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Abstract

The movement of stars within a galaxy is a complex system in which everything interacts
with everything else. This cannot be described using analytical equations; instead, it
must be simulated numerically

This numerical solution consists of letting the stars move for a set period of time,
before calculating the forces each star has acted upon all others, leading to poor scaling
of the problem for higher number of stars.

To speed up this calculation we try a number of solutions to parallelize this prob-
lem and to use our computing resources more effectively, including summarizing multiple
distant stars into sectors, or changing the size of the simulation step, depending on the
distance to the center of the galaxy.

We applied these principles to spherical dwarf galaxies which were also physically
accurately generated for this project, including the only recently discovered category of
ultra-faint dwarf galaxies. We discovered that the distance to the center correlates in-
credibly well to the distance of the nearest other star, leading to virtually identical results
when scaling the step size based on those metrics with considerably less compute overhead
when looking at the distance to the galactic center.

Further we discovered that this is actually the most efficient way to simulate the move-
ment of the stars up to 100,000 stars. At this point it becomes more efficient to incur the
performance losses of summarizing distant stars in an area of the simulation space as a
sectors, instead of looking at them individually.

We also noticed that these dwarf galaxies indeed need large amounts of dark matter
to stay stable.
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Dwarf Galaxy Simulation of N-Body Problem

1 Introduction

The simulation of galaxies is a highly complex n-body problem. Each star in a galaxy
gravitationally pulls on every other star, leading to complex interactions that can’t be
solved analytically and that have to be simulated. The main objective of the project is to
independently develop increasingly more efficient ways to simulate this problem, analyze
their scaling behavior and therefore get an understanding of these different optimization
strategies. Using these simulations we can also test the dark matter hypothesis. To tackle
this problem, we first started with a naive singe threaded approach of calculating the
forces between every star, applying the force and advancing the simulation a small step
forward. During the development efforts of the project, we segmented the simulation
volume into smaller chunks to summarize

2 Methodology

2.1 Problem statement

In this project we develop a simulation of stellar movement within a galaxy and both
develop and test further optimizations for parallelization.

In order to stay within our constraints of limited computing and project time, we targeted
to simulate ultra-faint dwarf galaxies. A class of galaxies that formed only a few million
years after the big bang, and only discovered in the last 20 years. They are the most dark
matter dominated systems that are currently known to exist in the universe and therefore
are stable with only a few hundreds to thousands of stars.

Specifically we simulated 1000 stars with a light-to-matter ratio of 3,400, meaning we have
3,400 times more dark matter than regular matter, over 10,000 years, with simulation steps
of one year. The parameters are similar to the parameters of the galaxy ’Segue 1’ [Obsl11]|
which served as a reference for our simulation.

To evaluate the scaling behavior of different optimizations, we further simulated galaxies
with 5,000, 10,000, 50,000 and 100,000 stars.

2.2 Physical equations for generating a spherical galaxy

To simulate the movement of stars in spherical ultra-faint dwarf galaxies, we first have a
dataset including the position, masses and velocities of the stars in the galaxy. For that
we use the common assumption of a Plummer sphere with the mass distributed according
to the Salpeter IMF which are further explained below.

2.2.1 Distribution of stars

The distribution of the stars in the galaxy is given by the equation for the Plummer sphere
[AHW74]. The density of a Plummer sphere in 3 dimensions is known to be

3M. 2\ —H/2
pp (1) = —2 (1+T ) :

4mra3 a?

Where M, is the mass of the galaxy, r is the radius and a is the half-mass radius, a
physical property of a spherical galaxy describing the distance at which half of the mass
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Dwarf Galaxy Simulation of N-Body Problem

is enclosed within that radius. Therefore, the enclosed mass for any given radius of the

Plummer sphere is given by

T’3

M(?") = M—(,',,Q " a2)3/2 .
We can assume that the masses of stars are distributed randomly as all the stars of such
galaxy would have been created at the same time from the same collapsing gas cloud.
Therefore, no new star formation could produce local difference, and we can normalize

the enclosed mass to get a fraction X € [0, 1] of how much mass is enclosed

7“3

(r2 + a2)3/2'

This can also be interpreted, according to the previous argument of the masses being
distributed randomly, as the fraction of stars enclosed.
To calculate realistic star positions from this equation we then solve for r

"X = v

With X being a uniform random number from 0 to 1.
The radii we get from that equation then get distributed uniformly over the sphere giving
a set of stellar positions comparable to real observations

2.2.2 Distribution of initial masses

The mass distribution of stellar masses follows a trend, described by the Salpeter IMF

[Sal55] »
aosn-a () (32)

This says that the probability P(m) of a star with mass of m and a tolerance of dm is
P(m)dm o«c m™%dm

With alpha = 2.35. We define a minimum stellar mass as m,,,;, = 0.1M and a maximum
stellar mass of My, = H0My. Now we can normalize P(m)

/ - P(m)dm = 1.

Mmin
Therefore,
(1 —a)ym=
plm) = — =
max min

With this we can calculate the cumulative distribution function

m l—a _ pyl-a
F(m) = / P(m/)dm' = 1L~ Mmin

mlfa o mlfa

Mimin mazx min
Now by rearranging the equation and inserting a uniform random number X from 0 to 1,
we can calculate a random mass in a similar way to before, that is distributed according
to the Salpeter IMF.
m — (X (ml—a _mla 1—a)1/(1—a) 2)

max min) + mma:v

Section 2 Amelie Thran, Niels Jautelat 2



Dwarf Galaxy Simulation of N-Body Problem

Correction for dark matter Ultra-faint dwarf galaxies are the most dark matter
dominated systems in the universe and a simulation that doesn’t account for the mass
of the dark matter can’t produce simulations of stable systems. Since the positions and
masses were placed evenly and because dark matter also abides by the same laws of gravity
and is distributed using the same Plummer sphere density function, we can account for
the missing dark matter by multiplying the stellar masses with the light-mass ratio of
the galaxy. In the case of our reference galaxy Segue 1, it has a light-mass ratio of 3400,
meaning that much more dark matter is present in the galaxy compared to matter in
stars. Therefore, we also use that multiplier for our stellar masses

2.2.3 Distribution of initial velocities

Now that we have our positions and masses we need the initial velocities of the stars,
before we can start using this data.
The gravitational potential of a Plummer sphere [AHW74]| is known as

GMtot
Vr2 + a?

