GEORG-AUGUST-UNIVERSITAT ©
=)\ GOTTINGEN &7t e

Seminar Report

Parallel Animals

Louis von Leitner & Thomas Hay

MatrNr: 26337291 & 21769229

Supervisor: Martin Paleico

Georg-August-Universitdat Gottingen
Institute of Computer Science

September 23, 2025

Abstract

Wildlife density estimation with camera traps increasingly relies on simulation to com-
pare methods applicable to unmarked populations, yet realistic, large-scale simulations
are computationally demanding. We address the need for a fast, ecologically grounded
simulator that can support replicated experiments required for method benchmarking and
sensitivity analyses. Existing comparisons evaluate only subsets of estimators or use sim-
plified movement models, and prior implementations are too slow to generate statistically
robust data at scale. This limits rigorous, side-by-side assessment of density estimation
framework under common comparison designs. We develop an object-oriented Python
simulator that couples a correlated random walk parameterized from roe deer GPS data
with a detailed camera-trapping module. Sparse spatial indexing reduces unnecessary ge-
ometry calculations, and the output supports the application multiple estimators (REM is
directly applied). To overcome serial bottlenecks, we design and implement several HPC
parallelization schemes: two agent-based variants and a family of master—worker designs,
including an optimized version that overlaps work (precomputing step candidates, split-
ting relocation updates) and a “God photographer” to offload rare, expensive photo-taking.
Performance was profiled with Score-P /Vampir and evaluated on the GWDG cluster. The
serial configuration (100 animals, 2000 steps, 30 cameras) averages a model runtime of
3696 seconds (~1 hour); profiling shows ~70% of time is spent in step location genera-
tion and selection (with ~97% of that in weight computation) and ~30% in detection.
Agent-based parallelization scales nearly linearly up to one node but saturates due to
integer division of 100 animals; master—worker optimized exhibits the best strong scaling
on-node. The fastest run reached 18.13 s with 297 processes (=~ 204x speedup), with
scaling presumably limited by inter-node communication and variability from rare photo
events. These results enable large replicated studies and provide a practical foundation
for comprehensive, fair comparisons of camera-trap density estimators.

Declaration on the use of ChatGPT and comparable tools
in the context of examinations

In this work I have used ChatGPT or another Al as follows:

] Not at all

O O o 8 O O

v

During brainstorming

When creating the outline

To write individual passages, altogether to the extent of 5% of the entire text
For the development of software source texts

For optimizing or restructuring software source texts

For proofreading or optimizing

Further, namely: Debugging code and Compute Cluster errors -

I hereby declare that I have stated all uses completely.
Missing or incorrect information will be considered as an attempt to cheat.

i

Contents

List of Tables

List of Figures

List of Listings

List of Abbreviations

1 Introduction

2 Methods

2.1

Solution approach and Objective

2.2 Sequential implementation design
2.2.1 Model initializationo L
2.2.2 Process scheduling
2.2.3 Animal movemento
2.2.4 Camera trapping

2.3 Parallel implementation designs oL
2.3.1 Agent-based parallelization v1
2.3.2 Agent-based parallelization v2
2.3.3 Master Worker Parallelization
2.3.4 Master Worker Optimized
2.3.5 Master Worker God Photographer
2.3.6 Improvement expectations

2.4 Performance analysis setup Lo

2.5 Implementation
2.5.1 Sequential
2.5.2 Parallel

3 Results

3.1 Performance Sequential
3.1.1 Runtime distribution among program parts.
3.1.2 Performance behavior full program

3.2 Results of Parallelization Methods
3.2.1 Agent-based parallelization v1
3.2.2 Agent-based parallelization v2
3.2.3 Master Worker Parallelization
3.2.4 Master Worker Optimized
3.2.5 Master Worker God Photographer

3.3 Discussion

3.3.1 Baseline Expectation Assumptions
3.3.2 Comparison

il

4 Discussion
4.1 Introduction
4.2 Challenges
4.2.1 Generating trace files with Score-P binding for python
4.2.2 Communication Complexity
423 NoDataLoss
424 Cluster Errors
4.3 Learnings
4.3.1 Parallelization Approaches
4.3.2 Every CPU has multiple cores nowadays
4.4 Other Solution Options
4.5 Regrets
5 Conclusion
References
A Work sharing

A.1 Louls von Leitner

A.2 Thomas Hay

Code samples

v

22
22
22
22
23
23
23
24
24
24
24
25

25

27

Al
Al
Al

A2

List of Tables

List of Figures

1

U = W N

— = © 00 ~J D

= O

13

14
15

Simulation of 100 steps of 100 animals. Movement paths of animals in blue,

forest border in green, forest sectors in light green, cameras in yellow. . . . 3
Flow Chart of Master Worker Parallelization Logic 8
Possible Step Generation broken up into two parts 9
Flow Chart of Master Worker Optimized Parallelization Logic 9
Workload of sub processes for one full step of one animal, including deter-

mining next location and Camera Trapping 13
Workload of sub processes for determining next location (get step) 13
Movement model execution time for different number of animals (n_animals). 14
Simple Parallel Agents Speedup Diagram 15
General Overview of Master Worker Parallelization in Vampir 16
Master’s work in detail in Vampir 00 16
Speedup Diagram of Master Worker Optimized Parallelization with work

groupsof size 3 L 17

Speedup Diagram of Master Worker Optimized with workgroupsizes 3, 7, 11 18
Photo Taking by Master in Master Worker Optimized with work group size

11 e 19
Speedup Diagram Master Worker God Parallelization 19
Speedup Diagram Comparing all Parallelization Methods 21

List of Listings

List of Abbreviations

HPC High-Performance Computing

vi

Parallel Animals

1 Introduction

Adaptive management of wildlife is essential to enable purposeful land management that
simultaneously can meet the requirement of maintaining desirable wildlife populations
(Walters, 1986). In Germany alone, estimates of damage caused by excessive game pop-
ulations lie in the three-digit million euro range (Clasen and Knoke, 2013), while some
wildlife conservationists and hunters are calling for high game densities (Ammer et al.,
2010). Objective recording of game populations is essential for conflict resolution between
the various parties and is as such a prerequisite for adaptive management (Marcon et al.,
2019). Classically, abundance of game species is indirectly derived from the relationships
between different proxy indicators, such as surveys of browsed plants (regeneration in-
ventories) and hunting bags (amount of harvest) (Bodeker et al., 2021). Although these
methods can help to quantify game damage, they are associated with considerable costs
(Bodeker et al., 2021). Furthermore, they can only assess the effects of management
actions on wildlife density with a time lag and are their accuracy and precision can be
difficult to quantify (Bédeker et al., 2021).

This work will focus on abundance and density estimation via camera traps using the
European roe deer Capreolus capreolus as an example, because it is a highly abundant and
well-studied species contributing to game damage in central Europe (Ammer et al., 2010).
Common methods directly aimed at quantifying population sizes of deer include sign- or
direct counts by human observers besides harvest data (Forsyth et al., 2022). However,
resulting accuracy and precision of these methods is rarely even assessed (Forsyth et
al., 2022). Therefore, their usefulness in the context of adaptive management can be
questioned. Camera traps, on the other hand, could enable an objective recording of
game densities and thus contribute to conflict regulation (Marcon et al., 2019).

In general, density estimation methods using camera traps can be split into two groups:
Methods aimed at (at least partially) marked species and those methods aimed at un-
marked (not individually identifiable) species. Under the methods for marked animals,
estimators from the spatial capture-recapture class (Royle et al., 2014) have emerged as
the gold standard with regard to accuracy and precision (Palencia et al., 2021). However,
roe deer as the target taxon of this work is an example of an unmarked species. Meth-
ods for unmarked animals are comparatively new but are highly relevant for ecologists as
many species are generally unmarked and artificial marking can be both invasive and ex-
pensive. To date, there is no established favourite method amongst practitioners (Gilbert
et al., 2021, Palencia et al., 2021). Gilbert et al., 2021 list all frameworks that have been
proposed to estimate abundance or density of unmarked populations: Unmarked Spatial
Capture-Recapture (USCR, Royle et al., 2014), the N-mixture model (Royle, 2004), the
Random Encounter Model (REM, Rowcliffe et al., 2008), the Random Encounter and
Staying Time model (REST, Nakashima, Fukasawa, and Samejima, 2018), camera-trap
Distance Sampling (DS, Howe et al., 2017), as well as Time-to-Event (TTE), Space-to-
Event (STE), and Instantaneous Sampling (IS, all by Moeller, Lukacs, and Horne, 2018).

These methods have been applied to very different degrees, with older methods such as
the N-mixture model being generally more popular with practitioners and newer methods
such as STE seeing use only very recently (Gilbert et al., 2021, Lyet et al., 2023). Em-
pirical studies comparing the performance of different estimators (Palencia et al., 2021,
Doran-Myers, 2018, Anile et al., 2014) in the past were only concerned with small subsets
of about three to four estimators out of the seven options identified by Gilbert et al., 2021

Section 1 Louis von Leitner & Thomas Hay 1

Parallel Animals

above. This is also true for the most comprehensive simulation-based comparison to date
by Santini et al., 2022.

