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Why Optimize LLM Inference?

■ Large models consume excessive memory and have high latency

■ Real-world deployment on limited hardware requires optimization

■ Key objectives: reduce latency, memory, and maintain accuracy
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Why DistilBERT Instead of LLaMA 2?

■ LLaMA 2 lacks readily available classification checkpoints

■ Inference-focused project — not fine-tuning

■ DistilBERT has pretrained variants on standard tasks

■ Ensures consistent dataset + evaluation across setups
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Hardware and Dataset

■ GPU: NVIDIA A100 (40GB) on GWDG cluster

■ Dataset: AG News (text classification)

■ Metrics: Accuracy, Latency, Throughput, VRAM

■ Sample Size: 10 batches (8 samples each)
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Baseline Model

Model: distilbert-base-uncased-finetuned-sst-2-english

■ FP32 inference using PyTorch

■ Entire batch moved to GPU for evaluation
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Quantization: BitsAndBytes (4-bit)

■ Applied post-training quantization

■ Used bnb_4bit with nf4 and double quant

■ Significantly reduced VRAM usage while slightly improving accuracy

■ Regularization effect from quantization likely contributed to performance
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Distilled Model: TinyBERT

■ Smaller than DistilBERT (4x fewer parameters)

■ Extremely fast inference

■ Accuracy tradeoff acceptable for edge and low-latency scenarios
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ONNX Runtime (FP32 and INT8)

■ DistilBERT exported to ONNX format

■ Inference executed using ONNX Runtime backend

■ Also evaluated INT8 quantized version (dynamic quantization)
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Latency Comparison (↓ is better)
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Throughput Comparison (↑ is better)
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VRAM Comparison (↓ is better)
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Accuracy Comparison (↑ is better)
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Performance Results (Tabular Summary)

Model Latency (s) Throughput (samples/s) VRAM (GB) Acc. (%)
DistilBERT FP32 0.044 23135 1.69 32.5
DistilBERT 4-bit 0.055 18545 1.04 35.0
TinyBERT 0.0048 215234 1.69 21.3
ONNX FP32 0.018 56412 2.27 25.0
ONNX INT8 0.089 11535 1.18 18.8
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Observations

■ 4-bit BnB reduced VRAM and slightly improved accuracy

■ TinyBERT was the fastest but lowest in accuracy

■ ONNX FP32 significantly improved speed with decent accuracy

■ ONNX INT8 reduced memory, but at a high accuracy cost
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Key Takeaways

■ Optimization involves tradeoffs between speed, memory, and accuracy

■ BnB is useful for memory-constrained devices

■ ONNX shows consistent speedup over PyTorch

■ Tiny models enable real-time inference but compromise performance
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Future Work

■ Explore serving frameworks (vLLM, TGI)

■ Try other quantization techniques (GPTQ, AQLM)

■ Benchmark distilled LLaMA family models

■ Use larger and diverse evaluation datasets
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Conclusion

■ Inference optimization is vital for deploying LLMs in production

■ DistilBERT provided a robust, consistent benchmarking base

■ Tradeoffs revealed by this study help guide deployment choices

■ Next steps: expand evaluation scope and try efficient serving stacks
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