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Problem
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How many deer are in the forest?
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Simulations!
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Movement Model
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Movement Model
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Movement Model
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Movement Model

Probability = 1/a * exp (d*b)
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Weight computation takes ⅔ of the runtime!
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Camera trapping
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Camera trapping

Happens Rarely!
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Camera Trapping

- Happens rarely
- Takes on average double the time as doing one animal step
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Sequential Solution
Ideas
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Small steps and always check everything
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Animal inside?

Small steps and always check everything
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Animal inside?

Small steps and always check everything
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Remarks

Idea:
- No path camera tracking necessary → decrease runtime?

Answer:
- This increases runtime by a lot
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Quick Math

One step every minute:
⇒ 2000 steps x 120 = 240.000

x 100 animals = 24.000.000 
steps in total

One step every 2 hours:
⇒ 2000 steps
x 100 animals = 200.000 
steps in total

ca. 6 month period simulation

Average time of camera 
trapping = 2x time of moving 
animal
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Quick Math
ca. 6 month period simulation

⇒ 24.000.000 - 200.000 = 23.800.000

23.800.000 / 2 = 11.900.000

Amount of Photos to be taken so that simulations 
take the same amount of time

Average of about 800 photos per simulation (max 200.000)
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Quick Math
ca. 6 month period simulation

Sparse modelling is a lot more efficient!
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Back to our method!
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10 animals
100 steps
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Performance in Sequential

Linear Scaling with amount of total steps

2000 Steps for 100 Animals takes 45 minutes.
→ Too long!
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First parallelization Idea: Parallel Agents

- Initialize multiple threads
- Distribute animals evenly to threads
- Let every thread compute steps for their animals
- Gather results (photos, location data, …)

(like the computation of pi)
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Parallel Agents: Master-Slave
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Parallel Agents: God-Master-Slaves
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Performance Analysis

- looks exponential
- expectation: linear

45 mins = 2700 seconds
2700 seconds / 100 threads = 27 seconds

- our model run took 52 seconds → not linear

What’s going on?

32



Animal partitioning

- animals are discrete units and cannot be split in half
- with 100 animals and 99 threads:

thread 1 computes 2 animals
thread 2-100 compute 1 animal
→ Thread 2-100 are idle half of the time
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Parallel Agents

- Number of nodes and thus performance capped by number 
of animals (100)

- embarrassingly parallel!
- Not linear scaling with amount of threads used

Gain: Good base comparison!
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Other Idea: Optimization of thread use

Given n threads for computation, how can you leverage them 
best for most efficient computation?
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Optimization of thread use
From last time:
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Optimization of thread use: Idea

Workmaster and worker nodes

Workmaster:
- Generate potential steps
- Send steps to Workers
- Do Bookkeeping (Camera 

detections and more data 
collection)

- Get Weights from Workers 
and determine next step

Worker:
- Get potential steps from 

Workmaster
- Calculate Weights
- Send Weights for steps to 

Workmaster
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Optimization of thread use: Idea

Workmaster and worker nodes

Weight calculation ⅔ of time ⇒ 1 Master, 2 Workers
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Master Worker Approach

39

tim
e



= waiting

= doing something

Vampir Performance Analysis
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still a lot of waiting

bookkeepingcomputing next position and generating steps
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A lot of waiting?

0.002 seconds of waiting x 2000 steps = 4 seconds of waiting 
per animal

⇒ 4 seconds per animal x 100 animals = 400 seconds of 
waiting
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Master Worker v2

43



depends on weights depends on location

Idea: Can Master do preparatory substeps while he is waiting?
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Movement Model
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Movement Model
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Movement Model
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generate possible steps during weight calculation
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Our Chart looks like this by now …
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What we achieved:

Workers are barely idle

10 Workers per Master is optimal

but Master is Idle a lot

Solution: Find optimal amount of Workers per 
Master
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Lots of green! (little idling)
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Performance
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- Master Worker more 
efficient for lower thread 
numbers

- Master Worker possibility 
for more threads employed

- Parallel Agents more 
efficient around 50-100 
threads
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Performance

- Not linear either
- Capped by number of Animals x Threads per Workgroup

(100 x 11 = 1100)
- Number of Threads must be divisible by Threads per 

Workgroup
- 300 threads → 24 seconds runtime

58



What about photos?
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Problem

10 Workers waiting for 1 Master for a “long” time

Idea:
For multiple Workgroups (Master + 10 Workers) assign one 

“Photographer”
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Master Worker v3



taking photo while animals keep running catching up with other 
bookkeeping

Photographer

Master

Workers
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Is this quicker?
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Is this quicker?
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No.

Challenges:
- a lot of communication overhead
- volatile and instable
- hard to implement (MPI buffer overwriting problem)

⇒ Previous solution was better



Conclusion
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Conclusion

- didn’t get linear growth in speed by resources
- reached goal: 24 seconds < 45 seconds
- Parallel Agents approach is already very quick
- Master Worker v2 is the most efficient and can scale 

longer
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Key Lessons

- parallel programming is highly variable and 
unpredictable (race conditions, etc.)

⇒ Make the program Waterproof
- Vampir is great to see weaknesses and if the program 

even works properly
- environment setup on the cluster is complex (python)
- Often the easiest solutions are the best (80:20 rule)
- dividing into subfunctions is useful for parallelizing 

already existing sequential code
- parallel programming is fun
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Thank you!



Questions?