Therefore, there is need for a thorough analysis of all available methods within one
comparison framework in order to identify the most promising estimators and compare
newer methods like STE with the more established older ones. This work tried to close
this gap by expanding upon the work of Santini et al., 2022 and guidance by Gilbert et al.,
2021, who called for exactly such a comparison framework in their method review. In this
work, we will focus on the development of a simulation model for the animal movement and
camera trapping process. This model will output data to which the different abundance
or density estimation methods can be applied to. For the purposes of this report, we
limited ourselves to the direct application of the REM model to generate a meaningful
output, as it can be applied without the need of further in-depth statistical inference on
the model outputs. However, our model also outputs data to which the distance sampling
estimator can be applied later, which significantly increased the complexity of the data
generation process. In principle, our model allows for a comprehensive comparison of all
mentioned estimators.

Such a comparison requires a simulation-based rather than an empirical approach,
because some of the estimators are incompatible to each other with regard to their re-
quired sampling designs. This means that an empirical study would have to set up multi-
ple camera trap arrays and/or employ multiple camera trigger modes (motion-triggered,
timelapse) simultaneously to measure the data needed, which would not only be very ex-
pensive but also technically difficult. Besides this, the true density of real populations is
rarely known, which is obviously of no concern in a simulation environment. Therefore, a
simulation-based approach allows for ranking of estimators against an objective standard
that is the true density.

In contrast to Santini et al., 2022, the animal movement model was implemented in
Python using an object-oriented programming style. Our model could account for more
ecological realism compared to the one by Santini et al., 2022, as it it is designed to repro-
duce movement patterns observable in the real world. The model was parameterized by
means of analyzing GPS tracking data from a roe deer population in southern Germany
(this analysis is not contained in this report). Overall, the structure of the modeling
approach was chosen to avoid violations of estimator assumptions, which are nicely sum-
marized in multiple sources besides the original papers introducing the methods (Gilbert
et al., 2021, Doran-Myers, 2018).

Existing simulation studies to date have focused on optimal sampling design or as-
sumption violations (Santini et al., 2022, Howe et al., 2019, Nakashima, Fukasawa, and
Samejima, 2018). We designed our movement model to facilitate investigations of either
one of these analysis pathways, or even both at the same time through flexible parame-
terizations

Section 2 Louis von Leitner & Thomas Hay 2

Parallel Animals

2 Methods

€000 Movement Path, Animal Centers, Forest

5000 -

4000 -
> 3000 1

LA
N\
A3
I 3 — Forest
4 Cameras
>
5

2000

1000 4

o] 1000 2000 3000 4000 5000 6000

Figure 1: Simulation of 100 steps of 100 animals. Movement paths of animals in blue,
forest border in green, forest sectors in light green, cameras in yellow.

2.1 Solution approach and Objective

The general solution approach can be split into two sub-problems containing the main
features of the overall assignment: Firstly, animal movement (that is an ordered series of
planar coordinates) has to be generated in a way that is parameterizable using real-world
GPS tracking data. Secondly, the camera trapping process must be accounted for. This
means identifying that a relocation between two points intersected a camera view shed
(which has the geometry of a circle sector). If this happens, more nuanced calculations
need to be carried out in order to generate the actual model output. This output is a
table of "photos", mainly containing a simulation timestamp, the distance of the animal
to the camera, and the total time the animal spent on this occasion in the detection view
shed. This data can be used to get results from all above mentioned estimators. However,
photo generation actually happens very rarely (on average, ca. 1 photo for every 200-400
relocations).

We call a simulation run the execution of this procedure for defined numbers of animals,
cameras, and animal relocation steps. In order to estimate statistical uncertainty of
density estimators or to conduct sensitivity analysis or optimization of input parameters
of the model, many repeated simulation runs will be necessary when actually using our
model to answer a real-world question.

Therefore, our goal is to reduce the runtime of one simulation run as much as pos-
sible. We defined 2000 steps of 100 animals with 30 cameras to be a reasonable model
configuration based on existing studies (Santini et al., 2022, Rowcliffe et al., 2008) and
discussions with practitioners.

Section 2 Louis von Leitner & Thomas Hay 3

Parallel Animals

2.2 Sequential implementation design

2.2.1 Model initialization

At the beginning of every model run, some things need to be initialized before the actual
processes (animal movement and camera trapping) can start:

e The World and Forest are set up. These are a set of nested rectangles (the forest
lies inside the world). The purpose of the World is to provide an area where animal
home ranges can occur. The forest is the actual "study site" where the camera gird
tries to estimate the animal density. Such a two-stage setup is required to allow
animals to move across the forest borders. If they were trapped inside the forest
(world = forest), this would result in different movement patterns of animals whose
home ranges lie closer to the forest border compared to those in the forest center.
This is undesirable, as it could lead to a heterogeneous density pattern, which can
be difficult to account for during density estimation.

e Animal start positions and home range centers are set up. The start position of
every animal is chosen randomly inside the world, i.e. according to a homogeneous
Poisson point process. Then, three home range centers are found for every animal
around this start location. Home range centers have a uniformly distributed dis-
tance between the overall centroid (animal start position) between a minimum and
maximum value defined via the GPS tracking analysis and a uniformly distributed
direction angle. Overall, the animal initialization can thus be seen as a form of
Thomas cluster process. Home range centers serve the purpose of acting as grav-
itational centers of the animal movement, which is a form of correlated random
walk.

2.2.2 Process scheduling

During the model run, two processes are continuously executed after another a predefined
number of times. Firstly, animals "move" one step (a new coordinate is found). Then,
this relocation from old to new position is evaluated for whether it contributes to the
model output, i.e. whether a photo is taken. These two steps happen for every animal
one by one. The design of the program is thus serial in two different ways: On the animal
level, as the program is essentially cloned for every animal instance, and on the process
level, as the per-animal program is serial as well. Starting form this observation, we will
present parallelization schemes based on either of these aspects later.

2.2.3 Animal movement

A singular animal relocation is realized in the following way: First, 100 values for the
length of the relocation are drawn from an exponential distribution. Using these 100
step lengths and a uniformly distributed direction angle, 100 potential target coordinates
around the current position are found. Coordinates are calculated via:

Ttarget = Lcurrent + SZn(&) -d (1)

and
Ytarget = Yeurrent + COS(Q) : d7 (2)

Section 2 Louis von Leitner & Thomas Hay 4

Parallel Animals

where Tygrger and Yiarger are the coordinates of the potential target, Zeyrrent a0 Yeurrent
are the momentary x and y coordinates of the agent, 6 is the direction angle towards the
target against north (drawn from a uniform distribution), and d is the distance to the
target (drawn from the exponential step length distribution).

For each potential target, the distance between this target and the nearest home
range center of the respective animal to the target is determined. This distance is then
transformed to a selection weight via:

w=a e (3)

where w is the selection weight, d is the distance between potential target and nearest
home range center, and a and b are empirical parameters that were estimated during GPS
data analysis.

Finally, one of the targets is selected as the new current position based on the selection
weights. All parameters of the movement model were calculated in such a way that one
step represents 2 hours in real time, because this was the acquisition interval of the GPS
tracking data used for parameterization.

2.2.4 Camera trapping

Sparse modeling

We realized early that the camera trapping process, while triggered rarely, is computa-
tionally costly due to the necessity of many vector geometry calculations. Therefore, we
employed sparse modeling techniques to reduce the amount of unnecessary calculations
as much as possible. The goal was to always identify as early as possible if the cam-
era trapping process can be omitted or stopped. As a first part of this approach, we
subdivided the forest into a grid, where every grid cell contains a camera and therefore
represents the area a camera is "responsible for". As part of the relocation process, we
track for every animal the grid cells the relocation crossed. This allows to narrow down
the number of cameras for which an intersection of the relocation with their view sheds
has to be checked. It also allows to identify cases where no further checks are necessary
(such as relocations happening completely outside of the forest), in which the program
can move on to the next step immediately.

Photography

For relocations that could feasibly have crossed a camera view shed, the intersection
between the view shed geometry and the relocation line is assessed. This is not completely
trivial, because the view shed is a circle sector and all possible relocations need to be
accounted for (such as relocations approaching the camera straight on into the "curved"
part of the view shed and ending inside the view shed). If an intersection exists, Points
along the part of the relocation that lies inside the view shed are generated, spaced one
second apart from each other. Cameras used in real-life studies commonly have a cool-
down time of 8-10 seconds, so photos can happen maximally on this interval. This is
why we decided that the 1 second spacing would be accurate enough. Starting from
the first point on the line inside the view shed, following the movement direction of the
relocation, a so-called detection function is applied to the distance between the point and
the camera. This detection function is a half-normal probability density function with
a standard deviation of 5m. This type of function is common for modeling the trigger
behavior of the camera motion sensor (Howe et al., 2017), where movement further away

Section 2 Louis von Leitner & Thomas Hay 5

Parallel Animals

from the camera is significantly less likely to trigger it compared to movement close to
the sensor. If the camera is triggered according to this function, a "photo" is generated,
i.e. the corresponding information is collected in the output photo table. Then, the
"cooldown timer" is activated, i.e. only the 8th point after the one that was just assessed
will be tested next. Otherwise, we proceed with the immediately following point.

