG, for instance,
commonly starts with FF D8 and ends with FF D9. When footers are absent (e.g., many
container formats), advanced carvers validate internal structure to decide plausible length
or stop at the next header [3].

Two complementary carvers used here are PhotoRec and Scalpel. PhotoRec is format-
rich and validation-heavy; it attempts to follow structure, avoid false positives, and can
sometimes thread simple multi-fragment recoveries [8|. Scalpel emphasizes speed and a
concise, auditable configuration (scalpel.conf) for the exact set of signatures you care
about; it parallelizes well and is easy to integrate in scripted pipelines [9].

Important realities for exact hashing.

e Fragmentation: when deleted files are fragmented, carving often yields partial
content. Our strict SHA-256 metric credits only byte-identical results, so such
partials score as misses even if visually usable [10].

e Headers damaged: deliberate header overwrites (like our 512 B corruption) thwart
signature detection; structure-aware validation sometimes recovers, but exact-byte
matches are rare in this case.

e Containers: formats such as PDF or ZIP/DOCX benefit from internal consistency
checks (object tables, central directory). Enabling validators improves precision but
may increase runtime [11].

e Provenance: carving usually loses original names/paths. Pipelines should preserve
tool provenance and de-duplicate by hash to avoid double counting across carvers.

e Secondary metrics: fuzzy hashing (e.g., ssdeep) can cluster near-identical outputs,
but is not evidentiary; we treat it as a potential secondary metric outside exact-match
scoring [12].

Recommended practice: run carving after metadata-based export to focus on unallo-
cated space; use a curated scalpel.conf to add or narrow types; record all outputs and
hashes for auditability.

2.3 Journal-Aided Recovery on ext4

Ext-family journals (JBD2 on ext4) record metadata updates and, in data=ordered
mode, ensure that file data hits disk before metadata commits. While journals do not
guarantee full data copies, they frequently preserve enough metadata (directory entries,
inode/extent snapshots) for recent deletions to be undone. Tools like extundelete parse
the journal and related structures to resurrect names and block lists that pure carving
cannot reconstruct [5, 13].

Usage notes.

e Work on a forensic image, not the live filesystem; mount read-only. Journal blocks
must not be overwritten by continued use.

e Journal success is time-bound: once journal segments wrap or are reused, prior
metadata evidence disappears.

Section 2 Salaheldin Soliman 2

File Recovery on ext4

e Journal recovery complements TSK: if it reconstructs inode-to-block mappings for
recently deleted files, those files can then be re-extracted byte-for-byte.

2.4 Structural Repair (Partitions, Superblocks) and Imaging

Before per-file recovery, responders frequently restore basic access to volumes. Partition
tables (MBR/GPT) or boot sectors can be repaired with TestDisk to make images
mountable again [6]. Within ext4, backup superblocks and e2fsck can correct some
structural inconsistencies. Use evidence containers and provenance: store images and
derivatives in AFF4 where possible and log processing with DFXML [14, 15]. Because
these actions may write to the medium, the standard operating procedure is:

e Acquire a full disk image first (e.g., with ddrescue), keeping the original pristine
and read-only.

e Attempt non-destructive repair on a copy of the image; only when the volume
becomes readable do you proceed to TSK and carving stages.

e Record tool versions, parameters, timestamps, and any changed bytes to preserve
the chain of custody.

This “repair — metadata export — carving — de-duplication” order underlies the
Combined workflow and explains its broader coverage in our results.

Section 2 Salaheldin Soliman 3

File Recovery on ext4

3 Methodology and Pipeline

We follow a scripted, end-to-end pipeline (code and artifacts: https://github.com/
salaheldinsoliman/forensics):

e Image construction. Create ext4 images at 100 MB, 1 GB, 5GB, 20 GB, and
50 GB. Fill to ~95% from a seed corpus of JPG, PDF, DOCX, and TXT documents
(see Listing 1).

e Baseline manifest. Traverse each image to record a baseline manifest containing
the image identifier, size, file path, action (keep), and SHA-256 hash per file (see
Listing 2).

e Loss simulation. Randomly select 20% of files to delete and 10% to corrupt by
overwriting the first 512 B with zeros. Recompute hashes for all remaining files and
emit a simulated manifest labeling each entry as keep, deleted, or corrupted. For
deleted entries we store the original content hash (orig_hash); for keep/corrupted
we store the post-simulation hash (sim_hash). See Listing 3.

e Tool execution.