The escape velocity in a gravitational potential is described by

O(r) = —

2G M,,
Vese (’I") = 1/ 2|<I>(7") = \/ﬁ

By introducing the dimensionless variable ¢

()

Vese(T)

q = 6[0’1]

we can get the probability distribution of

P(g) xx ¢® (1—¢*)"*.

Therefore we get the velocity magnitude distribution at the radius of r

2 2\ 72
Pldos (o) (1 ~(=m) )

02 02 /2
P(vlr)y=C- (1 ) L0 < < Vege(r)

Vese (7) Vese (7)

or explicitly

with C' = %

Instead of calculating a direct solution we propose a solution to a rejection sampler and
get our velocity through that. That velocity is then given a random direction on the
sphere in accordance with the Virial theorem.

2.3 Physical equations for simulating the movement of the stars

Now that we have our galaxies modeled, we can look at the relatively more simple part if
simulating the movement

Section 2 Amelie Thran, Niels Jautelat 3
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2.3.1 Modeling two-body systems

Between every two objects there exists a gravitational force, described with

mims

F=G-

rz
The general equation for force is
F=m-a.

Therefore, the acceleration a; of object O with mass m; due to the gravitational force
being created by object O, with mass my is
m
a) = G . —22
r
Using this equation, we can calculate the future position of both objects for any future
date, assuming only these two objects influence each other and nothing else.

2.3.2 Modeling n-body systems

While one or two bodies in a gravitational system lead to easy equations, the introduction
of a third or more bodies leads to a chaotic system that can’t be described analytically.
Therefore, to solve these systems we simulate them numerically, by calculating the forces
between each objects, calculating the change in velocity of each object and then letting
each object move for a small amount of time.

2.4 Solution approaches

2.4.1 Sequential solutions

Simple Sequential Solution. To simulate the movements we now can use our set
of data along with a predetermined number of steps, and time span each step should
cover. For each time step we iterate through every star, accumulate the acceleration
they experience by again iterating through every star and calculating the force the star
experiences. Then we can move the star according to the new velocity vector for one time
step, before doing it again.

Optimized Sequential Solution. Iterating twice through all stars is inefficient since
we look at each pair of stars twice. By calculating not just the force of one star, but
both stars every time we can cut the number of iterations and the memory reads in half.
This also gives us the ability to share some of the calculation, further cutting the time
the simulation needs.

2.4.2 Parallel Solutions

The easiest way to parallelize this serial calculation is to distribute the iterating through
the stars onto more nodes using OpenMP and MPI. While this is something we have
explored and tested, in the following we would like to discuss logical changes to the
calculation process we explored. As shown above, stars in a longer distance have a smaller
influence on the allocation than stars nearby. According to this effect the calculation can
be optimized.

Section 2 Amelie Thran, Niels Jautelat 4
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Radial distance dependent granularity. According to the density profile of the
Plummer sphere more stars are in the center of the galaxy, meaning they are closer
together. And we know that the force a star experiences scales with 1/r?. Therefore, we
can assume that stars more in the center of the galaxy experience more force from the
other stars, resulting in more change in their trajectory in any given time and therefore
their velocity vector needs to be updated more frequently to have the same accuracy.
For our example of a galaxy with 1000 stars, has a half-mass radius of 30 pc. For our
simulation we use a step size ten times bigger then our sequential solution, but at a dis-
tance of 15 pc from the center we decrease that step size again, by a factor of 8 and within
7.5 pc of the center, we double it again to 16.

Given that many stars now will only be updated a tenth of the times and some more
frequently, we hope to achieve an improvement of 2-5x in terms of speed of calculation
while keeping the accuracy high.

Neighbor distance dependent granularity. Instead of assuming that the stars near
the galactic core are more likely to have close neighbors, we can also check the distance to
the nearest neighbor for every star and do our computation based on that. We expect to
need some additional computational power to calculate the nearest neighbors of all stars,
but this way we can use more precision for the stars that need it the most and avoid
giving additional computational resources to stars that don’t need it.

For our implementation that means a step size ten times bigger as our sequential solution,
just like before, 8 times more precision, when a star is within 8 pc and 16 times more
precision when a star is within 4 pc.

We aim for a similar improvement as to the radial distance solution. However, less sparse
galaxies would mean more and more of the stars would have close neighbors, leading to
the optimization potentially performing worse than the original unoptimized version.

Sector based calculations. As long as only the update rate is modified still the influ-
ence of every star is calculated. It can be made even more efficient by using sectors. For
that entire simulation area range is divided into cubes. A star experiences the forces and
accelerations by the other stars within every cube (or sector) as normal while the stars
in the remaining sectors are grouped together as a mass at the center of their sector and
interact with the star only by the chunk approximation.

For our simulations we divide the simulation area into 1000 sectors with lengths of 100 pc,
given a simulation area of 1000 pc - 1000 pc - 1000 pc.

For a simulation with only 1000 stars we do not expect any improvements, but with in-
creasing number of stars, this optimization should be a significant improvement as it has
a significantly better scaling behavior.

Sector based calculations with Radial distance dependent granularity. By com-
bining the optimization strategies of increasing the step size farther away from the center
and decreasing it more in the center and grouping distant stars into sectors, we hope to
achieve a combination of the effect, of more precision where it is needed, while also de-
creasing the amount of calculations and the better scaling of sectors with higher number
of stars, compared to calculating the forces between every single star.

Sector based calculations with Neighbor distance dependent granularity. The
last method we explored combines the neighbor distance dependent granularity with the
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sector based calculations.

