GEORG-AUGUST-UNIVERSITAT ©
=)\ GOTTINGEN i o

Seminar Report

DevOps-Integrated HPC Pipeline with
Apptainer, GitLab CI/CD, and SLURM

Mohamed Basuony

MatrNr: 12647187

Supervisor: Chirag Mandal

Georg-August-Universitat Gottingen
Institute of Computer Science

September 28, 2025

Abstract

High-performance computing (High-Performance Computing (HPC)) workflows have tra-
ditionally relied on manual job management and custom environments, which often leads
to errors and impedes reproducibility. This report presents a DevOps-integrated HPC
pipeline that treats scientific workflows like production code by incorporating container-
ization, continuous integration/continuous delivery (Continuous Integration/Continuous
Delivery (CI/CD)), and automated job scheduling. We designed a matrix multiplication
workload pipeline using Apptainer containers for a portable, reproducible environment
and GitLab CI/CD for automated testing and deployment to an HPC cluster managed
by the SLURM scheduler. Three matrix multiplication workloads (single-core, multi-
threaded, and Message Passing Interface (MPI)-distributed) were implemented to validate
the pipeline across scaling levels. Our results demonstrate that automated unit tests (via
PyTest) reliably verify correctness on every code commit, and containerized jobs achieve
consistent performance from one node up to multiple nodes. The pipeline highlights
both the benefits and limitations of applying DevOps practices in HPC: while continuous
integration improved stability and reproducibility, certain deployment steps could not be
fully automated due to HPC security constraints. We discuss how emerging HPC-DevOps
approaches and custom CI runners can overcome these barriers. We also examine the
growing impact of Artificial Intelligence (AI) workloads on HPC pipelines, noting that the
DevOps methods used here can help manage the complexity and scale of Al training jobs.
Overall, our DevOps-enabled HPC workflow markedly improves automation, reproducibil-
ity, and collaboration in scientific computing, indicating a promising direction for future
HPC systems engineering.

Declaration on the use of ChatGPT and comparable tools
in the context of examinations

In this work I have used ChatGPT or another Al as follows:

Not at all
During brainstorming

When creating the outline

For the development of software source texts
For optimizing or restructuring software source texts

OJ
OJ
v
0 To write individual passages, altogether to the extent of 0% of the entire text
OJ
O
[] For proofreading or optimizing

OJ

Further, namely: -

I hereby declare that I have stated all uses completely.
Missing or incorrect information will be considered as an attempt to cheat.

i

Contents

List of Tables

List of Figures

List of Listings

List of Abbreviations

1 Introduction

2 Methods and Pipeline

3 Experimental Workloads
4 Results

5 Discussion

6 Impact of AI Workloads on HPC
7 Threats to Validity

8 Conclusion

References

A Code samples

1l

iv

iv

iv

10

11

Al

List of Tables

1 Execution times on the cluster using the shared Apptainer image.

List of Figures

Repository structure of the project.
GitLab CI/CD test stage passing.
SLURM submission returning a job ID.

Batch submission of the three jobs.

Tt = W N =

Output snippet from the basicrun.

List of Listings

v

List of Abbreviations

HPC High-Performance Computing
CI/CD Continuous Integration/Continuous Delivery

MPI Message Passing Interface

Al Artificial Intelligence
ML Machine Learning
DL Deep Learning

SLURM Simple Linux Utility for Resource Management
GPU Graphics Processing Unit

CPU Central Processing Unit

SSH Secure Shell

YAML YAML Ain’t Markup Language

API Application Programming Interface

DevOps-Integrated HPC Pipeline with Apptainer, GitLab CI/CD, and SLURM

1 Introduction

High-performance computing environments are critical for scientific and engineering work-
loads, yet many workflows remain manual, error-prone, and difficult to reproduce[l, 2|.
Computations are typically executed via custom scripts on shared clusters with ad-hoc
configuration of software and parameters. This lack of standardization impedes repro-
ducibility and complicates replication or reuse of software by others. In the wider software
industry, DevOps practices—combining software development and I'T operations—have
improved the reliability of deployments through automation, continuous testing, and ver-
sion control[3]. The adoption of DevOps principles in HPC is therefore expected to yield
similar benefits of automation, consistency, and collaboration for scientific workflows|4, 5].
For example, automatic building and testing of code changes can detect issues early and
ensure that computational experiments are conducted in known, versioned environments,
thereby enhancing scientific rigor|6, 2.