— TSK (metadata): extract allocated files; compute a recovered-manifest of
SHA-256 hashes 7] (Listing 4).

— PhotoRec (carving): run signature-based carving over the raw image; record
recovered hashes. We used a prepared command file for non-interactive, repro-
ducible runs [8] (Listing 5).

— Scalpel (carving): carve using a curated configuration for selected types;
record recovered hashes [9] (Listing 6).

— Combined workflow: optional repair (e.g., TestDisk/fsck) — TSK (allo-
cated) — PhotoRec (unallocated) — Scalpel (targeted types) — SHA-256
de-duplication across outputs [6].

e Scoring (hash-exact). A file counts as recovered in category c in {keep, deleted,
corrupted} if a recovered output’s content hash matches the class target: sim_hash
for keep and corrupted, and orig_hash for deleted. Filenames/paths are ignored.
This is conservative and evidentiary in spirit |1, 16, 17]. Public reference images and
ground truth are available via the NIST CFReDS portal [18|. See Listing 7 for the
verification script.

All tests were executed on shared research hardware; images ranged from 100 MB to
50 GB on ext4. We keep figure labels generic and describe the environment in text rather
than on plots.

Section 3 Salaheldin Soliman 4

https://github.com/salaheldinsoliman/forensics
https://github.com/salaheldinsoliman/forensics

File Recovery on ext4

4 Results

Figures report exact-match percentages and runtime versus image size; each plot compares
individual tools and the Combined workflow.

4.1 Overall recovery vs. size

Overall exact-match recovery vs. image size

90 A >0

=@®= Combined

0<. v v
80 / ®
./ \
7}
[]
70
;@
< 601 =@~ TSK (-e)
2 PhotoRec
£ 50 4 =®= Scalpel
k9]
©
x
w

40 -

304 9

®
o \.‘

0 10 20 30 40 50
Image size (GB)

Figure 1: (ext4, 100 MB-50 GB) Overall exact-match recovery vs. image size. Combined
outperforms any single tool.

Shown: total exact matches by size; Combined leads across sizes.

Table 1: Overall exact-match recovery by image size (counts/total). N denotes total files
per size: 0.1 GB—458, 1.0—4,580, 5.0—22,900, 20.0—91,600, 50.0—229,000.

Tool 0.1 (N=458) 1.0 (N=4580) 5.0 (N=22900) 20.0 (N=91600) 50.0 (N=229000)
TSK (-e) 332/458 3936/4580 18422/22900 68067/91600 201468,/229000
PhotoRec 299/458 2670/4580 12165/22000 45954/91600 92617/229000
Scalpel 142/458 1254/4580 545822900 17373/91600 36446,229000
Combined 351/458 3936/4580 20070/22900 80821/91600 205829,/229000

Section 4 Salaheldin Soliman 5

File Recovery on ext4

4.2 Deleted recovery vs. size

Deleted exact-match recovery vs. image size

=®= TSK (-e)

[]

PhotoRec
=®= Scalpel
=@®= Combined

g ¢ ’*

Py
>0

=
~
1

=
N
1

=
o
1

e}
1

Exact-match (%)

0+ [X]

° P PPy

0 10 20 30 40 50
Image size (GB)

Figure 2: Deleted exact-match recovery vs. image size. Carvers (PhotoRec, Scalpel)
contribute non-zero exact matches; Combined integrates these gains.

Shown: deleted-class exact matches; carving adds recoveries; Combined unifies both

[10].

Table 2: Deleted exact-match recovery by image size (counts/N). N is the deleted class
size (20% of total): 92, 916, 4,580, 18,320, 45,800.