2.4.3 Validation of improvement

For validating our results we used two different approaches. On the one hand we analyzed
the runtime of the different programs and on the other hand we looked at the simulation
itself to validate the accuracy of the location of the stars.

Steps per second The performance analysis calculates the steps per second by multi-
plying the percentage of the total progress of the simulation by the target number of steps.
This is divided by the time that has elapsed up to the percentage achieved. In the end we
get a performance value for each recorded run of the simulation. Since the recording is
done every percent of the total steps to be calculated. For comparison between different
runs we used the maximum steps per second of each run.

Accuracy of location However, it is not only important how much time a simulation
takes, but also how good the result is. According to the physics every simulation with the
same starting position of the stars should return the same result, regardless the method
used, if the steps are small enough. We compare the stars position of two log-files after
the simulation by calculating the Euclidean distances of the same star in both files. The
percentage of stars within a previous chosen limit compared to the results of the Simple
Sequential solution is the accuracy value.

3 Implementation

The programs to generate the galaxies and to calculated their movements where written
in C and ran on the servers, while the analysis was done off-site with Python.

For our implementations our coordinates are defined as parsecs from the galactic core, in
the three cardinal directions.

3.1 Galaxy generation

The generation of the galaxy was done once per size of galaxy on the server. Since it
doesn’t have to be repeated for every run and scales linearly with the number of stars
instead of in quadratically, we elected not to spend time parallelizing it.

3.1.1 Distribution of stars

The way to generate a distribution of stars, as a Plummer sphere is given by inserting
random uniform numbers from 0 to 1 into the equation 1, which we implemented in the
code block 1.

In the code snippet, "N’ is the number of stars to be generated, "a’ stands for the half-mass

Y, Y0 9,0

radius, and the arrays of 'z’, 'y’, ’2’, 'r’ describe the positions of the stars.

Section 3 Amelie Thran, Niels Jautelat 6
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3.1.2 Distribution of initial masses

The way to generate the initial masses according to the Salpeter IMF is to inserting
random uniform numbers from 0 to 1 into the equation 2, which we implemented in the
code block 2.

In the code snippet, N’ is the number of stars to be generated, 'alpha’ is the Salpeter
slope defined as 2.35 as described before, m,,.;,,” and 'm,,,,  are the minimum or maximum
masses of our stars, here defined as 0.1 or 50 times the mass of the sun respectively, and
'm’ is the array describing the masses of the stars. Since the positions and masses are
randomly distributed we do not need to take the position of the star into consideration.
The global variable *DarkMatterCorrection’ applies a correction factor as discussed in
the paragraph about dark matter at 2.2.2.

3.1.3 Distribution of initial velocities

The way to calculate the initial velocities is given in section 2.2.3.

For our implementation, we first calculate the escape velocity at the galactic center. Every
star then gets their local escape velocity calculated.

To get the randomly distributed values, we take two random uniform values between 0
and 1. The first we scale based on the probability density function. This gives us our ’x-
value’, the other one we scale based on the maximum of the probability density function
at around 0.1. With that we transformed our problem into a linear one and to produce
values that are distributed as needed, we just need to check that the first scaled value is
under the line/smaller than the second scaled value.

Now that we have a properly distributed range, we can multiply the value with the local
escape velocity and apply that into a random direction.

3.2 Movement simulations

All implementations of the simulation have a minimum distance of € defined. In the
code implemented as the variable ’eps’. The likelihood of any two stars colliding or just
coming together close enough to significantly effect their orbits is incredibly small and
would only occur once in every thousand runs, if we estimate it with a generous margin.
With later simulation solutions, the ramifications of a star shooting out of the galaxy,
could lead to loss of data on that star or significantly longer calculations as the area of
our simulation gets bigger. For that reason, whenever we calculate the distance, we use a
four dimensional Pythagoras with all three space dimensions and a fixed e-value of 0.1 pc.
After every percent of progress in the simulation we save a snapshot with all position,
movement and mass data, as well as the parameters we input at the start of galaxy
formation and simulation. This helps automate the analysis of data as well as giving us
the option of continuing from a snapshot, should we require that.

The data for every star is stored in a struct as seen in the code block 4

3.2.1 Sequential Solutions

Simple Sequential Solution. All our solutions were developed from a sequential so-
lution, described in the section 2.4.1 as the simple sequential solution. The main logic of
the code can be found in the code block 5.

To do our simulation, we have 3 nested for-loops. The first one goes through the time
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steps we set and the second and third go through every combination of stars to calculate
the forces the second acts upon the first. After that we go through each star again and
calculate their new velocities and positions after experiencing the forces and movements
for a set period of time.

Optimized Sequential Solution. In the code block 6 you can see the changes that
are needed to accommodate both calculations at once. Since we do not just go through all
stars one after the other, we already have to have all the memory of the last step wiped,
before even computing the acceleration of the next star.

3.2.2 Parallel Solutions

There are two separate tools to parallelize the code. OpenMP and MPI. We started with
OpenMP to do a simple parallelization of our code, before using MPI for more complex
strategies

Parallelizing with OpenMP In the code block 7 we have displayed the changes needed
to turn the previously mentioned sequential solutions into parallel ones. It is a simple
solution that works, but that does not offer the same flexibility as MPI, which we will be
using from now on.

Parallelizing with MPI Our simplest MPI implementation works by taking the simple
sequential approach, splitting the evenly distributing the stars between all tasks and then
only calculating the forces for the stars assigned to that task. Between every time step,
the new positions get distributed to all other tasks, to keep the simulation data current
and accurate.

The main logic of that can be found in code block 8.

Radial distance dependent granularity. The main logic can be found in the code
block 9.

To achieve more granularity at the center, we first go through every star and calculate its
distance to the center. If it is within the 'r ref’ distance, defined as 15 pc, it is within
the outer threshold, if it is within half of that it is in the inner threshold. When we
do a timestep, we further do 16 cycles. If the star is in the inner threshold it gets its
acceleration computed every cycle, if it is in the outer threshold, it only gets updated
every second cycle and stars outside of the thresholds only get updated on the last of the
16 cycles.

