Estimating the population density of
unmarked animals using camera traps

A simulation-based evaluation

Louis von Leitner, Thomas Hay

Problem

=

o

o

How many deer are in the forest?

5 SF G gf

D =
Ef © © © ©

1 el] e

51 o 6 @n@ 5

Simulations!

Movement Model

o

Movement Model

Normalized Step Lengths and fitted Distributions

Movement Model

20
Sex

Density

0.0 0.1 0.2 0.3
‘ Normalized Step Length in km

Movement Model

Probability = 1/a * exp (d*b)

Weight computation takes %3 of the runtime!

Camera trapping

11

Camera trapping

Happens Rarely!

-
—
—-—
—-—
—-—
—
—-—
-
—-—
—

Camera Trapping

- Happens rarely
- Takes on average double the time as doing one animal step

Sequential Solution
ldeas

Small steps and always check everything

Small steps and always check everything

Animal inside?

Small steps and always check everything

Animal inside?

Remarks

ldea:
- No path camera tracking necessary — decrease runtime?

Answer:
- This increases runtime by a lot

Quick Math

ca. 6 month period simulation

One step every minute:
= 2000 steps x 120 = 240.000

x 100 animals = 24.000.000
steps in total

One step every 2 hours:
= 2000 steps
x 100 animals = 200.000

steps in total

Average time of camera
trapping = 2x time of moving
animal

Quick Math

ca. 6 month period simulation
= 24.000.000 - 200.000 = 23.800.000

23.800.000 / 2 =11.900.000

/

Amount of Photos to be taken so that simulations
take the same amount of time

Average of about 800 photos per simulation (max 200.000)

Quick Math

ca. 6 month period simulation

Sparse modelling is a lot more efficient!

Back to our method!

6000

Movement Path, Animal Centers, Forest

10 animals
100 steps 5000 {

4000 A
> 3000 1 ©) (o] 6}
p
2000 1
] Q o]
1000 A
0 T u T T T
0 1000 2000 3000 4000 5000

6000

@

— Forest

Cameras

Time in seconds

Movement times for number of steps for different numbers of animals

2500 A

2000 -

1500 A

1000 A

500 -

n_animals
1
5
10
—i> 25
— 50
- 100

0 250

500

750 1000 1250
Number of steps

1500

1750

2000

time in seconds

Movement times for numer of total steps

2500 A

2000 -

1500 A

1000 A

500 -

0

25000 50000 75000 100000 125000 150000 175000 200000
number of total steps

Performance in Sequential

Linear Scaling with amount of total steps

2000 Steps for 100 Animals takes 45 minutes.
— Too long!

First parallelization Idea: Parallel Agents

- Initialize multiple threads

- Distribute animals evenly to threads

- Let every thread compute steps for their animals
- Gather results (photos, location data, ...)

(like the computation of pi)

Parallel Agents: Master-Slave

Thread 1

Set up Model: World,
Forest. distribute
animals

Thread 2

Thread 3

h 4

Compute Animal

Time

h 4

Compute Animal

h 4

Collect outputs

h 4

Compute Animal

Compute Animal

h 4

h 4

Compute Animal

Compute Animal

A

28

runtime in seconds

Parallel Agents Performance over different amounts of Threads

600 -

500 -

400

300 A

200 -

100 -

1 T T T

20 40 60 80 100
number of threads

29

Parallel Agents: God-Master-Slaves

Time

Thread 0

Set up Model: World,
Forest, distribute
animals

Thread 1

Thread 2

L.

Distribute further

Thread 3

o

h 4

v

Compute Animal

Compute Animal

Compute Animal

v

v

v

Compute Animal

Compute Animal

Compute Animal

Collect outputs

AAA

30

Runtime in Seconds

350
300
250
200
150
100

50

God-Master-Slave Performance
90 animals/ 1000 steps each

50

100 150
Number of Threads

200

250

Performance Analysis

- looks exponential
- expectation: linear
45 mins = 2700 seconds
2700 seconds / 100 threads = 27 seconds

- our model run took 52 seconds — not linear

What’s going on?