Integration of DevOps tools into HPC remains non-trivial. HPC systems differ substan-
tially from the cloud environments where DevOps originated: clusters rely on batch
schedulers rather than persistent services, and security policies frequently prohibit typical
cloud tools such as Docker daemons. Consequently, key DevOps components such as
CI/CD pipelines have achieved only limited adoption in scientific computing to date[6, 2].
Furthermore, DevOps expertise may be lacking in research settings, where emphasis is
often placed on proving scientific concepts rather than packaging and deploying software for
reuse|2|. Despite these constraints, increasing recognition has emerged that improvements
in automation and reproducibility are vital for HPC. The objective of this work is to
treat an HPC workflow “like production code”™—that is, to make it testable, portable, and
version-controlled|7]. An HPC pipeline integrating DevOps techniques (containerization,
continuous integration, and automated deployment) is demonstrated to streamline the
workflow and reduce human error.

Concretely, an HPC pipeline was designed for a set of matrix multiplication workloads, using
Apptainer containers to encapsulate the software environment and ensure cross-platform
reproducibility. Apptainer (formerly Singularity) is a container platform tailored for HPC
that allows containerized applications to run without privileged access, thereby providing
a secure, portable environment on shared clusters|1, 8]. Containers have emerged as an
effective mechanism to improve portability and reproducibility in scientific computing|1,
8]. Git repository version control and GitLab CI/CD are leveraged to automatically build
and test code on each commit. A GitLab continuous integration pipeline executes unit
tests inside a container to verify correctness prior to cluster deployment. Finally, the
pipeline employs the SLURM workload manager to schedule and run containerized jobs on
HPC nodes. In combination, these elements bring the benefits of DevOps—automation,
consistent environments, and continuous testing—to the HPC domain.

The remainder of this report is organized as follows. In Methods and Pipeline, the archi-
tecture of the DevOps-integrated pipeline is described, including the repository structure,
containerization process, CI/CD configuration, and job scheduling with SLURM. Ezperi-
mental Workloads details the three matrix multiplication programs used to exercise the
pipeline and the execution procedure. Results presents key outcomes, including workload
performance and CI/CD behavior. In Discussion, the findings are interpreted, highlighting
effective elements (e.g., automated testing, scalable containers) and encountered challenges

Section 1 Mohamed Basuony 1

DevOps-Integrated HPC Pipeline with Apptainer, GitLab CI/CD, and SLURM

(e.g., deployment constraints), followed by related work. A dedicated section on the Impact
of AI Workloads on HPC' examines how the rise of machine learning tasks influences HPC
pipeline design and how DevOps practices can manage Al resource demands. Threats
to Validity addresses limitations of scope and assumptions. Conclusion summarizes key
takeaways and outlines future directions for DevOps in HPC.

2 Methods and Pipeline

Pipeline Design: The DevOps-integrated pipeline was designed to advance code from
development through automated testing to execution on an HPC cluster. The workflow
consists of the following stages: code is pushed to a Git repository (GitLab); continuous
integration triggers automated tests in a container; upon success, a container image is
built for the application; and the application is then executed on the HPC cluster via
SLURM job scheduling[7]. This can be summarized as Dev — GitLab CI — Container
Build — SLURM Job|7]. The rationale is to enforce checks at each step: any code
change is immediately validated by tests, the environment remains consistent through
containerization, and job submission is automated rather than manual. By structuring the
pipeline in this way, the HPC workflow is treated analogously to a production software
deployment pipeline, aiming for repeatability and minimal manual intervention|7].

Repository Structure: The repository was organized to support this pipeline, with
concerns separated into dedicated directories for clarity. Figure 1 illustrates the repository
structure, which includes a container/ directory containing the Apptainer definition file,
a matrix/ directory with Python source code for workloads, a tests/ directory with
unit test scripts, and job_scripts/ with SLURM submission scripts for each workload.
This modular layout aligns with DevOps principles by clearly delineating infrastructure
(container and job scripts), application code, and tests.

test_basic_num
HPC Pipeline fe] Py
€

Figure 1: Repository structure of the project.