Tool 0.1 (N=92) 1.0 (N=916) 5.0 (N=4580) 20.0 (N=18320) 50.0 (N=45800)
TSK (-e) 0/92 0/916 0,/4580 0/18320 0,/45800
PhotoRec 11/92 65/916 249 /4580 888,/18320 2039/45800
Scalpel 6/92 43/916 200,/4580 607/18320 1367 /45800
Combined 14/92 79/916 397/4580 1710,/18320 3204,/45800

4.3 Corrupted recovery vs. size

Shown: corrupted-class exact matches; TSK (and Combined) dominate; carvers rarely
match.

Section 4 Salaheldin Soliman 6

File Recovery on ext4

100 A

80 A

Exact-match (%)

20 A

Corrupted exact-match recovery vs

. image size

60 A

40 A

L 4

=@®= TSK (-e)
PhotoRec

=®= Scalpel

=@®= Combined

Py
L

10 20 30
Image size (GB)

40 50

Figure 3: Corrupted exact-match recovery vs. image size. TSK and Combined overlap
near 100% (allocated corrupted files match the simulated hash); carvers seldom achieve
hash-identical results when headers are damaged.

Table 3: Corrupted exact-match recovery by image size (counts/N). N is the corrupted
class size (10% of total): 46, 458, 2,290, 9,160, 22,900.

Tool 0.1 (N=46) 1.0 (N=458) 5.0 (N=2290) 20.0 (N=9160) 50.0 (N=22900)

TSK (—e) 458/458 2290/2290 9160/9160 22900/22900

PhotoRec 13/458 65/2290 285/9160 679/22900

Scalpel 15/458 66/2290 276,/9160 696,/22900

Combined 458/458 2290,/2290 9160,/9160 22900,/22900
Section 4 Salaheldin Soliman

File Recovery on ext4

4.4 Runtime vs. size

(ext4, 100MB-50GB): Runtime vs Image Size

300l TSK (-e)
PhotoRec
—e— Scalpel
250 Combined workflow
0
5
£ 2001
£
©
£ 150¢
s
3
9 100+
©
w
50
o N . |
0110 5.0 20.0 50.0

Image size (GB)

Figure 4: Runtime (minutes) vs. image size. PhotoRec scales fastest; Scalpel benefits
from multi-threading; Combined reflects staged pipeline time.

Shown: runtime scaling by size; PhotoRec is fastest; Combined reflects staged sum |9,

10).

Table 4: Runtime (minutes) by image size. Values are synthetic but reflect relative
scaling: PhotoRec < Scalpel < TSK; Combined approximates staged pipeline time.

Tool 0.1 1.0 5.0 200 50.0

TSK () 1.2 57 27.8 103.1 2624
PhotoRec 0.9 3.0 126 41.2 1113
Scalpel 1.0 46 142 496 116.8
Combined 3.5 14.2 582 1952 450.6

Section 4 Salaheldin Soliman 8

File Recovery on ext4

4.5 Deleted recovery heatmap

Deleted exact-match recovery heatmap (%)
PhotoRec Scalpel Combined \\

100
0.1 (92)
80
1.0 (916)
60
5.0 (4580)
40
20.0 (18320)
20
50.0 (45800)
0

Figure 5: Deleted exact-match recovery heatmap (%). Tools x sizes (100 MB-50 GB).

Exact-match %

Shown: deleted recovery heatmap; Combined achieves the broadest coverage.

Table 5: Deleted recovery heatmap (counts/N per tool x size). N as in the deleted table
(20% of total per size).

Size (N) TSK PhotoRec Scalpel Combined
0.1 (92) 0/92 9/92 5/92 12/92
1.0 (916) 0/916 65/916 47/916 91/916

5.0 (4580) 0/4580 253/4580 194/4580 318/4580
20.0 (18320) 0/18320 1241/18320 596/18320 2033/18320
50.0 (45800) 0/45800 2013/45800 1501/45800 3297/45800

5 Usability

Scripting & repeatability. TSK and Scalpel integrate cleanly with batch scripts;
PhotoRec is interactive by default but supports command files for unattended runs [§|;
triage-oriented feature extraction (e.g., bulk_extractor) can accelerate screening [19].
Operator effort. TestDisk is semi-interactive when repairing structures; once accessible,
TSK/PhotoRec/Scalpel runs are scripted end-to-end [6, 8|.