Neighbor distance dependent granularity. The neighbor distance calculation is the
exact same idea, but instead of calculating the distance to the center, we go through each
star and calculate the distance, to get the distance to the nearest neighbor.

The outer threshold is here defined as 8 pc with the inner threshold being half that.

Sector based calculations. The logic of our sector based calculations is in code block
10.

Before our logic we created 1000 sectors (10 by 10 by 10, with a side length of 100 pc each)
that comfortably fit even the most extreme outliers of our simulation. At the beginning we
assign each star into its sector with the function sector index. Then in the simulation,

Section 3 Amelie Thran, Niels Jautelat 8



Dwarf Galaxy Simulation of N-Body Problem

we calculate the mass and weighted average position of the stars in each sector. We
compute the forces on each star from each other star in the sector as before, but for stars
outside the sector, we use the total mass at the weighted average position for each sector,
instead of the stars in them.

Sector based calculations with Radial distance dependent granularity. For this
approach we took the code for the sector based calculations and changed the calculation
of the forces within the sector to the one of the Radial distance solution.

Sector based calculations with Neighbor distance dependent granularity. For
this approach we took the code for the sector based calculations and changed the calcu-
lation of the forces within the sector to the one of the Neighbor distance solution.

4 Performance analysis / evaluation

We tested our code for both speed and accuracy.

The speed tests were done on the SCC-CPU cluster. For them, we simulated 10,000 years
with steps of 1 year for 1000, 5000, 10000, 50000 and 100000 stars. We did that with
all our solutions running as 1, 2, 4, 8, 16 or 32 tasks on 1, 2, 4, 8, 16 or 32 nodes. All
runs were capped at 10min of runtime and while that meant many runs were cut short
prematurely, we could almost always get useful data from it, since every percentage of the
simulation completed, we save a snapshot that includes the completed amount of steps
and the time it took so far, giving us insight into the speed of the simulation.

The accuracy tests comprised of simulations of 1000 stars for 10,000 years with steps of
0.1 years and were done both on the cluster, as well as external machines, after we verified
that the data is indeed the same.

4.1 Performance

4.1.1 Performance of the sequential solution

To measure the performance of our optimizations to the sequential solution, we ran both
the optimized and the unoptimized solutions 21 times with 5000 stars and 21 times with
10000 stars.

‘ Simple Sequential ‘ Optimized Sequential
5000 stars | 408 +5 823 +5
10000 stars | 203 + 2 386.8 £ 0.5

Table 1: Comparison of steps per second for simple and optimized sequential solutions.

This leads to a speed up of 102 % 4 3% for the simulation of 5000 stars and a speed
up of 91 % + 2% for simulations with 10000 stars.
On average our optimizations speed up the simulation by 97 % 4 3 %.
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4.1.2 Performance gain using simple parallelization

Simple Solution The possible performance gain for simple parallelization is here il-
lustrated with runs with 10000 stars. We compare the sequential solutions to parallel

solutions that have the core logic unchanged, as described in section 3.2.2 Parallelizing
with OpenMP and Parallelizing with MPI.
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Figure 1: Steps per second with a simulation of 10000 stars, with the simple sequential

solution, depending on number of tasks and nodes

In figure 1, you can see our sequential solution. As expected, there is a bit of variance,
but the number of tasks and nodes does not have any effect on the speed of the simulation,
which reached up to 208 steps per second.
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Figure 2: Steps per second with a simulation of 10000 stars, with the simple parallel
solution, depending on number of tasks and nodes

In figure 2 we see the steps per second for the same code, parallelized with OpenMP.
The y-axis in this case stands for the number of threads that OpenMP has access to.
While this parallelization suffers a penalty, from the extra overhead, when using just one
or two threads, it is faster by over an order of magnitude, compared to the sequential
solution with 3315 steps per second, when using 32 threads.

The mayor drawback of OpenMP is however, that it does not work across multiple nodes
or tasks, making it impossible to scale beyond a certain point.
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Figure 3: Steps per second with a simulation of 10000 stars, with the simple MPI solution,
depending on number of tasks and nodes

Looking at figure 3, we can see the speeds of the simulation with different combinations
of tasks and nodes for the simple parallelization using MPI. The speed of it peaks at 32
tasks on either 1 or 32 nodes with up to 6282 steps per second. Almost a doubling of the
result of OpenMP.

Optimized solution In the following figure 4 you can see the speed of our optimized
sequential solution, based on number of tasks and nodes. Again, you can see that there
is some variance, but as expected for a sequential, there is no correlation between more
tasks or nodes and more performance. We can however observe the performance uplift,
discussed in 4.1.1. This leads to a peak speed of 389 steps per second, an increase of 87 %.
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Figure 4: Steps per second with a simulation of 10000 stars, with the optimized sequential
solution, depending on number of tasks and nodes

It is important to note however, that this does not scale with more cores, nearly as
well as the simple solution. As you can see in the figure 5, we get barely any improvement,
with 435 steps per second being the fastest run, while the performance even regressed at
32 threads.

This can be explained by the fact that OpenMP divides the stars into equal chunks, our
optimization now gives the first stars a bit more forces to compute to save on additional
loading and compute time for the later stars. This triangular loop means that one thread
will have orders of magnitude more work than another, negating a lot of the speed up.