Containerization with Apptainer: Apptainer was used to containerize the HPC
workloads for reproducibility and ease of deployment. Apptainer is specifically designed for
HPC and operates without elevated privileges, in contrast to Docker, which is generally not
allowed on multi-user clusters|2, 1|. The container environment is defined in an Apptainer

Section 2 Mohamed Basuony 2

DevOps-Integrated HPC Pipeline with Apptainer, GitLab CI/CD, and SLURM

recipe file (apptainer.def), specifying the OS base image and all dependencies. In the
present case, the definition installs Python 3, NumPy, mpidpy (for MPI support), OpenMPI,
and PyTest, and copies the project’s code and tests into the container image|7, 7|. This
ensures that the identical software stack is available wherever the container runs—on a
local machine or on any node of the cluster—achieving portability and consistency for the
workloads|1].

Container images were built on the HPC cluster’s login node (Apptainer converts
the definition into a binary image file). The build command used was apptainer
build matrix-demo.sif container/apptainer.def, producing a portable image file
(matrix-demo.sif)[7]. This step was initially performed manually due to restrictions on
where Apptainer could run (cluster policy required image builds to occur on designated
nodes). The resulting container image encapsulates the environment needed for all
workloads and tests. Workloads are executed inside the container using apptainer exec
matrix-demo.sif python3 matrix/program.py. By using a single container image
for both local testing and cluster execution, the “works on my machine” discrepancy is
mitigated; code that passes tests in the container on GitLab should behave equivalently on
the HPC cluster|1, 8]. Containerization therefore addresses a key reproducibility challenge
in HPC by standardizing the runtime environment.

Continuous Integration (CI) with GitLab: All code changes trigger an automated CI
pipeline on GitLab. GitLab CI was configured with a YAML pipeline definition specifying
three stages: test, build, and deploy|9]. In the test stage, a Docker-based executor runs
the PyTest suite inside a lightweight container (distinct from Apptainer; a standard
Python Docker image is used for speed). Tests on GitLab’s CI runner ensure that code
is sanity-checked prior to any interaction with the HPC cluster. Each commit or merge
request initiates these tests. This approach follows best practices in scientific software
development, where continuous tests enhance reproducibility[5, 3|]. The unit tests cover
each workload script: verifying correct shapes and values for the single-core case, checking
that multi-threaded results are correct and utilize the expected number of threads, and
confirming that MPI-distributed computation yields consistent results across processes|7,
7]. The CI pipeline thus functions as an automated gatekeeper, permitting only code that
passes all tests to proceed toward deployment.

For main

latest branch €O 1job (Y 2 minutes 3 seconds, queued for 3 seconds
Pipeline Jobs 1 Tests 0
test
@ unit_tests c

Figure 2: GitLab CI/CD test stage passing.

Once tests pass, the build stage can construct the container image. Owing to cluster
restrictions (discussed later), the container build was not fully automated in CI. Instead,
CI triggers a placeholder or manual step for image construction. Ideally, this stage would
employ Apptainer on the cluster or a CI runner with Apptainer support. In practice, the

Section 2 Mohamed Basuony 3

DevOps-Integrated HPC Pipeline with Apptainer, GitLab CI/CD, and SLURM

build was performed on the cluster manually because the GitLab runner lacked direct
access to the cluster’s Apptainer environment. The deploy stage was similarly set up
as a manual trigger: it was intended to transfer the built image and job scripts to the
cluster and execute SLURM jobs. However, direct deployment from GitLab to the HPC
system encountered obstacles (SSH key and environment issues; see Discussion), so final
deployment was executed via a manual process outside the CI pipeline[9]. Despite this,
the CI pipeline provided significant benefits in earlier phases: immediate test feedback
and assurance of a working container recipe.

SLURM Job Scripts and Scheduling: Three SLURM batch scripts (single-core,
multi-thread, and MPI) were created to automate job submission on the HPC cluster|10,
7]. These scripts encapsulate resource requirements and execution commands for each
run type. For example, slurm_basic.sh requests 1 CPU and runs the single-core Python
program inside the Apptainer container. slurm_threaded.sh requests multiple CPUs on
one node (e.g., 8 cores) and runs the threaded program with OMP_NUM_THREADS=8 inside the
container. slurm_mpi.sh requests multiple nodes (e.g., 2 nodes with 4 tasks total) and uses
srun to launch the MPI program inside the container across allocated nodes. Each script
loads any required environment modules (e.g., the Apptainer module) and then executes
srun apptainer exec matrix-demo.sif python3 matrix/program.py|7]. Using srun
ensures that MPI ranks are launched correctly across nodes and that tasks are bound to
the allocated CPUs. The SLURM scheduler handles queueing, resource allocation, and
enforcement of requested resources for each job.