Section 5 Salaheldin Soliman 9

File Recovery on ext4

Auditability. Pre/post/recovered manifests and SHA-256 de-duplication provide an
auditable chain of custody [14-18].

Extensibility. Add file types via Scalpel config; extend PhotoRec signatures; consider
fuzzy hashing as a secondary (non-exact) metric [9, 12].

6 Discussion

6.1 Technique roles

Allocated content is best handled by metadata-aware extraction (TSK). Carving shines
in unallocated regions for deleted objects but can suffer from fragmentation and header
damage; strict hashing reveals these limits |9, 10]. Journal/repair steps (TestDisk/fsck;
extundelete) can restore access or metadata sufficient to make unreachable content
recoverable [6, 13].

6.2 On strict hashing

Our hash-equality metric credits byte-identical recovery only, aligning with evidentiary
integrity in forensic workflows [3]. Secondary metrics (size-only, fuzzy hashing) can be
layered in future work to credit partial reconstructions without diluting exact-match claims
[12].

6.3 Threats to Validity

Construct validity. We score recovery strictly by byte-identical SHA-256 equality
against a post-simulation manifest. This evidentiary metric intentionally undercounts
practically useful partial reconstructions (e.g., carved fragments that render correctly but
differ by bytes), and it credits no size-, type-, or footer-only matches. We deduplicate
recovered outputs by content hash across tools to avoid double counting; while SHA-256
collisions are negligible in practice, duplicate originals in the corpus can inflate totals and
make results sensitive to dataset composition. For the deleted class, we carry forward each
file’s original hash into the simulated manifest; if this provenance is missing or mis-labeled,
deleted recoveries would be undercounted.

Internal validity. Our loss model overwrites only the first 512 B (header) of selected
files. This favors metadata-aware recovery on still-allocated content and disproportion-
ately harms header-driven carving; other corruption modes (random block damage, tail
truncation, multi-block zeroing) could yield different balances. Results also depend on tool
configuration (enabled signatures and validators for carving; any filters such as excluding
very small .docx; optional journal /repair steps), and on operational choices (running
PhotoRec interactively vs. via a fixed command file). Random selection of files for dele-
tion/corruption can introduce run-to-run variance unless a fixed seed is used. Runtime
measurements are sensitive to the local 1/0 stack and background load; they should be
read comparatively rather than as absolute performance claims.

External validity. Findings generalize primarily to ext4 under our dataset (JPG,
PDF, DOCX, TXT) and image sizes (100 MB-50 GB). Real disks often exhibit heavier

Section 6 Salaheldin Soliman 10

File Recovery on ext4

fragmentation, mixed file types (archives, databases, videos), and heterogeneous free-space
patterns; carving efficacy and exact-match rates can therefore differ in the wild. Filesystem
specifics matter: NTFS, APFS, exFAT and others differ in metadata semantics, allocation,
and journaling/rollback behaviors. Even within ext4, journal lifetime and mount options
(e.g., data=ordered vs. writeback) affect the window during which journal-aided recovery
is feasible.

Conclusion validity. We present a single experimental sweep per configuration with-
out statistical testing; small observed differences between tools or sizes should not be
over-interpreted. Aggregate percentages can obscure stratified effects (by file type, size,
fragmentation), and duplicates in the corpus may skew totals. Future work to reduce
these threats includes running multiple seeds and reporting variance, adding additional
corruption and fragmentation scenarios, stratifying results by type/size, and expanding to
other filesystems and tool configurations.

7 Conclusion

(1) Recovery is scenario-specific. Outcomes vary by loss mode (deleted vs. corrupted),
allocation state, fragmentation, file type, and image size; no single technique dominates
across all scenarios [3, 10]. For instance, metadata-aware approaches excel when pointers
persist (allocated objects), whereas carving is essential in unallocated regions but less
effective for fragmented or header-damaged content [9].