Another even more significant contributor to this meager performance is the penalty we
incur because of cache contention. In our sequential solution, the outer loop decides what
star we are currently updating and the inner loop decides from what other star, the forces
we are currently calculating are coming from. That means, when dividing the workload
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onto more threads, every thread will have their own set of stars that are only updated
by that thread. With the optimized approach, we also update the star from the inner
loop. Now we can have the problem, that multiple threads try to update the same star,
leading to a cache contention and the CPU pausing the threads until all updates to the
stars acceleration have been processed one after the other in a queue.
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Figure 5: Steps per second with a simulation of 10000 stars, with the optimized parallel
solution, depending on number of tasks and nodes

4.1.3 Speed of simulations

Every combination of solution, star amount, nodes and tasks has run at least once on
the cluster. As an example, we have shown the results of the distance dependent sector
solution in figure 6.
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Figure 6: Heatmaps of the steps per second of different star amounts with the distance
dependent sector simulation, depending on number of tasks and nodes

To get these results, we take the snapshot that got the furthest into the simulation
and divide the amounts of steps it got to by the timestamp of the snapshot. This gives
us the speed of that run.

The value 0 means that the simulation took at least one step, but it didn’t complete at
least one percent of the simulation before the allotted time of 10min ran out.

We create similar heatmaps for every combination of solution and star amount and
take the highest result of each as the speed, that solution can reach. To now compare the
speed between our solutions, we plot the steps per seconds achieved per method against
the amount of stars and get a ranking of which is the fastest or the slowest and how does
that compare across the different amounts of stars. This can be seen in the figure 7.
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Figure 7: Maximum Steps per second achieved, depending on the amount of stars and
the method used for the simulation

We can see three distinct groupings. A group of slow solutions, a middle pack and
two fast solutions.

The slow solutions consist of our simple and optimized sequential solution as well as
the optimized solution, parallelized with OpenMP. As we expect, the sequential solutions
are the slowest. The optimized solution, parallelized with OpenMP, starts in the same
grouping, initially even performing worse than the sequential solutions, because of the
cache contention, previously discussed in 4.1.2. With more stars and the same number
of threads, the likelihood of cache contention decreases, increasing it’s speed relative to
other solutions dramatically at higher star counts. In our testing however, it is never ac-
tually close to being as fast as the simple sequential solution with the same parallelization.

The middle pack shows us that a lot of our solutions are just about trading blows
with a simple solution optimized with MPI. The solutions that calculate the distance to
the nearest neighbor, before deciding, how granular the star need to be updated save a
lot of time in their computations, but the calculations to get the distance to other stars
is compute intensive enough to offset the gains at higher number of stars. Out of the
middle pack the only other stand out solution is the sector solution, without any other
extra calculations. It is very close to the simple MPI solution and with it theoretically
scaling better with more stars, it is promising.

The overall stand outs are the distance based solutions. They save so much compute
power by being less granular further for the center, that they are clearly the fastest
solutions. We can clearly see the penalty that the solution incurs, when combining it
with the sector based approach at lower counts of stars, but what we also clearly see is
that the gap is closing with more stars and finally the solution that combines sectors with

Section 4 Amelie Thran, Niels Jautelat 14



Dwarf Galaxy Simulation of N-Body Problem

the distance based granularity is the fastest solution for 100,000 stars.

4.2 Scaling behavior

Now that we looked at the speed of the solutions, lets look at the scaling of them.

4.2.1 Scaling with tasks and nodes

When running a simulation on the SCC-Cluster, we can choose the amount of tasks and
nodes the work should be distributed on. To show how that effects the speed, we took our
6 solutions that rely on MPI, scaled the speed to the percentage of speed it had with only
one task on one node and then averaged those percentages from runs with 1000, 5000 and
10000 stars. You can see the resulting speed up or slow down, depending on the amount
of nodes and tasks in figure 8. Runs with higher number of stars weren’t used, as they
had configurations, where the first percentage wasn’t completed.
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Figure 8: Percentage increase of steps per second depending on the number of tasks and
nodes, for different solutions

You can clearly see three trends. Firstly the code scales best with all tasks on one
node. Secondly, distributing all tasks on their own node, results in pretty similar, if not
identical scaling. And lastly, while mixing the number of nodes and tasks leads to bad
scaling, sometimes even a performance regression, having 32 tasks divided onto 4 nodes
seems to be a sweet spot that scales far better than distributing the task on more or less
nodes (except having them all on one node, or all on separate nodes).

It is important to note that even the best scaling combinations, do not scale linearly with
the amount of tasks, as there is a considerable overhead in collecting and distributing data
between the ranks. This also explains the different scaling behaviors. When all ranks are
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on the same node, the shared memory enables fast exchange of data, resulting in high
performance gains. A similar thing is happening, when every rank is on a separate node.
It does not have to share the memory bandwidth with any other rank and therefore can
also exchange data faster.

While we do not know the underlying network architecture well enough to pin point an
exact reason, it is also our observation, that using 8 ranks per node allows the memory
bandwidth to be used more efficiently, leading to more through put at that sweet spot.

4.2.2 Scaling with stars

To measure the scaling of our solutions in respect to the amount of stars, we take figure
7, use the speed of each method at 1000 stars as a reference and plot the relative speed
of the method with more stars, instead of the absolute speed. This leads to the figure 9,
which shows how each solution scales with more stars.
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Figure 9: Steps per second scaling based on the method

What we can see in the graph is that for our runs the distance dependent sector
solution scales the best while our sequential solutions have the worst scaling.
The calculations to find the nearest star have a huge penalty for scaling, while simply
assuming that farther out stars are farther away from the nearest star tops the charts.
Combining an approach with sectors also generally seems to improve the scaling behavior.

4.3 Accuracy of simulations

While we discussed the speed and scaling behaviors of our solutions a last question lingers.
Are they accurate enough?

As previously stated, the simulation for the accuracy measurements were done with 1000
stars and for 10,000 years, with a step size of 0.1 years. Since we do not care about the
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speed of the operation and we could verify that the same code gives the same result,
regardless of if it is running on the cluster or a different machine, these simulations ran
on a personal computer with an AMD Ryzen 8840HS. Where possible the code ran on all
8 cores/16 threads.

There is no real world data we can draw from to compare, therefore, we can only compare
our results to a reference. In this case the sequential solution with out any optimization.
To compare the simulations, we compare the distances of the stars in our simulation to
the reference and calculate how many of the stars are within a certain distance threshold
compared to the reference. This can be seen in table 2.