[2025-pchpc] ul7408@gloginl3 hpc-pipeline-demo $ sbatch job_scripts/slurm_thread

ed.sh
Submitted batch job 9904417

Figure 3: SLURM submission returning a job ID.

To run the workloads on HPC, batch scripts are submitted using sbatch. This
was integrated into the workflow such that deployment would issue sbatch
job_scripts/slurm_basic.sh, etc., thereby automating what was previously a
manual step. Because automated deploy from GitLab was problematic, submissions
were executed manually as the final workflow step. The overall process remained
straightforward: pushing code to GitLab triggers tests; if tests pass and a container is
built, sbatch commands execute the jobs on HPC. SLURM logging captures job output
for later inspection.

Continuous Delivery and Deployment Considerations: The final stage of a full
DevOps pipeline is automated deployment. The intended design was for the GitLab CI
pipeline to deploy the container and run the SLURM jobs after building. An SSH-based
approach from the GitLab runner to the HPC cluster was attempted so that the CI job
could transfer files and invoke sbatch remotely. In practice, several issues arose: the HPC
cluster required an SSH key format incompatible with GitLab’s default, and GitLab’s
handling of multiline secure variables complicated private key injection|9]. Additionally,
the non-interactive login environment did not load required modules (e.g., Apptainer),
causing remote sbatch attempts to fail due to missing apptainer. These hurdles prevented
an automated deploy stage. As a result, a workaround was implemented: following CI
testing and image build, deployment steps were executed manually—transferring code or
container to the cluster, building on the cluster if necessary, and submitting jobs. While

Section 2 Mohamed Basuony 4

DevOps-Integrated HPC Pipeline with Apptainer, GitLab CI/CD, and SLURM

not fully automated, this compromise reflects a common situation in current HPC DevOps
integration, where institutional security policies or infrastructure limitations constrain
automation|7, 10]. Despite partial automation, the pipeline streamlined substantial
portions of the HPC workflow. All code changes passed through an automated test
suite, and the container ensured that any cluster run occurred in a vetted environment.
The remaining manual tasks—file transfer and job triggering—could be improved with
administrative support.

3 Experimental Workloads

To evaluate the pipeline, three matrix multiplication workloads were developed in Python,
representing increasing levels of parallelism and complexity. Each script multiplies two
large matrices and verifies correctness, differing in resource utilization (single core, multi-
threading, or distributed MPI):

basic_numpy.py: A single-core workload that multiplies two 1000 x 1000 matrices using
NumPy’s dot function. Only one CPU core is used, serving as a quick check with
minimal computational load|7]. This program is suitable for validating that the container
environment and pipeline function end-to-end.

threaded_numpy.py: A multi-threaded workload that multiplies two 4000 x 4000 matrices
using NumPy with OpenBLAS multi-threading. OMP_NUM_THREADS=8 is set to utilize 8
threads on a single node[7|. This workload is CPU-intensive and tests multi-core execution
and parallel speedup on one machine, while also validating threading behavior within the
container and cluster CPU affinity.

mpi_matrix.py: A distributed-memory workload that multiplies two 4000 x 4000 matrices
using MPI (via mpidpy). The matrix is partitioned by rows, each MPI process computes a
subset of the result, and the partial results are gathered|7]. The program was executed
on multiple nodes (2 nodes with 2 MPT ranks each) to validate support for multi-node,
multi-process jobs under SLURM and to test MPI operation within the container.

These workloads were selected to verify pipeline correctness and scalability across different
levels of parallelism|7]. The single-core job checks base functionality; the threaded job
examines multi-core performance on one node; and the MPI job evaluates multi-node
distributed execution. All three yield the same logical result (C' = A x B) for known
inputs, enabling cross-validation. Execution time was logged, and assertions confirmed
expected results within floating-point tolerances.