2.3 Parallel implementation designs

The reader is advised to read about the performance of the serial program in subsection 3.1
before continuing to read about parallelization methods.

As described in the runtime analysis subsection 3.1, the simulation works by doing a
sequential execution of add_relocation. So, parallelization can speed up the program in
two different ways. Either, by running sets of iterations in parallel or by decreasing the
time needed for one execution of add_relocation.

When running sets of iterations in parallel, there is an important dependence between
steps that cannot be violated in order to preserve simulation accuracy: Naturally, to
compute the next location in add_relocation, the previous location must be known. In
the context of our simulation model, this means that it is not possible to compute later
steps of an agent before finishing the computation of the previous ones. For example,
computation of the steps 30-60 of an animal before knowing the steps 1-30 of the same
animal is not possible. Therefore, one cannot run sets of iterations of the same agent in
parallel, as one set of iterations will depend on the other and must wait for the computation
of those to finish, before it starts its own computations.

A similar dependence can be found in the parallelization of the function add_relocation
itself. One cannot do detection before knowing the new location and thus the reloca-
tion path of an agent. A more detailed breakdown will be provided in the respective
parallelization approaches subsubsection 2.3.3, subsubsection 2.3.5.

2.3.1 Agent-based parallelization v1

Fundamentally, this parallelization scheme is a very simple master-worker setup, however,
there is no practical difference between the master and the workers. The core idea is to
leverage the fact that there is no interdependence or interaction between animals during
runtime, which is why the simulation can be split up on a per-agent/animal basis. Each
worker simply computes his share of animals. The master only defines the number of
animals each worker and he himself should compute. After all movement model compu-
tations finished, the master only has to collect all the photos from the workers and apply
the estimator. We implemented two variants of this idea. They differ in the way how the
work sharing is distributed, resulting in different locations of model initialization.

In this first version, every process/rank initializes its own instance of the model. The
master rank only specifies how many animals should be contained in each specific model
instance to match the overall number of animals specified by the model scenario. Every
worker and the master carry out all the (serial) calculations for all of their respective
animals independently. In the end, the master rank collects the individual model outputs
from his workers in his own model instance in order to apply the density estimation
method.

Section 2 Louis von Leitner & Thomas Hay 6

Parallel Animals

2.3.2 Agent-based parallelization v2

Note that in the overall performance comparison later, the "Simple parallel agents" ap-
proach refers to the first one (v1), not this one (v2). We abandoned the v2 approach as
we found no real difference in runtime between the vl and v2 during testing. Still, it
contributed to some of the later ideas so it is presented here as well.

The core change compared to the previous one in this second variant of an agent-
based parallelization scheme, the Model object is only instantiated once. This has the
advantage that further development of the animal model itself can be separated better
from the parallelization aspect. Such developments could include e.g. interactions between
animal home range centroids during model setup (representing e.g. territoriality of certain
individuals or groups). An instantiation of a Model object would thus contain a unique
spatial arrangement of animals which depends on the number of animals instantiated.

This parallelization scheme contains three hierarchically ordered types of threads,
again forming a cascading master-worker type setup. The God thread initializes the model
and passes it on towards the Master threads. Masters form Workgroups of equal sizes
together with their respective Slaves. Each work group is responsible for computing the
model for a subset of animals. Animals are mapped to their computing ranks/work teams
through their respective indexes. This means that only specific combinations of number of
available ranks and number of animals to compute are supported by this design. Masters
determine which of their slaves should compute the model for which animals by modifying
the received model instance and pass the model on to them. Slaves only have to receive
the model, execute its let_them_run() method and create the outputs. In the end, the
God collects the outputs from all other ranks and does the final estimation.

This three-stage design may appear unnecessarily complex. We hoped to speed up the
model distribution among the ranks using a cascading structure. Also, we had plans to
let the God assist the masters or slaves with some specific calculations. In the described
setup, he is idle while the model is being computed by all other ranks. These plans were
not realized in the end.

Both of the agent-based parallelization designs are conceptually very basic, as they are
a simple top-down distribution and collection scheme. No communication between ranks
during the actual calculation is needed. Given the agent-based nature of the original
modeling problem, these designs come to mind very intuitively. We included them in the
project as a from of reference version to compare the more complex designs to.

2.3.3 Master Worker Parallelization

The idea for this parallelization approach was born through the analysis of the perfor-
mance bottlenecks of the sequential solution subsection 3.1. As described, about two
thirds of the iteration runtime is spent computing weights, while the rest is primarily
spent computing camera detection. The underlying assumption already stated in subsec-
tion 3.1 is that reducing iteration runtime reduces total runtime because the core of the
simulation is calling iterations sequentially a lot of times. Potentially, by speeding up
the iteration by 1 time unit could speed up the whole program by 2.000.000 time units,
because the iteration is called 2000 times per animal for 100 animals.

The core idea behind the Master Worker Parallelization approach is to assign the pro-
cesses running the program into work groups with so called Workers and one work leader
called the Master. The Master distributes work to the Workers, and while they complete

Section 2 Louis von Leitner & Thomas Hay 7

Parallel Animals

it, does some other work. Once the Workers have finished their work, the Master gathers
the results, gives out new work and processes the results. To maximize efficiency, the time
Workers or the Master spend waiting for the other processes to finish should be minimized
so that all processes are working at all times. This describes a state of full capacity where
all of the compute power is used at all times and thus runtime is minimized. Similar to
the Agent-based parallelization methods, the number of steps to be computed per work
group is assigned at the beginning of the program by distributing animals equally onto

work groups.
A practical starting pOil’lt for this ap- Master Worker Worker

proach is to divide the processes into

work groups of 3, such that one Mas- - _
ter works together with two Workers.

The Master generates the possible steps |g

and distributes them equally among :
the Workers. While they compute the | |

§ese]| 3UQ

weights, the Master does detection. -

This way, in theory as explained above,

the two Workers do about two thirds of Figure 2: Flow Chart of Master Worker
the work while the one Master does one Parallelization Logic

third. Thus, efficiency would be maxi-

mized.

2.3.4 Master Worker Optimized

The Master Worker Optimized Parallelization Approach is closely related to the orig-
inal Master Worker approach subsubsection 2.3.3. The idea for the optimized version
came from looking at a Master Worker Parallelization program run in Vampir subsub-
section 3.2.3. To understand the following descriptions and reasoning, it is important to
read subsubsection 3.2.3 and specifically have Figure 10 and its description in mind.

To determine speedup possibilities of the Master’s work in Figure 10, it is important
to be aware of dependencies of processes on each other. The get_step function requires
knowledge about the weights of the generated points. The add_relocation depends on
the next location determined during get_step. The generate_possible_steps needs
the new location of the animal to generate 100 possible locations around it. However,
there are two key ideas to reducing the Master’s work in this section.

(i) All the work in add_relocation could be done alongside the detection while the
Workers compute weights. This is except for the updating of the animal’s location
because the location is necessary for generate_possible_steps. Thus, one could
divide add_relocation into the location update, which is to be done after choosing
the next step and the rest, which is to be done while Workers compute weights.

(ii) generate_possible_steps generates 100 possible locations around the animal’s lo-
cation based on probability distributions. The probability distributions themselves
are however independent of the animal’s position. Therefore, one could divide the
generate_possible_steps into two sub parts: (a) generating values from probabil-
ity distributions to generate 100 points around the origin of the coordinate system
and (b) adding the animal’s location to those values. This way, (a) would be inde-
pendent of the animal’s location and could be precomputed by the Master during

Section 2 Louis von Leitner & Thomas Hay 8

Parallel Animals

the weight computation of the Workers. Then, while the Workers wait, the Master
only has to add the animal’s location to the generated points. The end result is the
same, but compute during the Worker’s wait is decreased.

Figure 3: Possible Step Generation broken up into two parts

Master Worker Worker

Implementing this marks the transition
in approaches from Master Worker to
Master Worker Optimized. The process
flow chart has become a bit more com-
plex and less intuitive.

uelBiel 8U0

Figure 4: Flow Chart of Master Worker Op-
timized Parallelization Logic

2.3.5 Master Worker God Photographer

This parallelization approach was invented to counter the long wait times of Workers in
the Master Worker Optimized approach, which occur when the Master does necessary
computations for taking photos. It is to be noted that this photo taking happens very
rarely, but keeps all the Workers idle while waiting for quite some time as can be seen in
Figure 13.

To counteract the idling of the Workers, a so called God process will be designated, which
is just responsible for taking pictures. It could be seen as the overlooker and photographer
of the whole Program. Masters still check if a photo has to be taken to some extent and
if the probability of a photo becomes high, they give all the necessary information to the
God and continue with the next iteration step. The God takes over the photo taking
process while the work groups can continue computing steps.

In case there are multiple cases of likely photos around the same time, the God keeps
track of work requests in a queue.

Naturally, this approach only makes sense if there are a lot of work groups, otherwise the
God will be idle for most of the time, possibly leading to more idle time among processes
than without the God.