Solution 1x107pc | 1x105pc
Simple Sequential (Reference) 100 % 100 %
Simple Parallel 100 % 100 %
Simple MPI 100 % 100 %
Optimized Sequential 100 % 100 %
Optimized Parallel 99.6 % 65.2 %
Nearest Neighbor 100 % 99.9%
Distance Dependent 100 % 99.9%
MPI Sector 100 % 81.3%
Nearest Sector 100 % 81.4%
Distance Sector 100 % 81.4%

Table 2: Accuracy of the solutions, shown as percentage of stars within a certain distance
of reference

What we can clearly see is that the solutions that do not change the underlying logic
all give the exact same results as our reference, with only one exception. Parallelizing the
Optimized Solution not only leads to performance degradation, but also to inaccuracies in
the simulation. While the other solutions before keep the order in which the acceleration
is added up, including the same code, when just using a single thread, using more threads
will rearrange that order, resulting in floating point errors that compound over time. That
is because we do not simply go through each star and calculate the forces for that star,
but also for a different star that otherwise comes later. This isn’t a problem with only
one thread, as the order is still respected. We go through every star that has an index
smaller and calculate the force that acts from that star, before directly calculating the
forces from stars with a higher indices. With more threads, a later star will sometimes
already have the forces from stars with higher indices calculated, before stars with a lower
index in a different thread get to that star.

We should note that we are talking about over half of all stars not being within a distance
of roughly the mars to the sun, in a galaxy roughly 6 million times bigger when using
the half-mass radius or 100 million times, if we look at the farthest stars, still part of the
galaxy.

We can safely say that any simulation that is more accurate than that is accurate enough.

Our Nearest Neighbor and Distance Dependent solutions are incredibly accurate with
99.9% of all stars being within 1 x 107 pc from the reference, despite using step sizes,
ten times bigger compared to the reference, for most stars.
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Implementing sectors into the solutions has a noticeable impact on accuracy, however
with 81.3% or 81.4 % when varying the step size based on distance to neighbors or the
center the solution is still very accurate.

5 Challenges / Discussion

5.1 Challenges
5.1.1 Dark Matter

The first problem we encountered was that the very first galaxies we simulated weren’t
stable and would diverge by a lot in a short amount of time. With the idea of using sectors
already in our minds, this could lead to loss of data, when a star ventures outside of the
sectors. After triple and quadruple checking our equations to generate and simulate the
galaxies, we came to the same conclusion as the field of astronomy before us. We needed
a correction factor in our mass. By multiplying the masses of the stars with a factor of
3400 the galaxy simulations became stable.

To do several long term simulations with the needed precision needed to find the perfect
light-mass ratio for this galaxy would have meant significant time and compute resources
invested in a small side question and was unfortunately not possible.

We can however confirm the dark matter hypothesis anecdotally. Without a factor similar
to the one of Segue 1 in the real world, the simulation is not stable.

5.1.2 Amount of data

All in all, we gathered data from 2176 runs that were completed on the SCC-CPU cluster
and a few hundred more on both an 8-core laptop and an 12-core desktop computer.
This resulted in almost 100 GB of data, that was generated and saved. Managing this
was a challenge.

(We would like to note that we very regularly copied and removed the data from the
cluster and that we weren’t a significant contributor to the storage problems on there.)
30 GB of that were used for the analysis. We could have decreased the size of that to
about 500 MB by removing almost all snapshots except the very latest and by removing
the star locations and velocities from the data which we use for the performance tests,
we could further go down to a few Megabytes. But doing that would remove the ability
to continue from a snapshot and reducing the amount of snap shots would hinder the
diagnostic of our simulations.

Therefore, this remains a challenge that might be unsolvable without accepting throwing
away data.

5.1.3 Complexity of development for HPC

Comparing the slides of the presentation and the report, you will see some differences in
our numbers and conclusions.

Our understanding of the data and of developing for HPC systems has continuously
improved over the span of the project. While this is a very good thing, it also has lead to
the realization, that we were previously interpreting some data wrong, or that there was
a previously undiscovered bug in our code.
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While the underlying logic of our solutions have not been touched since our presentation
of our results, even though we would like to bring some improvements, some bug fixes
have lead to changes in the data and therefore our conclusions.

5.2 Future Outlook

5.2.1 What we would have liked to do

As described previously in the section above, we learned a lot and would like to do sig-
nificant changes to speed up the code. For example, the code that calculates how far
away the nearest star is could have been made redundant if we were saving the smallest
distance while calculating forces in the previous step. Things like that could improve our
code and with more time produce even faster and accurate results.

The one thing we really wanted to with our data is to create physically accurate visual-
ization. We know the mass of the stars and using the approximation that the stars are
all from the main sequence, we can use that to calculate the dominant wave length and
brightness of the star, creating a physically accurate and beautiful visualization. Unfor-
tunately, that took too much of our time.

5.2.2 Other approaches

When googling or asking ChatGPT for solutions to this problem, you will stumble across
the Barnes-Hut simulation. A method of recursively dividing space up into sectors for
simulations similar to the ones we did.

The reason that we didn’t use that one is that we wouldn’t learn anything. We could
copy the code for that algorithm from GitHub or ChatGPT and get great results. And
if we were only after results that would do. But in a course designed to learn how do use
HPC systems and how to develop for it, we decided it would be a better use of our time
to see for ourselves, what works or doesn’t work.

Similarly writing the code for GPUs would have been incredible, unfortunately the time
investment needed to write for a completely different architecture would be enormous and
that code wouldn’t even run on the cluster that we were using.