PyTest unit tests were written to ensure correctness. For basic_numpy.py, tests assert
the expected output shape (1000 x 1000) and verify sample entries against a reference
multiplication. The threaded and MPI versions are checked for consistency: identical
inputs to all three programs yield identical outputs. The MPI test launches mpi_matrix.py
under an MPI executor (using mpidpy.run) on a single machine with a few processes,
confirming that the assembled result matches a single-process computation. These tests
were integrated into CI (executed in a single-node context for simplicity), providing
confidence that the MPI job would behave correctly across nodes in the cluster.

Execution on HPC proceeded via the SLURM scripts. Jobs for all three workloads were
submitted to observe behavior and performance on actual cluster hardware. The basic and

Section 3 Mohamed Basuony)

DevOps-Integrated HPC Pipeline with Apptainer, GitLab CI/CD, and SLURM

threaded jobs were allocated to a single compute node (1 core and 8 cores, respectively);
the MPI job was allocated to 2 nodes with 2 cores each. Submissions were managed
concurrently by SLURM. The container image matrix-demo.sif resided on a shared
filesystem, enabling identical runtime environments for all jobs. Batch scripts captured
console output (including timing) via SLURM logging.

[ZGZSTpchpc] u17408@g10g1_'n13 hpc—pipeline—dgmo $ sbatch job_scripts/slurm_basic.
sh

Submitted batch job 9892649

[2025-pchpc] ul7408@gloginl3 hpc-pipeline-demo $ sbatch job_scripts/slurm_thread

ed.sh

Submitted batch job 9892651

[2025-pchpc] ul7408@gloginl3 hpc-pipeline-demo $ sbatch job _scripts/slurm_mpi.sh
Submitted batch job 9892661

Figure 4: Batch submission of the three jobs.

4 Results

All stages of the DevOps-integrated pipeline were executed, and the outcomes validate
the approach. The continuous integration tests on GitLab ensured that each workload
produced correct results in the containerized environment. When code commits introduced
errors (e.g., bugs in matrix multiplication logic or incorrect environment variables), the
CI pipeline detected them through failing unit tests. Over the development cycle, most
commits were tested automatically, which increased confidence in code stability. These
observations are consistent with reports that CI and containers enhance reproducibility
and reliability of scientific software[5, 10].

On the HPC cluster, all three workloads ran successfully using the Apptainer container
and SLURM job scripts. Table 1 summarizes the execution times for each workload (each
run was performed once on the allocated resources):

basic_numpy.py: ~0.05 seconds (1 core)
threaded_numpy.py: ~1.26 seconds (8 threads)
mpi_matrix.py: ~0.29 seconds (4 MPI processes across 2 nodes)

These timings were obtained from program output logs. The single-core job executes
in tens of milliseconds for a 1000 x 1000 multiply, as expected. The multi-threaded job
(4000 x 4000 on 8 threads) takes ~1.3 seconds, reflecting the 16x increase in elements
and thread coordination overhead. The MPI-distributed job (4000 x 4000 split among 4
processes) completes in ~0.29 seconds, faster than the threaded run. This likely results
from dividing the workload across nodes and achieving low communication overhead for
this problem size, indicating effective scaling on 2 nodes. The outcome further suggests
that MPI within Apptainer imposes no noticeable performance penalty. Prior studies
similarly report minimal container overhead for HPC workloads, preserving near-native
performance|1, 8|.

Section 4 Mohamed Basuony 6

DevOps-Integrated HPC Pipeline with Apptainer, GitLab CI/CD, and SLURM

Table 1: Execution times on the cluster using the shared Apptainer image.

Workload Resources Execution Time (s)
basic_numpy.py 1 core 0.05
threaded_numpy.py 8 threads 1.26
mpi_matrix.py 4 MPI processes (2 nodes) 0.29

Figure 5 shows an excerpt from the basic_numpy.py log, indicating container invocation
(apptainer exec ... python3 matrix/basic_numpy.py) and an elapsed time of ap-
proximately 0.05 seconds; analogous logs for the threaded and MPI runs report ~1.26s
and ~0.29s, respectively.

[2025-pchpc] ul7408@gloginl3 hpc-pipeline-demo $ apptainer exec matrix-demo.sif
python3 matrix/basic_numpy.py

Running single-threaded NumPy multiplication for 1000x1000 matrices...
Elapsed time: 0.053283 seconds

Figure 5: Output snippet from the basic run.