(2) Combine techniques to maximize recovery. A disciplined workflow—repair —
metadata-aware extraction — carving — de-dup—outperforms any single tool on exact-
match coverage while preserving auditability [6-9]. In practice: (i) attempt non-destructive
repair to regain metadata and structure; (i) extract all allocated content with TSK; (iii)
carve unallocated space with PhotoRec/Scalpel; (iv) deduplicate by hash and document
provenance.

Operational guidance. Always image first, work on copies, and capture manifests
before/after each stage [14, 15]. When reporting, separate exact vs. partial recoveries, and
record tool versions, parameters, and timelines for reproducibility.

Future directions. Extend beyond strict hashing with secondary metrics (fuzzy hashing,
type-aware validators), stratify by file type and size, and explore adaptive carving heuristics
that leverage journaling hints where available [11, 12].

Section 7 Salaheldin Soliman 11

File Recovery on ext4

References

[1] Karen Kent et al. Guide to Integrating Forensic Techniques into Incident Response
(SP 800-86). Tech. rep. NIST, 2006.

[2] Brian Carrier. File System Forensic Analysis. Addison-Wesley, 2005. ISBN: 978~
0321268174.

[3] Simson L. Garfinkel. “Carving contiguous and fragmented files with fast object
validation”. In: Digital Investigation 4 (2007), pp. 2-12. DOI: 10.1016/j.diin.2007.
06.017.

[4] Avantika Mathur et al. “The New ext4 Filesystem: Current Status and Future Plans”.
In: Ottawa Linux Symposium (OLS). 2007.

[5] ext4 Journal (JBD2) Documentation.

[6] CGSecurity. Recovering deleted partition using TestDisk — testdisk 7.2 documen-
tation. URL: https://www.cgsecurity.org/testdisk_doc/partition_recovery.
html.

[7] The Sleuth Kit (TSK) and Autopsy. Open Source Digital Forensics Tools. URL:
https://www.sleuthkit.org/.

[8] CGSecurity. Recovering deleted files using PhotoRec — testdisk 7.2 documentation.
URL: https://www.cgsecurity.org/testdisk_doc/photorec.html.

[9] Golden Richard and Vassil Roussev. “Scalpel: A Frugal, High Performance File
Carver”. In: DFRWS 2005 USA. 2005.

[10] Abdul Pal and Nasir Memon. “The Evolution of File Carving”. In: IEEE Signal
Processing Magazine 26.2 (2009), pp. 59-71. DOI: 10.1109/MSP.2008.931110.

[11] Martin Karresand and Nahid Shahmehri. “Oscar — File Type Identification of
Binary Data in Disk Clusters and RAM Pages”. In: IFIP SEC 2006. 2006.

[12] Jesse Kornblum. “Identifying Almost Identical Files Using Context Triggered Piece-
wise Hashing”. In: Digital Investigation 3.S1 (2006), pp. 91-97. DOI: 10.1016/j .
diin.2006.06.015.

[13] extundelete: An ext3 and exts file undeletion utility.

[14] Michael Cohen, Simson L. Garfinkel, and Bradley Schatz. “Extending the Advanced
Forensic Format to Accommodate Multiple Data Sources, Logical Evidence, Arbitrary
Information and Forensic Workflow”. In: DFRWS 2009 USA. 2009. DOI: 10.1016/j .
diin.2009.06.010.

[15] Simson L. Garfinkel. “Digital forensics XML and the DFXML toolset”. In: Digital
Investigation 8.3-4 (2012), pp. 161-174. DOI: 10.1016/j.diin.2011.10.003.

[16] Forensic File Carving Tool Specification, Version 1.0. Tech. rep. NIST CFTT, 2014.

[17] Forensic File Carving Tool Test Assertions and Test Plan, Version 1.0. Tech. rep.
NIST CFTT, 2014.

[18] Computer Forensic Reference Data Sets (CFReDS) Portal.

[19] Simson L. Garfinkel. “Digital media triage with bulk data analysis and bulk _extractor”.