Of course, one could determine the optimal amount of work groups for one photographer,
but as we have usually only worked with less than 100 processes and pictures are very
unlikely, one photographer will be sufficient. The optimal ratio of Workers per Master
should be the same as in the Master Worker Optimized approach, as most of the step
iterations happen without photos and we optimized the work group size over all steps.

Section 2 Louis von Leitner & Thomas Hay 9

Parallel Animals

2.3.6 Improvement expectations

We expected runtime of the agent-based parallelization to decrease linearly with the num-
ber of available computation processes, up to the point where there is one process per
agent. Beyond this point, adding further processes is meaningless as the design does not
support to offload work onto these resources. However, in the area where speedup is pos-
sible, we expect the method to utilize the resources rather well, since overhead is minimal
and processes do not have to wait for each other at any point apart from the very end.
This is why a slight efficiency loss with high number of processes might be possible (such
as one process per animal plus master), as the master does the final stretch of work on
his own while many processes are idle.

For the more complex parallelization schemes, it was difficult for us to formulate a
hypothesis for their performance. It was clear that some parts of the more elaborate
designs would require optimization of some of their parameters (such as the number of
workers per master for weight computation) in order to minimize the time that every
process spent idle. In general, we expected (or rather hoped) for a potentially weaker
performance gain for numbers of processes up the point that is still supported by the
simple agent parallelization due to the larger overhead and increased communication. The
main point of these designs is however to enable the use of significantly more processes
than the simple agents can allow for. This is why we expected significantly shorter possible
overall run times, while be it slower at the same number of processes relative to the simple
agents.

2.4 Performance analysis setup

For comparability of different methods it is important to use the same environment and
setup for result gathering for each method.
The computations were done on the scientific compute cluster of the GWDG at Gottingen.

We analyzed the performance of the sequential implementation by timing the execution
of the various methods with Python’s built-in timing functions.

For each parallelization approach, a program execution was done with the minimium

amount of processes up to 100 processes at one time. Those processes were distributed
among the fewest nodes possible. Nodes on the GWDG cluster have 96 processes with
2 CPUs each, so runs with less than 97 processes were executed on just one node. For
each of those configurations, three runs were executed and the average runtime of the
runs calculated to countersteer external factors interfering with results. Due to number-
of-processes constraints given by some approaches, for example the divisibility of the
number of processes by a given integer, not all approaches were done with exactly the
same number of processes. Therefore the speedup graphs are to be considered for general
speedup curve geometry, but not exact runtime method-to-method comparison in specific
data points. The speedup itself is calculated by the formula Equation 4 further described
in the discussion subsubsection 3.3.1.
Furthermore, for the more complex parallelization methods, in order to get a more detailed
picture of what is going on, the Vampir Performance Analysis Tool was used. To use this
tool, a Score-P trace file was generated using the Score-P binding for python Score-P
binding for Python 2025. This allows for visual analysis of processes and their work at all
times during the run.

Section 2 Louis von Leitner & Thomas Hay 10

Parallel Animals

2.5 Implementation

2.5.1 Sequential

The code is structured around object-oriented principles, with classes representing dif-
ferent entities such as animals, forests, cameras, and the world. We made heavy use
of numpy and pandas, numpy for all the vector math and pandas for the input/output
management.

The Animal class represents an individual animal with attributes such as sex, move-
ment parameters, and home range centers. The class contains methods for realizing animal
movement such as for center and step generation, and most importantly add_relocation,
where most of the program happens. World and forest are contained in the animal class
as instance variables, which makes an animal instance fully independent in terms of "its"
computations. This allowed for simple parallelization schemes later, where it was sufficient
to e.g. distribute the animals among computation ranks.

The Forest class represents the forest environment, including its boundaries and holds
the camera grid and forest sector grid. The world is also an argument to the forest (it
is constructed relative to the forest, because the forest is the main area of interest), as
such the forest can be seen as the main organizational structure for everything that is
not the animals. The forest class provides methods for determining which forest sector /
potential camera an animal is in and which camera is responsible for a given point.

The Camera Class represents a camera on the camera grid inside the forest, including
its position, detection zone, and detection function. The camera class provides methods
for determining whether an animal is in its detection zone and for taking photos of the
animal along the relocation line.

There exist further classes completing this hierarchical structure, such as the World,
ForestSector, and CameraGrid class. They mainly provide instance variables for a con-
sistent naming scheme and helper methods, e.g. for generating unique IDs.

The Model Class is the top-level class that orchestrates the simulation of multiple
animals. It provides methods for "users" to interact with the model, allowing to ini-
tialize a simulation run, execute it, and gather the outputs. The model class creates
instances of the world, forest, and animals depending on the scenario specifications. The
let_them_run method sequentially accesses the different animals and executes their move-
ment and camera trapping processes. After the simulation is executed, the Model class
can collect the photo data from the different animals and apply the random encounter
model to in in order to generate a meaningful model output. Since the number of animals
generated is also known to the class, the estimate can also be compared to the true value.

The script run_model.py demonstrates this functionality of the Model class and is
the main entry point to the project.

2.5.2 Parallel

All parallel implementations rely on the mpidpy package (Rogowski et al., 2023). In the
simple agents variant, all communication is handled over COMM_WORLD. Blocking send /recv.
and gather calls are used to distribute the work and collection of the results via simple
python object pickling. The top-level model class remained untouched, the entire paral-
lelization happens from "the outside".

The more advanced master-worker schemes also required changes to this class. In the
top-level run_model script, the fixed-size MPI teams are setup and, animal counts and

Section 2 Louis von Leitner & Thomas Hay 11

Parallel Animals

full Model objects are distributed to team members via pickling; it later gathers outputs
at root. The Model now also implements a per-team master-worker pipeline inside the
Model.let_them_run method that splits 100 candidate steps among workers, uses NumPy
buffers with Isend/Recv to exchange candidate steps and weight blocks, and keeps all
state updates on the master. This critical inner loop uses buffer-based MPI (NumPy
arrays) and separates the heavy weight-computation across workers while the masters
keep animal state updates and geometry/detection locally. Precomputing of “direction
vectors” (possible_steps_next) separates location-independent and -dependent work,
which allows some overlap between candidate generation and weight computation.

The final "God as photographer" design keeps these main features from the initial
master-worker scheme. In addition, the God now also does some centralized event process-
ing. He runs a loop: while done_counter < n_workgroups, he comm.recv(source=MPI.ANY_SOURCE,
tag=42). The events can be:

e Data tuples for a relocation, which God applies by calling
model.animals[animal_number] .data_collection(...) (this can include cam-
era detection and time accounting).

e Thestring >all_done’ signaling a group finished all its animals; increments done_counter.

This design features the most complex messaging patterns. Six messaging tags are
used for the different message contents:

e 5: God to Master (initial payload (slice, model)).

e 0: Master to workers (model object).

7: Master to worker (Per-worker count of candidate steps).

10: Master to workers (candidate steps (NumPy buffers)).

11: Workers to masters (weight results (NumPy buffers)).
e 42: Master to God (relocation events and completion signals).

The sources and destinations in this communication are explicit. Masters infer their
worker set as contiguous ranks in the workgroup, and workers compute their master as
rank - ((rank - 1) % threads_per_workgroup). Using explicit MPI datatypes for
candidate steps and weights in the performance-critical inner loop should minimize seri-
alization.

3 Results

3.1 Performance Sequential

Analyzing the sequential program’s performance allows a deeper understanding of how
the program works and what its performance bottlenecks are. We will begin by inspecting
the different functions’ behaviors of the program and then discuss the performance of the
simulation program as a whole.

Section 3 Louis von Leitner & Thomas Hay 12

Parallel Animals

3.1.1 Runtime distribution among program parts

get_step

possible_steps

compute_weights

detection
find_potential_cameras

Figure 5: Workload of sub processes for Figure 6: Workload of sub processes for
one full step of one animal, including determining next location (get step)
determining next location and Camera

Trapping

Figure 5 depicts the time spent by the serial program subsection 2.2 to complete different
sub tasks of one full step. Such a full step includes determining the next location that
the animal will move to (get_step), determining what camera zones and forest sectors
to execute detection on (find_potential_cameras) and detection itself. This full step
will be referred to as add_relocation, because this is its name in the python implemen-
tation. One add_relocation call can be seen as a discrete basic iteration measure for
the full program. This is because the full program is a sequence of iteratively calling
add_relocation 2.000 times per animal. Thus, in a run with 100 animals, this full step
would be executed 2.000.000 times.

In Figure 5 we can see that the compute time of determining the next location takes on
average about 70% of the compute time of add_relocation while detection takes about
30%. find_potential_cameras is the main part of making the model sparse and takes
a negligible amount of compute time.

In Figure 6 one can see the workload distribution of determining the next step. As de-
scribed earlier, to determine the next location of an animal, 100 possible locations are
generated based on given probability distributions (possible_steps) and for each of
those possible locations, a weight is computed which is in relation to the distance to the
closest home range of the agent (compute_weights). Those weights are then considered
as the weighted probabilities for each location and the future location is drawn at random.
Figure 6 shows that compute_weights makes up for about 97% of compute time of
get_step while generating the possible steps only makes up about 3%. Thus, overall
weight computation is about two thirds of compute time.