From a DevOps perspective, automated testing and containerization were effective in
detecting issues early and ensuring consistency. A deliberate discrepancy (e.g., scaling
the output matrix) was introduced during development to validate test sensitivity; the
CI pipeline correctly failed that commit|5, 3]. Furthermore, the same Apptainer image
functioned across systems, confirming environment portability without re-customizing
packages for the cluster. The container image, built on a compatible OS base, executed
cleanly on compute nodes.

The deploy stage of GitLab CI did not execute automated cluster runs, due to authentica-
tion and environment constraints. Manual deployment was therefore employed|9]. This
limitation underscores that certain DevOps automation steps are not yet turnkey in tradi-
tional HPC environments|7, 10]. Nonetheless, once jobs were submitted, the assurances
provided by CI (code correctness) and containerization (environment consistency) held.
Overall, the pipeline maintained software correctness and environment consistency and
enabled scaling from one core to multiple nodes without code modification.

5 Discussion

Implementation of a DevOps-integrated HPC pipeline provided several insights into
the benefits and challenges of applying DevOps practices in HPC. The primary objec-
tive—improved automation and reproducibility—was achieved. Automatic testing of every
code update in a controlled environment reduced the likelihood of runtime errors on the
HPC cluster caused by untested changes, a critical advantage in scientific computing
where undetected bugs or environment inconsistencies can lead to invalid results or wasted
computation|5|. Continuous integration thus served as a safety net for the HPC workflow,
reflecting the concept of “scientific CI,” in which CI and containers continually verify
scientific results|5, 3.

Section 5 Mohamed Basuony 7

DevOps-Integrated HPC Pipeline with Apptainer, GitLab CI/CD, and SLURM

Use of Apptainer containers ensured consistency and portability. The application environ-
ment was built once and executed across systems, eliminating a common class of HPC
failures arising from library/version mismatches. This observation aligns with broader
trends in HPC, where container adoption is increasing to manage complex software stacks
across heterogeneous systems|1, 8|. Apptainer also enabled the use of modern user-space
stacks (e.g., recent Python/NumPy) on systems with older modules, providing agility
without administrative intervention|[1].

Practical challenges remain that help explain why DevOps is not yet ubiquitous in HPC.
The foremost issue involves automated deployment to the cluster. Many HPC centers
are closed environments with stringent security; external GitLab runners must SSH into
clusters, encountering key-format incompatibilities and non-interactive shells that do not
load required modules|[9]. Such constraints hinder direct CI integration at numerous
sites. A viable mitigation is to provision a GitLab runner on the cluster with appropriate
permissions, enabling native job submission and fully automated deployment.

Another challenge stems from batch scheduling. Unlike enterprise deployments, cluster
jobs may queue for minutes or hours, making synchronous CI/CD fragile due to potential
timeouts. More robust designs may require asynchronous notifications or decoupled stages
(trigger, then separate result verification) rather than end-to-end synchronous pipelines.

Cultural and skills-related factors also play a role. Many scientific teams lack deep
familiarity with DevOps tooling. Survey evidence indicates that limited DevOps expertise
constrains container and CI adoption among researchers|2]|. Addressing this gap will
require training and simplified tooling. While the present pipeline targeted a relatively
modest application (matrix multiplication), the core principles generalize to more complex
scientific codes, including those with GPUs and substantial I/O demands|11, 12].

The empirical comparison between threading (8 threads) and MPI (4 processes over 2
nodes) revealed different performance characteristics (1.26s vs. 0.29s) for the 4000 x 4000
case. Such differences are expected and highlight an additional benefit of the pipeline:
multiple execution modalities can be evaluated with minimal friction, since they are driven
by the same repository and container. This facilitates fair comparisons and repeatable
performance studies.

Key lessons, consistent with the presentation’s takeaways, can be summarized as:

e CI/CD workflows improve stability and reproducibility in HPC.

Testing and containerization reduce human error and setup time.

Manual fallbacks remain essential in restricted environments.

Full automation depends on system-level support.

Infrastructure constraints are as consequential as tooling choices.