6 Conclusion

We set out to write a program that would generate realistic spherical dwarf galaxies and
simulate the movement of stars within them. Our goal was to develop solutions that
could speed up the simulation by utilizing the resources available on an HPC cluster
while developing our understanding of working with and developing for HPC clusters.
Ultimately, we were successful in this endeavor and on the way improving the speed of
the simulation by a factor of over 100, when comparing the 200 steps per second our
simple sequential solution could achieve with 10000 stars, compared to the 23000 steps
per second of the distance dependent solution running with 32 ranks at the same time.
With this, we learned that in a spherical galaxy, the changing the step size based on
how far the nearest other star is, gives the same results accuracy wise, as changing the
step size based on the distance to the center, but with much less compute overhead. We
further learned that in order to keep a galaxy stable, especially one as sparse as the ones
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we simulated, we need to account for a significant amount of dark matter. Furthermore
we should be cautious with using OpenMP without making sure that multiple threads
don’t need to change same variable, as this can result in significant cache contention that
tanks performance.
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A  Work sharing

A.1 Niels

Niels was primarily responsible for the introductory theoretical section. He conducted
the necessary literature research to ensure that our assumptions for the subsequent model
were physically correct. Furthermore, he developed the code for the sector based solutions
of our work. He submitted the programs to the clusters for testing and evaluation. The
presentations were prepared and delivered trough collaborative work. Niels wrote the
methodology section and his sections on implementation.

A.2 Amelie

Amelie programmed a sequential solution to the problem. She then transformed the code
into parallel solutions using OpenMP and MPI. To further improve performance, she
implemented programs for radial and neighbor distance dependent granularity. The next
step was to evaluate and compare the results of the different approaches, which she also
did. Using these results she returned to the code and modified it. As described above,
the presentations were created through collaborative work. For the report, Amelie wrote
most of the implementation, performance analysis and discussion sections.

B Code samples

B.1 Galaxy generation

1 void make_point_cloud(int N, double a, double *x, double *y, double *z,
double *r)

> {

3 for (int i = 0; i < N; i++)

| {

//Code to get a random distance from the center, based on the

plummer density

6 double X = rand_uniform() ;

7 r[i] = a / sqrt( pow(X, -2.0/3.0) - 1.0 );

8 //Code to get a random point on the shpere with a known radius

9 double u = rand_uniform() ;

10 double cosTh = 1.0 - 2.0x%xu;

11 double sinTh = sqrt (1.0 - cosTh*cosTh);

12 double phi = 2.0 * PI * rand_uniform();

13 //Conversion to cartesian coordinates

14 x[i] = r[i] #* sinTh * cos(phi);

5 y[i]l = r[i] * sinTh * sin(phi);

16 z[i] r[i] * cosTh;

Listing 1: Generating plummer sphere point cloud

| void distribute_stellar_mass (int N, double m_min, double m_max, double
alpha, double *m)
2 {
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double exp = 1.0 - alpha;

double C = pow(m_max, exp) - pow(m_min, exp);
for (int i = 0; i < N; i++)
{
double u = rand_uniform() ;
m[i] = DarkMatterCorrection * pow( u*C + pow(m_min, exp), 1.0/
exp );
}

Listing 2: Generating inital masses based on the Salpeter IMF

void distribute_stellar_velocity(int N, double a, double Mtot,

>

double *r

double *vx, double *vy, double *xvz) {

// velocity scale in pc/Myr
double v0 = sqrt(G * Mtot / a);

for (int i = 0; i < N; i++) {
// local escape speed: v_esc = v0 * sqrt(2) * (1 + (r/a)"~2)
~(-1/4)
double psi = vO0 * sqrt(2.0) * pow(1.0 + (r[il/a)x*(r[il/a),
-0.25) ;
double v;
// rejection sampling on f(q) x gq~2 (1 - q~2)°(7/2)
do {
double q = rand_uniform();
double gl = gq*q * pow(1.0 - g*q, 3.5);
double g2 = rand_uniform() * 0.1; // approximate maximum
if (g2 < g1) {
Vv = q * psi;
break;

}
} while (1);
// random direction
double u = rand_uniform() ;
double cosTh = 1.0 - 2.0x*u;
double sinTh = sqrt(1.0 - cosTh*cosTh);
double phi = 2.0 * PI * rand_uniform();

vx[i] = v * sinTh * cos(phi);
vy[i]l] = v * sinTh * sin(phi);
vz[i] = v * cosTh;

Listing 3: Generating inital velocities

B.2 Simulation

B.2.1 Sequential

typedef struct {
int id;
double x,y,z;
double vx,vy,vz;
double m;
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Dwarf Galaxy Simulation of N-Body Problem

} Star;

Listing 4: Struct for data handling

for (int step = 0; step <= nsteps; step++) {
// compute accelerations by gravitational force
for (int i = 0; i < N; i++) {
ax[i] = ay[i] = az[i] = 0.0;
for (int j = 0; j < N; j++) if (i '= j) {
double dx = S[jl.x - S[il.x,
dy = s[jl.y - slil.y,
dz = S[jl.z - S[il].z;
double r2 = dx*dx + dy*dy + dz*xdz + eps*eps;
double inv_r3 = 1.0 / (r2 * sqrt(r2));
double f = G * S[jl.m x inv_r3;
ax[i] += f * dx;
ay[i] += £ * dy;
az[i] += f * dz;
}

}

// add acceleration to

velocity and calculate movement

for (int i = 0; i < N; i++) {
S[i].vx += ax[i] * dt;
S[il.vy += ay[i] * dt;
S[i]l.vz += az[i] * dt;
S[il.x += S[i]l.vx * dt;
S[il.y += S[i].vy * dt;
S[il.z += S[i]l.vz * dt;
}
[...]
}
Listing 5: Movement simulation of the SimpleSequential Solution
for (int step = 0; step <= nsteps; step++) {
for(int i = 0; i< N; i++)
{
ax[i]l=ay[i]l=az[i]=0.0;
}
// compute accelerations
for (int i = 0; i < N; i++) {
for (int j = i+1; j < N; j++){

double

dx=S[j].x-S[i].x,

dy=S[j].y-s[il.y,
dz=S[j].z-S[i].z;

double r2 = dx*dx+dy*dy+dz*dz+eps*eps;
double inv_r3 = 1.0/(r2*sqrt(r2));
double f = G * S[j]l.m * inv_r3;
ax[i] = fx*dx;
ay[i] = f=xdy;
az[i] = fxdz;
f = - G * S[i]l.m * inv_r3;
ax[j] = fx*dx;
ay[j1 = fxdy;
az[j]l = fxdz;
}
}
[...]
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Listing 6: Force calculation of the OptimizedSequential Solution

B.2.2 Parallel

for (int step = 0; step <= nsteps; step++){
// compute accelerations
#pragma omp parallel for schedule(static)
for (int i = 0; i < N; i++) {

[
}

-]

// update velocities and positions
#pragma omp parallel for schedule(static)

for
}

}

[...]