Section 3 Louis von Leitner & Thomas Hay 13

Parallel Animals

3.1.2 Performance behavior full program

Time in seconds

Movement times for number of steps for different numbers of animals

2500 A

2000 -

=

(%3]

[=]

(=]
1

=

(=]

(=]

(=]
I

500 -

n_animals
1
5
10
25
— 50
— 100

0 250 500 750 1000 1250 1500

Number of steps

Figure 7: Movement model execution time for different number of animals (n_animals).

The average runtime of the serial implementation (across 5 runs) for the discussed model
configuration is 3696 seconds (62 Minutes). Figure 7 shows the total runtime of the model
for various numbers of generated steps and amounts of animals. As can be expected based
on the repetitive execution of add_relocation for every animal, the base execution time
of this method can simply be multiplied by the number of animals and number of steps

to predict the overall runtime of the model.

Model setup and output generation are

essentially neglectable constant terms that are not impacted by these two variables.

Section 3

Louis von Leitner & Thomas Hay

14

Parallel Animals

3.2 Results of Parallelization Methods

3.2.1 Agent-based parallelization v1

_ Figure 8 shows the speedup curve over
Speedup Simple Parallel Agents

100 e] the amount of processes used for compu-
deviatian tation on a compute cluster for the Sim-
ple Agent parallelization approach sub-
subsection 2.3.1. Over the numbers of
‘ processes lower than 50, the speedup is
almost linear. In the interval of 50 to
_ 96 processes, the speedup is constant
201 around 130. Then, at 99 processes, there
: is a decrease in speedup and at 100, the
. —~ - p p + speedup is higher again, but lower than
number of Processes in the interval between 50-96. Deviation
in compute times for the same amount
of processes is negligible for less than 96

processses.

80 1

60

40 1

speedup
L

Figure 8: Simple Parallel Agents
Speedup Diagram

The non-linearities are likely caused by noise interfering with the experiments. This
noise might have different forms, among which are temperatures of used CPUs before the
start of the program and other cluster related workloads on the CPUs.

The reason for the stagnation in the interval between 50-96 processes can be traced back to
the way compute is distributed between processes. One agent/animal cannot be computed
by two or more processes and agents to be computed are assigned to processes as equally
as possible. But, because there are 100 agents, for any number of processes between 50-99,
there will always be at least one process which has to compute the steps for 2 agents. For
99 processes this is exactly one process, so the 98 other processes wait idle after having
finished the computation of their one animal. In other words, the program does not run
quicker when using 99 processes instead of 50, because in this interval, increasing the
number of processes just increases the number of processes which have to compute one
animal, but there is always a process that has to compute the steps for two animals. This
changes at 100, because 100 animals can be divided cleanly onto 100 processes.

So why does the program run longer with 100 processes than with 507

This is because the GWDG scientific compute cluster’s nodes consist of 192 CPUs and
the use of 2 CPUs per process. Once more than 96 processes are used, the program runs
on two nodes, which drastically increases communication time between processes. This
is because communication within one node is quicker than communication from one node
to another.

This explains why there is a decrease in speedup /increase in compute time for 99 processes.
In theory, using 100 processes should faster than using 99, because animals can now be
divided onto processes such that each process has to compute just one animal. One can
see that compute time variance is high when using two nodes. This might be because
there are now even more external factors influencing runtime, like for instance general
cluster communication load.

Section 3 Louis von Leitner & Thomas Hay 15

Parallel Animals

3.2.2 Agent-based parallelization v2
3.2.3 Master Worker Parallelization

The Master Worker parallelization approach in this original form was not tested for run-
time. This is because after writing the code, a Vampir Performance Analysis was con-
ducted, mainly to gain a better understanding of what exactly happens during the pro-
gram run. This analysis led to the optimized version. Said Vampir Performance analysis
yielded the following:

Timeline
6.71s 6.72s WERS 6.74 s 6.75s

Master thread:0

Master thread:1 ani...hts ani...hts ani...hts ani...hts ani...hts ani...hts ani...hts ani...hts

Master thread:2 ani...hts ani...hts ani...hts ani...hts ani...hts ani...hts ani...hts ani...hts

Figure 9: General Overview of Master Worker Parallelization in Vampir

This excerpt from the Vampir Performance Analysis tool shows a general overview of
what happens in the program. Thread 0 is the Master and Thread 1 and 2 are the Worker
threads. Time sections colored in red are MPI functions that are being executed, while
green sections represent functions of the program. All red MPI functions visible here are
blocking MPI_Recv calls. The MPI send functions take too little time to be visible here and
are usually implemented to be non-blocking. This means that every red segment signifies
the waiting of a process to receive information from another process. It is immediately
visible that 1. the Master spends a long time waiting for the Workers to compute the
weights and 2. during the time that the Master works, the Workers wait. They rarely work
at the same time, which contradicts the purpose of parallelization. There are different
ways of addressing these waiting periods:

2. is arguably easier to improve by increasing the amount of Workers per Master. This
way, the time the Master spends waiting decreases, because the compute of weights speeds
up. More on this in the Master Worker Optimized approach analysis.

1. is trickier, but more fundamental and requires more knowledge of what happens during
the period that the Master works and the Workers wait, which we acquire by zooming
into one such time frame in Vampir:

Timeline
6.74750 s 6.74775 s 6.74800 s 6.74825 s 6.74850 s 6.74875 s

Master thread:0 an...epanimals.animal.Animal:add_relocation animals.animal. Animal:generate_possible_steps

Master thread:1

Master thread:2 anim...ghts

Figure 10: Master’s work in detail in Vampir

Section 3 Louis von Leitner & Thomas Hay 16

Parallel Animals

In this time frame of the program in Vampir, we can see the process’s operations in the
time during which the Master works and the Workers wait. The Master’s work is as fol-
lows: 1. get_step 2. add_relocation 3. generate_possible_steps

1. get_step, the Master gathers the weights computed by the Workers and draws the
next step to be done based on the weight probabilities.

2. add_relocation, the Master updates the animal’s location as the new location and
does more tasks associated to that like determining what new Forest Sector the
animal is in, what Forests Sectors it crossed and how much time it spent inside the
Forest during its trajectory.

3. generate_possible_steps, the Master generates 100 new possible locations and
divides them according to the amount of Workers.

After this, on the very right of the Master’s timeline, the red MPI function represents the
sending out of the generated steps to the Workers. After, while the Workers compute
weights, the Master does the computation of detection.

This structure analysis gives rise to the Master Worker Optimized Parallelization Method
subsubsection 2.3.4.

3.2.4 Master Worker Optimized

To measure efficiency and scaling of this approach, test runs have been executed and
timed. The results are gathered in a speedup diagram:

Speedup Parallel Weights Workgroupsize 3

100 e Figure 11 shows the speedup of the sim-
deviation ulation over different amounts of pro-
: cesses using the Master Worker Opti-
mized parallelization with work groups
of size 3. Visible from the plot is that
deviation in compute time for the same
| amount of processes used is negligible
20 and that there is a decrease in speedup,
: which directly indicates an increase in
: - - - - - compute time for 99 processes opposed

number of Processes to 96. The general shape indicates that
speedup is not quite linear, but slightly
sublinear, especially visible in higher
numbers of processes.

80 1

60

speedup

40

Figure 11: Speedup Diagram of Master
Worker Optimized Parallelization with
work groups of size 3

As for the performance of the parallel agents approach subsubsection 3.2.1, noise comes
up due to cluster conditions.
The sublinearity is probably caused by growing communication overhead with higher
number of processes. A lot of communication is necessary, which takes up some of the
compute resources. Then because the proportion of runtime of such communication in-
creases in comparison to the one of the runtime for the actual program’s functions as the
latter decreases.

Section 3 Louis von Leitner & Thomas Hay 17

Parallel Animals

To come back to the point mentioned in subsubsection 3.2.3 as 2., a so far unadressed
inefficiency lies in the waiting of the Master on the Workers while they compute the
weights. We will adress this as suggested by trying different work group sizes and deter-
mining the optimal one.

Speedup Parallel Weights Workgroupsize Comparison

Figure 12 shows the speedup diagrams of
the Master Worker Optimized approach
with different work group sizes. You
can see that work group sizes 7 and 11
are more efficient than work group size
3 with 11 being the slightly most ef-
ficient one in general. However, it is
also visible that those more efficient ones
have more volatile execution times, be-
: " - p p + cause the span between the minimum

number of Processes and the maximum speedup for a given
work group size is large. For all three,
using more than 96 processes leads to a
decline in performance.

groupsize 3
—e— groupsize 7
—e— groupsize 11

80 1

60

speedup

40

204

Figure 12: Speedup Diagram of Master
Worker Optimized with workgroupsizes
3, 7,11

The increase in speedup rate between work group size 11 and 7 is minimal and might
also just be a cause of runtime deviations. This volatile runtime probably originates from
inconsistencies in program runs. The simulation is a sparse simulation and if in one run,
one work group has to take a lot of pictures, runtime can increase drastically. This theory
however is opposed by the fact that for work group size 3, this volatility is not measured
even though it is running the same program. To further investigate this behavior, more
executions would be necessary to get statistically representative data.