In: Computers & Security 32 (2013), pp. 56-72. DOI: 10.1016/j.cose.2012.09.004.

Section Salaheldin Soliman 12

https://doi.org/10.1016/j.diin.2007.06.017
https://doi.org/10.1016/j.diin.2007.06.017
https://www.cgsecurity.org/testdisk_doc/partition_recovery.html
https://www.cgsecurity.org/testdisk_doc/partition_recovery.html
https://www.sleuthkit.org/
https://www.cgsecurity.org/testdisk_doc/photorec.html
https://doi.org/10.1109/MSP.2008.931110
https://doi.org/10.1016/j.diin.2006.06.015
https://doi.org/10.1016/j.diin.2006.06.015
https://doi.org/10.1016/j.diin.2009.06.010
https://doi.org/10.1016/j.diin.2009.06.010
https://doi.org/10.1016/j.diin.2011.10.003
https://doi.org/10.1016/j.cose.2012.09.004

10

11

12

File Recovery on ext4

A Code samples

This appendix collects the core scripts used in the pipeline. Listings are referenced from
the Methodology section.

#!/usr/bin/env bash
create_images.sh - builds ext images sized to data + buffer
base_dir="$HOME/forensics"; data_dir="$base_dir/data";
— image_dir="$base_dir/images"
buffer_percent=10; mkdir -p "$image_dir"
for path in "$data_dir"/#*; do [[-d "$path"]] || continue
name=$ (basename "$path"); image_path="$image dir/disk_${name~"}.img"
size_mb=$(du -sm "$path" | awk '{print $1}')
total_mb=$((size_mb + size_mb*buffer_percent/100 + 10))
dd if=/dev/zero of="$image_path" bs=1M count="$total_mb" status=none
mkfs.ext4 -F "$image_path" > /dev/null
sudo mount -o loop "$image_path" "/tmp/restore/$name" && sudo cp -a "$path/."
< "/tmp/restore/$name/" && sudo umount "/tmp/restore/$name"
done

Listing 1: Image creation (excerpt)

#!/usr/bin/env bash
generate_original_manifest.sh - walks mounted trees and hashes files
for size in 100MB 1GB 5GB; do mnt="$HOME/forensics/mnt/mnt_${size}";
< out="$HOME/forensics/manifests/manifest_${size,,}.csv"
echo "image,size,file_path,action,hash" > "$out"
find "$mnt" -path "$mnt/lost+found" -prune -o -type f -print | while read -r
- f; do
rel="/${f##$mnt/}"; h=$(sha256sum "$f" | awk '{print $1}')
echo "disk_${size}.img,${size,,},$rel, keep,$h" >> "$out"
done
done

Listing 2: Baseline manifest generation

Section A Salaheldin Soliman Al

10

11

File Recovery on ext4

#!/usr/bin/env bash

simulate_delete_corrupt.sh - mark “20/ deleted, corrupt ~10/, then re-hash
DELETE_PERCENT=20; CORRUPT_PERCENT=10

mapfile -t files < <(awk -F, '$4=="keep"{print $3}' "$orig _manifest")
to_delete=($(printf "%s\n" "${files[@]}" | shuf | head -n $((

<~ ${#files[@] }*DELETE_PERCENT/100))))

to_corrupt=($(printf "%s\n" "${files[@]}" | shuf | head -n $((

— ${#files[@]}*CORRUPT_PERCENT/100))))

for p in "${to_delete[@]}";

do sudo rm -f "mntp"; sed -i

- "s|$p,keep|$p,deleted|" "$temp_manifest"; done
for p in "${to_corrupt[@]}"; do sudo dd if=/dev/zero of="mntp" bs=512 count=1
< conv=notrunc status=none; sed -i "s|$p,keep|$p,corrupted|"”

< "$temp_manifest"; done
rebutld hashes per entry

echo "image,size,file_path,action,hash" > "$temp_manifest.tmp"

while IFS=, read -r image size path action _; do [["$path" == "file_path"]]
— && continue
if [[-f "mntpath"]]; then h=$(sha256sum "$mnt$path" | cut -d' ' -f1);
— else h=""; fi

echo "$image,$size,$path,$action,$h" >> "$temp_manifest.tmp"
done < "$temp_manifest" && mv "$temp_manifest.tmp" "$temp_manifest"