6 Impact of AI Workloads on HPC

The growing prevalence of artificial intelligence (AI) and machine learning workloads is
reshaping HPC infrastructure and workflows. Modern Al training frequently requires

Section 6 Mohamed Basuony 8

DevOps-Integrated HPC Pipeline with Apptainer, GitLab CI/CD, and SLURM

HPC-class resources: multiple GPUs, large memory, high-speed interconnects, and parallel
[/O. Organizations are scaling clusters specifically for Al, leading to a convergence of HPC
and Al infrastructure[11, 12|. The demonstrated pipeline and practices translate directly to
Al contexts: containerized ML frameworks and CI-driven checks can validate small samples
in CI, while full training runs are executed on the cluster, preserving reproducibility and
provenance. Apptainer supports GPUs via -nv|[13|, and SLURM job scripts can request
GPUs analogously to CPUs[10].

AT workloads introduce iterative, data-intensive patterns that complicate CI. End-to-end
retraining on every commit is infeasible for large models; instead, CI can validate reduced
datasets or short training epochs, with scheduled or event-driven full runs. Data versioning
and artifact tracking (MLOps) complement DevOps in this setting, reinforcing traceability
and repeatability. HPC centers are adapting accordingly by deploying more GPUs and
high-bandwidth storage, while schedulers evolve to manage heterogeneous resources and
interactive workflows (e.g., Jupyter on HPC). Distributed training frameworks (e.g.,
Horovod, PyTorch Distributed) can be launched via srun or sbatch within containers|13,
10].

A shift toward throughput and workflow automation is also observable: Al research often
entails many experiments (e.g., hyperparameter sweeps). CI/CD orchestration can queue
and monitor such experiments efficiently, improving cluster utilization and experimental
rigor.

7 Threats to Validity

Several limitations and potential threats to validity should be noted:

Generality of Workloads: Experiments employed relatively small matrix multiplication
programs by HPC standards. The largest problem (4000 x 4000) and the modest node
count (2) are not representative of large-scale workloads. Container overhead and CI costs
were not stress-tested under extended runtimes or massive I1/0.

Cluster-Specific Behavior: The pipeline reflects one cluster’s configuration (sched-
uler policies, module environment). Issues encountered (e.g., SSH key handling, non-
interactive module loading) may vary elsewhere. Replication on other systems may require
environment-specific adjustments.

Measurement of “Success”: While qualitative improvements in workflow were observed,
formal metrics (e.g., developer time saved, defects caught pre-deployment) were not
collected. Stronger quantitative evidence would further substantiate the benefits.

Incomplete Automation: End-to-end automation was not achieved due to deploy-stage
constraints. Some error classes might only manifest at execution time on the cluster,
outside CI’s purview. Automated post-submission verification and asynchronous result
collection remain open engineering tasks.

Reproducibility of the Pipeline Itself: Although the approach is described conceptu-
ally, full configuration artifacts (CI YAML, Apptainer recipe, etc.) are not reproduced
here. Small differences in runner setup or permissions can affect replicability.

Section 7 Mohamed Basuony 9

DevOps-Integrated HPC Pipeline with Apptainer, GitLab CI/CD, and SLURM

Performance Overheads Not Profiled: Container startup overhead, image size effects,
and network staging costs were not systematically profiled. Results should be interpreted
in the context of a relatively small image on a fast shared filesystem.

Limited Scope of Testing: Fault tolerance, concurrent multi-developer scenarios, and
container versioning strategies were not evaluated. Production usage would require robust
image tagging and isolation to avoid conflicts.

8 Conclusion

A DevOps-integrated HPC pipeline combining Apptainer, GitLab CI, and SLURM was
designed and implemented. Using a matrix multiplication case study, HPC workflows were
treated as production-quality pipelines, demonstrating feasibility and benefits. Notable
contributions include: (1) Improved reproducibility and reliability: continuous inte-
gration testing and containerized environments ensured that computations were performed
in controlled, consistent settings across systems, increasing trust in results and reducing
undetected errors; (2) Workflow automation: tasks traditionally performed manually in
HPC (installation, submission, verification) were partially or fully automated, accelerating
research cycles and reducing human error; (3) Integration challenges identified: gaps
between DevOps tooling and HPC policies were documented, informing both practitioners
and facility administrators about required support (e.g., on-cluster CI runners, secure
automation pathways).

In practical terms, a set of HPC jobs—including multi-node MPI runs—was executed
through a largely hands-off process once configured, representing a marked improvement
over manual practices of module management and ad-hoc testing. These findings align
with literature on research software engineering and reproducible computing, and are
consistent with evidence that containers preserve near-native performance for compute-
bound workloads while CI increases the repeatability of scientific results|1, 8, 5].