For this approach, it is noteworthy that one can employ more processes than animal
agents to be simulated. In fact, one can theoretically use one work group per animal, thus
the number of processses is capped by work group size x number of animals. For a work
group size of 11 and 100 animals as usual, this works out to 1100 processes that could
be employed. Testing with 297 processes, distributed over 5 nodes lead to a runtime of
18.13 seconds, which is staggeringly fast in comparison to the serial runtime of more than
one hour. Speedup at this runtime is 203.84, thus scaling behaviour is not linear, but still
somewhat good.

There is one more thing to be noticed when analyzing the trace file of the Optimized
Master Worker approach in Vampir:

Section 3 Louis von Leitner & Thomas Hay 18

Parallel Animals

When a camera takes a picture, which
happens very rarely, all Workers wait
for a "long" time while Master does the
necessary computations of detection and
photo taking. In Figure 13 on the right
of all the red waiting of the Workers,
two steps are done without pictures, vis-
ible in green. The big red sections rep-
resent two steps during which the Mas-
ter takes photos. They take about 14
times as long as iterations without pho-
tos. Even though this happens rarely, it
leads to a "lot" of unused compute re-
sources. In addition to that, an animal
which just crossed a camera zone is more
likely to cross a camera zone again dur-
ing the simulation because it is close to

Figure 13: Photo Taking by Master
in Master Worker Optimized with work
group size 11

a camera.
This means that if one work group takes a picture, it is more likely to take more pictures
than other work groups. This leads to inequal compute times, as taking photos is costly
in compute. Most work groups will finish their designated animal batch to compute in
similar time, but some work groups might work a lot longer. Thus, at the end of the
program, many work groups will have waited for some time for other work groups to
finish, meaning loss in efficiency. To countersteer this inequality and avoid long wait
times for Workers, the final parallelization approach subsubsection 2.3.5 has been created
as an extension of the Optimized Master Worker approach.

3.2.5 Master Worker God Photographer

Speedup God Master Worker X .
i Figure 14 shows the speedup diagram

e of the God Master Worker paralleliza-

5 tion approach. While in lower process
numbers, scaling seems linear, for pro-
cess numbers over 50, scaling seems to

100

80 1

60

speedup

w0 slow down. There is in general a con-
stant small amount of deviation in run-
20 times, except for at the use of 100 pro-

cesses. At the use of 89 processes and
100 processes, speedup declines. In the
interval of 45 processes to 89 processes,
speedup is quite similar, showing stag-
nation.

° ® nuqrgher of Prncegges * .
Figure 14: Speedup Diagram Master
Worker God Parallelization

As this parallelization approach is very similar to the Master Worker Optimized approach
subsubsection 2.3.4, similar speedup behavior is expected. However, speedup seems to
scale worse and there is weaker deviation in runtimes. The decline for 100 processes can be
explained the same way as for the other approaches. More confusing though, is the decline
in speedup at the use of 89 processes. We cannot find a reason for this behaviour and since

Section 3 Louis von Leitner & Thomas Hay 19

Parallel Animals

the decline is small, believe that this is due to measurement imprecision. This however,
does not explain the stagnation in speedup in the interval of 45 to 89 processes. As more
processes are used, there are more work groups among which workload is distributed, thus
an increased number of processes should lead to an increase in speedup, as visible for 45
and less processes.

3.3 Discussion

3.3.1 Baseline Expectation Assumptions

To begin the discussion of the results, it is helpful to set a framework of what the best
case and expected gain in efficiency from parallelization are. This gain in efficiency will
here forth be called speedup and measures how much quicker a parallel program finishes
compared to a serial version. The speedup S is computed as

serial runtime

S = (4)

parallel runtime’

Different theoretical boundaries and estimates for speedup exist, but the simplest and
most general one goes back to Amdahl’s law and is sometimes referred to as Gustafson’s
law for parallel computing Gustafson’s Law 2025.
It states that the estimated speedup S of a program gained by using parallel computing
is

S =s+pxN, (5)

where s and p are the fractions of time spent executing the serial parts and the parallel
parts of the program respectively. We assume that s+p = 1. N is the number of processes
used.

This rather simple looking formula can become complex very quickly when posing the
question of how much of the program’s runtime falls under p the parallel part and s the
serial part respectively. As runtime distribution might differ from one set of hardware to
another and there are lots of factors to consider, it becomes evident that the formula is
just useful for a rough estimation of speedup. However, it gives us an upper boundary for
speedup. Assume that s =0 and p = 1, then S = N. Therefore, we can see that speedup
can only be linear in the number of processes used for parallelization. It is not possible to
get quadratic or even exponential speedup. This means that there is an upper boundary
for speedup for any parallel program, which is given by N. The goal is thus to design a
parallel program whose speedup is as close to this upper boundary as possible.

Section 3 Louis von Leitner & Thomas Hay 20

Parallel Animals

3.3.2 Comparison

Speedup Approach Comparison

100
—e— Simple Parallel Agents
God Master Worker
—e— Master Worker Optimized (11) L
80 1 — optimal Speedup W i
60 - i\
o J 3
= I'.
he] 4 |
$ I‘l ."1
& ; !
40 | =
20 1
0 = T T T T .I
0 20 40 60 80 96

number of Processes

Figure 15: Speedup Diagram Comparing all Parallelization Methods

Figure 15 shows the speedup of all measured parallelization approaches, as well as the
theoretical optimal scaling derived in the previous paragraph subsubsection 3.3.1. One
can observe that speedup of some approaches sometimes exceeds optimal speedup. This
is not possible and likely due to measurement imprecision. Most of the noteworthy, ap-
proach specific observations have been made in the previous subsections. This diagram
illustrates very well how the different approaches’ speedups compare. For number of
processes lower than 50, broadly all approaches perform similarly well. From there on,
differences in speedup are strongly noticeable. The simple parallel agents speedup stag-
nates without much variance, while the Master Worker Optimized speedup decreases and
increases strongly with a lot of variance. The God Master Worker approache’s speedup
stagnates with a bit of variance and eventually decreases again. The only approach to
scale close to the optimal speedup from there is the Master Worker Optimized one. Even
though its runtime varies quite strong, it shows good speedup overall, outperforming the
other approaches. Unlike expected, the God Master Worker method, which works very
similar to the Master Worker Optimized one, does not share similar speedup behavior.

If one had to rank the different parallelization approaches, it would be important to
specify how many processes the program would be run on. If run on 50 processes, using the
Simple Parallel Agents approach would be the most favorable as it shows similar strong
scaling behavior with little uncertainty. If run on more processes, one would have to
weigh reliability vs. potential speed, choosing either the Simple Parallel Agents or Master
Worker Optimized approaches. In that case, if the Simple Parallel Agents approach is
chosen, one might aswell just run it on 50 processes, because runtime will be similar for
50 or more processes.

Section 3 Louis von Leitner & Thomas Hay 21

Parallel Animals

For any approach, if one had 100 processes available, it would be best to use at most
96, if they are all available on a single node to avoid node-to-node communication, which
strongly slows down runtime.

In the case of unlimited resources, it would be reasonable to use the Master Worker
Optimized approach with as many processes as possible, which will be more than for
Simple Parallel Agents.

The minimum runtime achieved was 18.13 seconds with 297 processes and 594 CPUs,
which is a nice result considering that the serialized version runs for about one hour.
Assuming one has access to this much compute power, the simulation could now be run
a lot of times in a short period of time. This way, the simulation could be used for
the generation of statistically viable scientific results. It should also be said that the
simulation would be run in parallel with every process running one seperate simulation.
This would probably be the most common approach for real world use, but it is nice to
be able to simulate half a year of wildlife in just a few seconds.

4 Discussion

4.1 Introduction

Overall, we are very happy with the outcome of this project. It became more extensive
than we had first anticipated, but this was due to our own curiosity and not some an-
noying outside factor. Because it was so big, there was a lot of room for learning and we
especially enjoyed being able to go our own chosen direction.

When we started with the serialization, the program took between 45 minutes and one
hour to run. Using this to generate statistically viable data seemed unthinkable at first,
so we got a bit hung up on trying to optimize the serial approach. After the implementa-
tion of our first parallelization approach however, we realized how much leverage parallel
computing can have.

4.2 Challenges

Along the journey of coming up with, implementing and testing our approaches, we have
faced a lot of challenges of varying size. We would like to present the most noteworthy
ones.

4.2.1 Generating trace files with Score-P binding for python

There is a Score-P binding for python. It is available on github Score-P binding for Python
2025. We are very thankful for the creation of this tool. Once one has learnt the ropes
with this tool, it is a charm to use. However, the really hard part, which cost us multiple
days of time to master was setting it up on the cluster and learning the basics of use. To
use the Score-P binding for python, one has to import its github and install it via pip
inside a clean virtual environment. For the installation with pip, the openmpi and scorep
modules should be loaded on the cluster such that pip can link dependencies properly.

This is it. It is not very hard. However, if one tiny detail is done wrong, the installation
goes wrong. In some cases, it is immediately visible that something went wrong during the
installation. In others, one only notices a day later, when wondering why the produced

Section 4 Louis von Leitner & Thomas Hay 22

Parallel Animals

trace file is not a correct one. After trying a lot of different options inside the tool and
giving up multiple times, we tried a hard reset of the system because of a lack of ideas
to fix it. The problem in general is the lack of thorough documentation for the software,
which leaves the unexperienced user a bit lost in the multitude of possible problems.