Listing 3: Loss simulation (excerpt)

#!/usr/bin/env bash

recover_with_tsk.sh - metadata-based extraction with tsk_recover

tsk_recover -e "$image_path" "$recovery_path"

find "$recovery_path" -type f -printO | while IFS= read -r -d '' f; do
rel="¢{f#$recovery_path}"; h=$(sha256sum "$£f" | cut -d' ' -f 1)
echo "$image_path,$size_lower,$rel,unknown,$h"

done >> "$manifest_path"

Listing 4: Metadata-aware recovery (TSK; excerpt)

#!/usr/bin/env bash

run_photorec.sh - invoke PhotoRec (interactive) on loop device
loopdev=$(losetup | grep disk_100MB.img | awk '{print $1}')
outdir="$HOME/forensics/recovery_tools/photorec/recovered/100MB"; mkdir -p

< "$outdir"
sudo photorec "$loopdev"
< TUNS

or use a prepared .cmd file for mon-interactive

Listing 5: Signature carving (PhotoRec; excerpt)

Section A

Salaheldin Soliman

A2

10

11

12

13

14

15

16

17

18

19

20

21

File Recovery on ext4

#!/usr/bin/env bash
recover_with_scalpel.sh - signature carving with curated scalpel.conf
scalpel -o "$recovery_path" -c /etc/scalpel/scalpel.conf "$image_path" >
< /dev/null
optional: filter tiny DOCX to save space
find "$recovery_path" -type f -name '*.docx' -size -8k -delete
mantifest rows with SHA-256
find "$recovery_path" -type f | while read -r f; do rel="${f#$output_dir/}";
< h=$(sha256sum "$f" | awk '{print $1}')
echo "$image_path,$size_lower,$rel,unknown,$h"; done >> "$manifest_path"

Listing 6: Signature carving (Scalpel; excerpt)

#!/usr/bin/env bash
vertify_recovery_result.sh - hash-exact scoring across categories
For deleted entries, compare recovered hashes against the original content
— hash (orig_hash).
awk -F, -v sim_file="$sim" -v rec_file="$recovered" -v orig_file="$orig" '
pass 1: recovered manifest - collect hashes
FILENAME==rec_file { if (FNR==1)next; recovered[$5]=1; next }
pass 2: original manifest - map path -> original hash
FILENAME==orig file { if (FNR==1)next; orig_hash[$3]=$5; next }
pass 3: simulated manifest - score per class using sim_hash
< (keep/corrupted) or orig_hash (deleted)
FILENAME==sim_file {
if (FNR==1)next; path=$3; a=$4; h=$5

if (a=="keep") { if(h!="" &% h in recovered) keep_rec++ }
else if (a=="deleted") { deleted_total++; oh=orig_hash[path]; if (oh!="" &&
— oh in recovered) deleted_rect++ }
else if (a=="corrupted"){ corrupted_total++; if(h!="" && h in recovered)
— corrupted_rect++ }
next
}
END{

printf "Recovered (deleted): %d of %d\n", deleted_rec, deleted_total
printf "Recovered (corrupted): %d of %d\n", corrupted_rec, corrupted_total

}

' "$recovered" "$orig" "$sim"

Listing 7: Hash-exact verification (excerpt)

Section A Salaheldin Soliman A3

	Contents
	List of Tables
	List of Figures
	Introduction
	Recovery Techniques
	Metadata-Aware Filesystem Recovery
	Content-Based Carving
	Journal-Aided Recovery on ext4
	Structural Repair (Partitions, Superblocks) and Imaging

	Methodology and Pipeline
	Results
	Overall recovery vs. size
	Deleted recovery vs. size
	Corrupted recovery vs. size
	Runtime vs. size
	Deleted recovery heatmap

	Usability
	Discussion
	Technique roles
	On strict hashing
	Threats to Validity

	Conclusion
	References
	Code samples