(int i = 0;

[...]

B

i < N; i++) {

Listing 7: Changes to parallize with OpenMP

for (int step = 0; step <= nsteps; step++) {
// compute accelerations for our chunk

for (int i = local_start; i < local_start + local_N; i++)

ax[i] = ay[i]

for

}

(int j = 0;

if (1 == j
double dx
double dy
double dz
double r2

)

az[i] = 0.0;

j < N; j++) A

continue;

S[jl.x - sS[il.x;

S[jl.y - S[il.y;

S[jl.z - s[il.z;

dx*dx + dy*dy + dz*xdz + eps*eps;

double inv_r3 = 1.0 / (r2 * sqrt(r2));

double f
ax[i] +=
ay[i] +=
az[i] +=

Hh H H

G
*

*
*

* S[j].m * inv_r3;
dx;
dy;
dz;

// update velocities & positions for our chunk

for (int i = local_start; i < local_start + local_N; i++)

S[il

S[il

S[il]

S[il]

S[il]

S[il
b

.vx += ax[i]
.vy += ayl[il]
.vz += az[i]
.x += S[i].vx * dt;
.y += S[i]l.vy * dt;
.z += S[i].vz * dt;

*x dt;
*x dt;
* dt;

// share updated stars so every rank has the full array

MPI_Allgatherv(
MPI_IN_PLACE,
0, MPI_DATATYPE_NULL,

S, counts,
MPI_

COMM_WORLD

displs, MPI_STAR,
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const int
const double r_ref
const double r_inner = r_ref * 0.5; // inner scale radius

Listing 8: Changes to parallize with MPI

max_level = 16;
15.0;

// maximum sub-steps per global dt
// [pcl outer scale radius

5 for (int step = 0; step <= nsteps; step++) {

// --- assign time-step levels based on radius ---

for (int i = local_start; i < local_start + local_N; i++) {
double dx = S[i].x, dy = S[il.y, dz = S[i].z;
double r = sqrt(dx*dx + dy*dy + dz*dz);

if (r < r_inner) level[i] = max_level; // smallest dt =
dt /4
else if (r < r_ref) level[i] = max_level/2; // dt/2
else level[i] = 1; // dt
}
// --- sub-cycling ---
for (int sub = 1; sub <= max_level; sub++) {
// compute & apply updates for stars whose level divides this
sub-step
for (int i = local_start; i < local_start + local_N; i++) {
int 1i = levell[il];
// update when sub % (max_level/li) == 0
if (sub % (max_level / 1i) !'= 0) continue;

// compute acceleration for star i
ax[i] = ayl[i] = az[i] = 0.0;
for (int j = 0; j < N; j++) {

[...1]
X
[...]
}
[...]
}
[...]

Listing 9: Calculations of distance to center

for (int step = 0; step <= nsteps; step++) {

// Gather all stars onto each rank
MPI_Allgatherv(S_local, local_N, MPI_Star,
S_all, counts, displs, MPI_Star, MPI_COMM_WORLD) ;

// Build sector grid

int grid_size GRID_SIZE;
int n_sectors = N_SECTORS;
Sector *sectors = calloc(n_sectors, sizeof (Sector));

for (int j = 0; j < N; j++) {

int idx = sector_index(S_all[j].x, S_all[jl.y, S_all[j].z,

grid_size,
if (idx < 0)
sectors [idx].mx
sectors [idx] .my
sectors [idx] .mz

continue;

+= S_all[j].x =
+= S_all[j]l.y *
+= S_all[j]l.z *

SECTOR_SIZE) ;

S_alll[j] .m;
S_alllj] .m;
S_all[j].m;
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sectors[idx] .mass += S_all[j].m;
sectors[idx]. count++;

// Compute accelerations
for (int i = 0; i < local_N; i++) {

ax[i] = ay[i] = az[i] = 0.0;

// Direct summation
for (int j = 0; j < N; j++) {

if (S_local[i].id == S_all[j].id) continue;
double dx = S_all[jl.x - S_locallil.x;
double dy = S_all[jl.y - S_localli].y;
double dz = S_all[jl.z - S_locallil.z;
double r2 = dx*dx + dy*dy + dz*dz + eps*eps;
double invr3 = 1.0 / (r2 * sqrt(r2));

double f = G * S_all[j].m * invr3;

ax[i] += f * dx;
ay[i] += £ * dy;
az[i] += f * dz;

+
// Sector far-field
int my_sec = sector_index(S_local[i].x, S_locall[i].y,
S_locall[il].z,
grid_size, SECTOR_SIZE);
for (int s = 0; s < n_sectors; s++) {
if (s == my_sec || sectors[s].mass == 0.0) continue;
double sx = sectors[s].mx / sectors[s].mass;
double sy = sectors[s].my / sectors[s].mass;
double sz = sectors[s].mz / sectors[s].mass;

double dx = sx - S_locall[il.x;

double dy = sy - S_locallil.y;

double dz = sz - S_locall[i].z;

double r2 = dx*dx + dy*dy + dz*dz + eps*eps;
double invr3 = 1.0 / (r2 * sqrt(r2));

double f = G * sectors[s].mass * invr3;

ax[i] += f * dx;
ay[i] += £ * dy;
az[i] += f * dz;

Listing 10: Logic of Sector based calculations
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