4.2.2 Communication Complexity

When writing a serial program, one has to remember what variable saved the information
that one is interested in. In comparison to that, when writing a parallel program, one has
to constantly have in mind what process or even processes have a specific, sometimes not
identical, piece of data that one is interested in. This is obviously much harder. What
we often struggled with when coming up with a new parallelization approach was keeping
track of what process rank is responsible for what.

We would use modulo arithmetics to assign ranks to groups, for example "every third
rank is a Master". But this really decreases code readability, especially for the other
group member who tries to understand what is going on in this unknown parallelization
approach. We tried different systems, and found that assigning boolean values according
to the groups, for example called Master, Worker or God to ranks and working with those
really facilitated this part of parallelization. A similar approach is good for describing
relations between ranks, which could for example be "master = (rank) 3". This way, if
one wants to communicate data from all Workers to their respective Masters, it is easy.
This system is similar to object oriented programming, because one builds groups with
specific properties and variables. Without this system, one would have to do a lot of
arithmetics in for loops and if statements and get lost along the way.

4.2.3 No Data Loss

In our simulation, a lot of data is important as later results. When parallelizing the pro-
grams with multiple processes, it is possible that different data points end up on different
processes. It was therefore very important for us to pay attention to communicating all of
this data. We did not always end up with all the data wanted and following the pipelines
through the code is an exhausting task, especially when data is sent from process to pro-
cess.

To be able to confidently say that our simulations generate the correct results, we decided
to plot and output our data regularly. This way, we would see if some unusual results were
produced after a change and could find the missing or wrong data before implementing
the next change. Of course, if the plots look legit, this is not a guarantee, but still a
practical, simple indicator of problems.

4.2.4 Cluster Errors

Sometimes, when developping a new approach or implementing a change, we would get
Slurm errors. As we are not used to working with slurm and the cluster, at first we had
to do a lot of research every time these things happened. We were often not sure if the
problem was a setting/feature of the cluster or a configuration limitation by slurm or if
it was a problem in our code. In these cases, it was often very helpful to consult the
internet as we could gather more information on the problem than through just reading
the manual.

This happened especially during our earlier phases of using the Score-P binding for python

Section 4 Louis von Leitner & Thomas Hay 23

Parallel Animals

and cost us a lot of time looking for the problem. To find the actual problem faster in
such situations, probably the only way is to spend more time and gain experience such
that one can develop an intuition for the work environment.

4.3 Learnings

4.3.1 Parallelization Approaches

The key lesson for us during this course was the following:
The 80 // 20 rule holds true for parallel programming!

We have developped quite sophisticated parallelization approaches over the course of this
class. The easiest to implement was the Simple Parallel Agent approach, taking only a
couple of hours to build and get running on the cluster. Compared to this, the Master
Worker approach took multiple full work days to build and refine until it could be used
with reliable output. While the Master Worker implementation performs better generally,
it was a hassle and by the time it was running, the Simple Parallel Agents approach would
probably have been able to produce a more than sufficient amount of simulation data.
So, before coming up with a highly complicated way to parallelize a program, one should
see if the simplest parallelization is enough to get the job done as desired. But, of course,
in some cases, one really needs the most optimal parallel solution. And for those cases,
one can put the 80% of extra work.

4.3.2 Every CPU has multiple cores nowadays

When buying a new laptop or computer, one is always presented with how many cores
a CPU has. So far, we never really understood this and wondered if this was good for
anything else than having multiple applications open at one time. Opposed to this, one
might wonder if they would ever use parallelization skills learnt during the course if they
do not work with compute clusters.

And this is where it is really satisfying to realize that one can use this skill of parallelization
in any discipline related to programming and on any machine. Not only because the
concepts learnt can be transferred, but because one can use the actual skill to speed up
computation in almost any scenario. Further, it is becoming more and more evident to
us that without parallelization, humankind would by far not have made as much progress
with computers, because computing with just one process is simply not fast enough.
Moreover, one comes to appreciate how parallelization is a core building block of computer
science, because it is already indispensable on transistor level hardware.

4.4 Other Solution Options

Our type of simulation is a sparse simulation. Another sparse simulation example is gas
simulation. In such simulations, agents (molecules) which are far apart have an insignifi-
cant impact on each other, thus one can negate it. Therefore, a parallelization technique
often used for such simulations is location based parallelization. An example would be
to divide the world into cubes in 3-dimensional space and have one process compute the
attractive of gas molecules within one cube.

A similar approach could have been used to parallelize our simulation aswell. We be-
lieve however that it would have been less efficient and not really reasonable, because

Section 4 Louis von Leitner & Thomas Hay 24

Parallel Animals

our animal agents roam independent from one another. Thus, often, one process would
be computing a lot of animals’ steps while another one would only be computing a few,
leading to idling and thus inefficiency.

There is also another fundamentally different approach, which we considered, but did
not have the time to pursue further. Instead of simulating animals live, while computing
camera detection and more, one could do these two parts of the program seperately.

For example, one could simulate and save enough different movement trajectories. Those
would of course have to be a lot to be statistically viable. Then, random sampling 100 of
those movement trajectories, one could compute camera detection and the other necessary
data metrics based on those and get very fast runtime on this.

However, this is a fundamentally different way of approaching the problem and was not
really aligned with our goal to master parallelization techniques on the cluster.

4.5 Regrets

We are very happy with our own learning progress, aswell as our project’s progress. We
achieved our goal of making the program run in under one minute and along the way
gained understanding of the fundamentals of parallel programming. Of course, we can
only claim to have learned the basics and learning more advanced concepts would take
a lot more time. But for those reasons, we do not really see a reason for having done
anything differently.

5 Conclusion

This project was about building a simulation to simulate animal’s movement behaviours
and the camera capturing of this. A similar program had existed in a programming
language called NetLogo. This program however was too slow to generate statistically
meaningful results for further research.

After implementing a similar program in python serially with different data flows and
camera capturing, the simulation ran significantly shorter, but still in an unuseable hour.
Therefore, parallelization was a very promising way of decreasing runtime drastically.

Our first parallelization approach, which was agent-based parallelization, proved to
be a very stable approach. Runtimes compare to more sophisticated parallelization ap-
proaches for low to medium numbers of processes.

The most efficient, but least stable approach uses work groups of processes working to-
gether. It scales almost linearly on a single node. Furthermore, it allows for a large
number of processes to be used, which can result in seriously low runtimes. Our shortest
run was close to 18 seconds, using 594 CPUs.

This shows that we were able to far surpass our goal of running the simulation in under
one minute.

If used to generate statistically viable results for research, one would probably use the
agent-based approach for its stability with a small to medium amount of processes. For
example for 50 processes used, one could expect a runtime of around 70 seconds per sim-
ulation run. This offers for quick runtime while still having nearly perfect efficiency in

Section 5 Louis von Leitner & Thomas Hay 25

Parallel Animals

terms of compute use.

So, one could say that our project was highly successful.

Moreover, in terms of learning we were also successful. Among others, we learned to work
in the environment of a compute cluster, parallelize a python program, analyze its run-
time and function behaviour from a trace file in Vampir and most importantly, to master
problems along the way.

A key take away for us was the learning that writing a simple parallel program is pos-
sible in a short time and can already lead to surprisingly good runtime improvements.
Sometimes this is all that is needed to get the job done. Another learning is the shift
in perspective on parallel computing. One does not need a big compute cluster, but can
already parallelize programs on a local machine. Parallelization is omnipresent and this
realization is very valuable for our further programming.

Finally, to summarize, we learned a lot on our path to achieving our project’s goal.
We had a lot of fun in this project and are very grateful for the learning opportunity
offered by the course on high performance computing. In the future, we will surely use
the parallelization techniques learnt and continue our learning journey in this field.

Section 5 Louis von Leitner & Thomas Hay 26

Parallel Animals

References

Ammer, Christian et al. (2010). Der Wald- Wild-Konflikt. 1st ed. Universitétsverlag Got-
tingen. ISBN: 978-3-941875-84-5. URL: https://univerlag.uni-goettingen.de/
bitstream/handle /3 /isbn - 978 - 3 - 941875 - 84 - 5 / GoeForst5 _ Ammer . pdf ?
sequence=4&isAllowed=y.

Anile, S. et al. (Aug. 2014). “Wildcat population density on the Etna volcano, Italy: a
comparison of density estimation methods”. In: Journal of Zoology 293 (4), pp. 252—
261. 18SN: 0952-8369. DOI: 10.1111/jz0.12141.

Bodeker, Kai et al. (Aug. 2021). “Determining Statistically Robust Changes in Ungulate
Browsing Pressure as a Basis for Adaptive Wildlife Management”. In: Forests 12 (8),
p. 1030. 18SN: 1999-4907. DOTI: 10.3390/£12081030.

Clasen, C. and T. Knoke (Apr. 2013). Die finanziellen Auswirkungen iberhohter Wildbestinde
in Deutschland. URL: https://mediatum.ub.tum.de/doc/1100538/document . pdf.

