
Estimating the population density of 
unmarked animals using camera traps

A simulation-based evaluation

Louis von Leitner, Thomas Hay

1



Problem

2



3



How many deer are in the forest?

4



Simulations!

5



Movement Model

6



Movement Model

7



Movement Model

8



Movement Model

Probability = 1/a * exp (d*b)

9



Weight computation takes ⅔ of the runtime!

10



Camera trapping

11



Camera trapping

Happens Rarely!
12



Camera Trapping

- Happens rarely
- Takes on average double the time as doing one animal step

13



Sequential Solution
Ideas

14



Small steps and always check everything

15



Animal inside?

Small steps and always check everything

16



Animal inside?

Small steps and always check everything

17



Remarks

Idea:
- No path camera tracking necessary → decrease runtime?

Answer:
- This increases runtime by a lot

18



Quick Math

One step every minute:
⇒ 2000 steps x 120 = 240.000

x 100 animals = 24.000.000 
steps in total

One step every 2 hours:
⇒ 2000 steps
x 100 animals = 200.000 
steps in total

ca. 6 month period simulation

Average time of camera 
trapping = 2x time of moving 
animal

19



Quick Math
ca. 6 month period simulation

⇒ 24.000.000 - 200.000 = 23.800.000

23.800.000 / 2 = 11.900.000

Amount of Photos to be taken so that simulations 
take the same amount of time

Average of about 800 photos per simulation (max 200.000)

20



Quick Math
ca. 6 month period simulation

Sparse modelling is a lot more efficient!

21



Back to our method!

22



23

10 animals
100 steps



24



25



Performance in Sequential

Linear Scaling with amount of total steps

2000 Steps for 100 Animals takes 45 minutes.
→ Too long!

26



First parallelization Idea: Parallel Agents

- Initialize multiple threads
- Distribute animals evenly to threads
- Let every thread compute steps for their animals
- Gather results (photos, location data, …)

(like the computation of pi)

27



Parallel Agents: Master-Slave

28



29



Parallel Agents: God-Master-Slaves

30





Performance Analysis

- looks exponential
- expectation: linear

45 mins = 2700 seconds
2700 seconds / 100 threads = 27 seconds

- our model run took 52 seconds → not linear

What’s going on?

32



Animal partitioning

- animals are discrete units and cannot be split in half
- with 100 animals and 99 threads:

thread 1 computes 2 animals
thread 2-100 compute 1 animal
→ Thread 2-100 are idle half of the time

33



Parallel Agents

- Number of nodes and thus performance capped by number 
of animals (100)

- embarrassingly parallel!
- Not linear scaling with amount of threads used

Gain: Good base comparison!

34



Other Idea: Optimization of thread use

Given n threads for computation, how can you leverage them 
best for most efficient computation?

35



Optimization of thread use
From last time:

36



Optimization of thread use: Idea

Workmaster and worker nodes

Workmaster:
- Generate potential steps
- Send steps to Workers
- Do Bookkeeping (Camera 

detections and more data 
collection)

- Get Weights from Workers 
and determine next step

Worker:
- Get potential steps from 

Workmaster
- Calculate Weights
- Send Weights for steps to 

Workmaster

37



Optimization of thread use: Idea

Workmaster and worker nodes

Weight calculation ⅔ of time ⇒ 1 Master, 2 Workers

38



Master Worker Approach

39

tim
e



= waiting

= doing something

Vampir Performance Analysis

40



still a lot of waiting

bookkeepingcomputing next position and generating steps

41



A lot of waiting?

0.002 seconds of waiting x 2000 steps = 4 seconds of waiting 
per animal

⇒ 4 seconds per animal x 100 animals = 400 seconds of 
waiting

42



Master Worker v2

43



depends on weights depends on location

Idea: Can Master do preparatory substeps while he is waiting?

44



Movement Model

45



Movement Model

46



Movement Model

47





generate possible steps during weight calculation

49



Our Chart looks like this by now …

50

tim
e



What we achieved:

Workers are barely idle

10 Workers per Master is optimal

but Master is Idle a lot

Solution: Find optimal amount of Workers per 
Master

51



Lots of green! (little idling)

52



53



Performance

54



55



56



- Master Worker more 
efficient for lower thread 
numbers

- Master Worker possibility 
for more threads employed

- Parallel Agents more 
efficient around 50-100 
threads

57



Performance

- Not linear either
- Capped by number of Animals x Threads per Workgroup

(100 x 11 = 1100)
- Number of Threads must be divisible by Threads per 

Workgroup
- 300 threads → 24 seconds runtime

58



What about photos?

59



60



Problem

10 Workers waiting for 1 Master for a “long” time

Idea:
For multiple Workgroups (Master + 10 Workers) assign one 

“Photographer”

61



Master Worker v3



taking photo while animals keep running catching up with other 
bookkeeping

Photographer

Master

Workers

63



Is this quicker?

64



Is this quicker?

65

No.

Challenges:
- a lot of communication overhead
- volatile and instable
- hard to implement (MPI buffer overwriting problem)

⇒ Previous solution was better



Conclusion

66



Conclusion

- didn’t get linear growth in speed by resources
- reached goal: 24 seconds < 45 seconds
- Parallel Agents approach is already very quick
- Master Worker v2 is the most efficient and can scale 

longer

67



Key Lessons

- parallel programming is highly variable and 
unpredictable (race conditions, etc.)

⇒ Make the program Waterproof
- Vampir is great to see weaknesses and if the program 

even works properly
- environment setup on the cluster is complex (python)
- Often the easiest solutions are the best (80:20 rule)
- dividing into subfunctions is useful for parallelizing 

already existing sequential code
- parallel programming is fun

68



Thank you!



Questions?