Future work includes integrating GPU-accelerated and Al workloads (with staged CI
strategies), enabling fully automated deployment via on-cluster runners or HPC-aware CI
frameworks, and scaling the approach for collaborative teams using container registries
and infrastructure-as-code. Overall, the presented pipeline illustrates a viable path to
modernizing scientific workflows: as HPC workloads diversify and grow—particularly with
Al—integrated DevOps practices will be increasingly essential for managing complexity
and ensuring trustworthy computational results.

Section 8 Mohamed Basuony 10

DevOps-Integrated HPC Pipeline with Apptainer, GitLab CI/CD, and SLURM

References

[1] Gregory M Kurtzer, Vanessa Sochat, and Michael W Bauer. “Singularity: Scientific
containers for mobility of compute”. In: PLoS ONE 12.5 (2017), e0177459.

[2] HPC Containers Working Group. The HPC Container Community Survey 2024.
2024. URL: https://supercontainers. github. io/hpc- containers- survey/
2024/two-thousand-twenty-four/.

[3] Christof Ebert et al. “DevOps”. In: IEEE Software 33.3 (2016), pp. 94-100.

[4] Ioannis K Moutsatsos et al. “Jenkins-CI as a scientific data and image-processing
platform”. In: SLAS Discovery 22.3 (2017), pp. 238-249.

[5] Matthew S Krafczyk et al. “Scientific tests and continuous integration strategies to
enhance reproducibility in scientific software”. In: Proceedings of the 2nd International
Workshop on Practical Reproducible Evaluation of Computer Systems (P-RECS’19).
2019, pp. 23-28.

[6] Paul Nuyujukian. “Leveraging DevOps for Scientific Computing”. In: arXiv preprint
arXiv:2310.08247 (2023).

[7] Valerie Hayot-Sasson et al. “Addressing reproducibility challenges in HPC with
continuous integration”. In: arXiv preprint arXiv:2508.21289 (2025).

[8] Jack S Hale et al. “Containers for portable, productive, and performant scientific
computing”. In: Computing in Science & Engineering 19.6 (2017), pp. 40-50.

[9] GitLab Inc. GitLab CI/CD Pipelines Documentation. 2024. URL: https://docs.
gitlab.com/ee/ci/.

10] SchedMD LLC. SLURM Workload Manager Documentation. 2024. URL: https :

p
//slurm.schedmd.com/documentation.html.

[11] DDN (DataDirect Networks). Why HPC' Is Your Path to Al Whitepaper. 2023.
URL: https://www.ddn.com/resources/whitepapers/why-hpc-is-your-path-
to-ai/.

[12] Intel Corporation. Scale AT Workloads within an HPC' Environment. 2023. URL:
https://www.intel.com/content/www/us/en/high-performance-computing/
hpc-artificial-intelligence.html.

[13] Apptainer Community. Apptainer User Guide. 2024. URL: https://apptainer.

org/docs/.

Section Mohamed Basuony 11

https://supercontainers.github.io/hpc-containers-survey/2024/two-thousand-twenty-four/
https://supercontainers.github.io/hpc-containers-survey/2024/two-thousand-twenty-four/
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/ci/
https://slurm.schedmd.com/documentation.html
https://slurm.schedmd.com/documentation.html
https://www.ddn.com/resources/whitepapers/why-hpc-is-your-path-to-ai/
https://www.ddn.com/resources/whitepapers/why-hpc-is-your-path-to-ai/
https://www.intel.com/content/www/us/en/high-performance-computing/hpc-artificial-intelligence.html
https://www.intel.com/content/www/us/en/high-performance-computing/hpc-artificial-intelligence.html
https://apptainer.org/docs/
https://apptainer.org/docs/

DevOps-Integrated HPC Pipeline with Apptainer, GitLab CI/CD, and SLURM

A Code samples

https://gitlab.gwdg.de/basuony /hpc-pipeline

Section A Mohamed Basuony Al

	Contents
	List of Tables
	List of Figures
	List of Listings
	List of Abbreviations
	Introduction
	Methods and Pipeline
	Experimental Workloads
	Results
	Discussion
	Impact of AI Workloads on HPC
	Threats to Validity
	Conclusion
	References
	Code samples