Doran-Myers, Darcy (2018). “Methodological Comparison of Canada Lynx Density Esti-
mation”. In: URL: https://doi.org/10.7939/R3Q815805.

Forsyth, David M. et al. (May 2022). “Methodology matters when estimating deer abun-
dance: a global systematic review and recommendations for improvements”. In: The
Journal of Wildlife Management 86 (4). 1SSN: 0022-541X. DOI: 10.1002/ jwmg . 22207.

Gilbert, Neil A. et al. (Feb. 2021). “Abundance estimation of unmarked animals based on
camera-trap data”. In: Conservation Biology 35 (1), pp. 88-100. 1SSN: 0888-8892. DOI:
10.1111/cobi.13517.

Gustafson’s Law (2025). URL: https://en.wikipedia.org/wiki/Gustafson’27s_law.

Howe, Eric J. et al. (Nov. 2017). “Distance sampling with camera traps”. In: Methods in
FEcology and Evolution 8 (11), pp. 1558-1565. 1sSN: 2041-210X. DOI: 10.1111/2041-
210X.12790.

— (Jan. 2019). “Model selection with overdispersed distance sampling data”. In: Methods
in Ecology and FEvolution 10 (1), pp. 38-47. 1SSN: 2041-210X. DOI: 10.1111/2041-
210X.13082.

Lyet, Arnaud et al. (July 2023). “Estimating animal density using the Space-to-Event
model and bootstrap resampling with motion-triggered camera-trap data”. In: Remote
Sensing in Ecology and Conservation. 1SSN: 2056-3485. DOI: 10.1002/rse2.361.

Marcon, Andrea et al. (Oct. 2019). “Assessing precision and requirements of three methods
to estimate roe deer density”. In: PLOS ONE 14 (10), €0222349. 1SSN: 1932-6203. DOI:
10.1371/journal . pone.0222349.

Moeller, Anna K., Paul M. Lukacs, and Jon S. Horne (Aug. 2018). “Three novel methods
to estimate abundance of unmarked animals using remote cameras”. In: Ecosphere 9
(8). 1SSN: 2150-8925. DOT: 10.1002/ecs2.2331.

Nakashima, Yoshihiro, Keita Fukasawa, and Hiromitsu Samejima (Mar. 2018). “Estimat-
ing animal density without individual recognition using information derivable exclu-
sively from camera traps”. In: Journal of Applied Ecology 55 (2), pp. 735-744. ISSN:
0021-8901. porI: 10.1111/1365-2664.13059.

Palencia, Pablo et al. (Aug. 2021). “Assessing the camera trap methodologies used to
estimate density of unmarked populations”. In: Journal of Applied Ecology 58 (8),
pp- 1583—-1592. 1SSN: 13652664. DOI: 10.1111/1365-2664.13913.

Section 5 Louis von Leitner & Thomas Hay 27

https://univerlag.uni-goettingen.de/bitstream/handle/3/isbn-978-3-941875-84-5/GoeForst5_Ammer.pdf?sequence=4&isAllowed=y
https://univerlag.uni-goettingen.de/bitstream/handle/3/isbn-978-3-941875-84-5/GoeForst5_Ammer.pdf?sequence=4&isAllowed=y
https://univerlag.uni-goettingen.de/bitstream/handle/3/isbn-978-3-941875-84-5/GoeForst5_Ammer.pdf?sequence=4&isAllowed=y
https://doi.org/10.1111/jzo.12141
https://doi.org/10.3390/f12081030
https://mediatum.ub.tum.de/doc/1100538/document.pdf
https://doi.org/10.7939/R3Q815805
https://doi.org/10.1002/jwmg.22207
https://doi.org/10.1111/cobi.13517
https://en.wikipedia.org/wiki/Gustafson%27s_law
https://doi.org/10.1111/2041-210X.12790
https://doi.org/10.1111/2041-210X.12790
https://doi.org/10.1111/2041-210X.13082
https://doi.org/10.1111/2041-210X.13082
https://doi.org/10.1002/rse2.361
https://doi.org/10.1371/journal.pone.0222349
https://doi.org/10.1002/ecs2.2331
https://doi.org/10.1111/1365-2664.13059
https://doi.org/10.1111/1365-2664.13913

Parallel Animals

Rogowski, Marcin et al. (2023). “mpidpy.futures: MPI-Based Asynchronous Task Execu-
tion for Python”. In: IEEE Transactions on Parallel and Distributed Systems 34.2,
pp. 611-622. DOI: 10.1109/TPDS.2022.3225481.

Rowcliffe, J. Marcus et al. (Aug. 2008). “Estimating animal density using camera traps
without the need for individual recognition”. In: Journal of Applied Ecology 45 (4),
pp. 1228-1236. 1SSN: 0021-8901. DOI: 10.1111/j.1365-2664.2008.01473.x.

Royle, J. Andrew (Mar. 2004). “N-Mixture Models for Estimating Population Size from
Spatially Replicated Counts”. In: Biometrics 60 (1), pp. 108-115. 1SSN: 0006-341X.
DOI: 10.1111/7.0006-341X.2004.00142.x.

Royle, J. Andrew et al. (2014). Spatial Capture-Recapture. Academic Press. DOI: 10.1016/
B978-0-12-405939-9.00022-0.

Santini, Giacomo et al. (June 2022). “Population assessment without individual identi-
fication using camera-traps: A comparison of four methods”. In: Basic and Applied
Ecology 61, pp. 68-81. 1SSN: 14391791. DOI: 10.1016/j.baae.2022.03.007.

Score-P binding for Python (2025). URL: https://github. com/score-p/scorep_
binding_python/.

Walters, C. (1986). Adaptive Management of Rewnewable Resources. Macmillan Publish-
ers Ltd. URL: https://pure.iiasa.ac.at/id/eprint/2752/1/XB-86-702.pdf.

Section Louis von Leitner & Thomas Hay 28

https://doi.org/10.1109/TPDS.2022.3225481
https://doi.org/10.1111/j.1365-2664.2008.01473.x
https://doi.org/10.1111/j.0006-341X.2004.00142.x
https://doi.org/10.1016/B978-0-12-405939-9.00022-0
https://doi.org/10.1016/B978-0-12-405939-9.00022-0
https://doi.org/10.1016/j.baae.2022.03.007
https://github.com/score-p/scorep_binding_python/
https://github.com/score-p/scorep_binding_python/
https://pure.iiasa.ac.at/id/eprint/2752/1/XB-86-702.pdf

Parallel Animals

A Work sharing

In general, work was distributed according to availability. Louis is doing the 9C version
of the course, and worked more according to the credit distribution.
Thomas is doing the 6C version of the course.

A.1 Louis von Leitner

1. Serial Program

e Camera Detection Logic
e Deer Movement

e General Structure and Logic

2. Parallelization

Master Worker Approach

Vampir Performance Analysis

Master Worker Optimized Approach
e God Master Worker Approach

3. Presentation

e Performance Measurements
e Slides Detection

e Slides Parallelization
4. Report

Performance Measurements
Master Worker

Master Worker Optimized
God Master Worker

Results & Discussion

5. Animation

A.2 Thomas Hay

1. Serial Program

Initial design

Model setup

Step generation

Sparse modeling things

Output handling

Section A Louis von Leitner & Thomas Hay Al

Parallel Animals

e Visualization
2. Parallelization

e Agent-based approach

e Error-hunting
3. Presentation

e Problem outline

Solution approach

Performance Serial

Agent-based parallelization

Performance of this

4. Report

Introduction

Abstract

Sequential Implementation design

Implementation

Performance Sequential

B Code samples

The entire code of the project can be found under:
https://gitlab.gwdg.de/hay/parallel-animals

Parallel designs: Agent based v1 + v2/ Improvement expect.

The different implementations of the various parallelization schemes etc. are contained

in their respective git branches.

Section B Louis von Leitner & Thomas Hay

A2

	Contents
	List of Tables
	List of Figures
	List of Listings
	List of Abbreviations
	Introduction
	Methods
	Solution approach and Objective
	Sequential implementation design
	Model initialization
	Process scheduling
	Animal movement
	Camera trapping

	Parallel implementation designs
	Agent-based parallelization v1
	Agent-based parallelization v2
	Master Worker Parallelization
	Master Worker Optimized
	Master Worker God Photographer
	Improvement expectations

	Performance analysis setup
	Implementation
	Sequential
	Parallel

	Results
	Performance Sequential
	Runtime distribution among program parts
	Performance behavior full program

	Results of Parallelization Methods
	Agent-based parallelization v1
	Agent-based parallelization v2
	Master Worker Parallelization
	Master Worker Optimized
	Master Worker God Photographer

	Discussion
	Baseline Expectation Assumptions
	Comparison

	Discussion
	Introduction
	Challenges
	Generating trace files with Score-P binding for python
	Communication Complexity
	No Data Loss
	Cluster Errors

	Learnings
	Parallelization Approaches
	Every CPU has multiple cores nowadays

	Other Solution Options
	Regrets

	Conclusion
	References
	Work sharing
	Louis von Leitner
	Thomas Hay

	Code samples