Animal partitioning

- animals are discrete units and cannot be split in half
- with 100 animals and 99 threads:

thread 1 computes 2 animals

thread 2-100 compute 1 animal

— Thread 2-100 are idle half of the time

Parallel Agents

- Number of nodes and thus performance capped by number

of animals (100)

- embarrassingly parallel!
- Not linear scaling with amount of threads used

Gain: Good base comparison!

Other Idea: Optimization of thread use

Given n threads for computation, how can you leverage them
best for most efficient computation?

Optimization of thread use

From last time:

add_relocation processes' times Subprocess Times for get_step()

get_step

possible_steps
compute_weights

detection

find_potential_cameras

36

Optimization of thread use: Idea

Workmaster and worker nodes

Workmaster:

Generate potential steps
Send steps to Workers

Do Bookkeeping (Camera
detections and more data
collection)

Get Weights from Workers
and determine next step

Worker:

Get potential steps from
Workmaster

Calculate Weights

Send Weights for steps to
Workmaster

Optimization of thread use: Idea

Workmaster and worker nodes

Weight calculation %5 of time = 1 Master, 2 Workers

e

uoleIa} BUQO

Master Worker Approach

Master Thread Worker Thread Worker Thread

o
o

39

-
=
s

Vampir Performance Analysis

Timeline
6.70 s 6.71s 6.72 s 6.73 s 6.74 s 6.75 s

Master thread:0

Master thread:1 ani...hts ani...hts ani...hts ani...hts ani...hts ani...hts ani...hts

Master thread:2 ani...hts ani...hts ani...hts ani...hts ani...hts ani...hts ani...hts

6.76 s

ani...hts

ani...hts

40

computing next position and generating steps bookkeeping

6718s 6.719s 6.720 s N 6.723s 6.724s 6.725 s

Master thread:0 i..ion ani...eps a...n

Master thread:1 animals.animal.A...alculate_weights animals.animal.Animal:calculate_weights

Master thread:2 animals.animal.A...alculate_weights animals.animal.Animal:calculate_weights

still a lot of waiting

41

A lot of waiting?

0.002 seconds of waiting x 2000 steps = 4 seconds of waiting
per animal

= 4 seconds per animal x 100 animals = 400 seconds of
waiting

Master Worker v2

depends on weights depends on location

Timeline
6.74750 s S 6.74800 s 6.74825 s) 6.74875 s

Master thread:0 an...epanimals.animal.Animal:add_relocation animals.animal.Animal:generate_possible_steps

Master thread:1

Master thread:2 anim...ghts

ldea: Can Master do preparatory substeps while he is waiting?

44

Movement Model

Movement Model

Movement Model

S

A

generate possible steps during weight calculation

. . @

Timeline
5.65300 s 5.65325 s 65350 s 5.65375 s 5.65400 s 5.65425 s 5.65450 s 5.65% 5.65500 s

Master thread:0 animals.animal.A...e_possible_steps animals.animal.Animal:add_relocation animals.ani..._collection

Master thread:1 anima...ights animals.animal.Animal:calculate_weights

Master thread:2 animals.animal.Animal:calculate_weights

Suwn

uoneIR)| 2UQ

Our Chart looks like this by now ...
Master Thread Worker Thread Worker Thread

»
Ll

50

What we achieved:

Workers are barely idle

but Master is Idle a lot

Solution: Find optimal amount of Workers per
Master

10 Workers per Master is optimal

Lots of green! (little idling)

Timeline
4.6600 s 4.6625 s 4.6650 s 4.6675 s 4.6700 s 4.6725 s 4.6750 s 4.6775 s 4.6800 s

Master thread:0

Master thread:1 i ani..hts ani...hts ani..hts ani..hts a...

Master thread:2 i, ani...hts ani...hts ani..hts ani..hts a...

Master thread:3 i animals...._weights ani... animals...._weights a...

Master thread:4

Master thread:5

Master thread:6

Master thread:7

Master thread:8 i, animals...._weights ani... animals...._weights a...

Master thread:9

Master thread:10 i ani...hts ani...hts ani..hts ani..hts a...

Master thread:0

Master thread:1

Master thread:2

Master thread:3

Master thread:4

Master thread:5

Master thread:6

Master thread:7

Master thread:8

Master thread:9

Master thread:10

Timeline

4.66980 s 4.66985 s 4.66990 s

anim...tion

animals.animal.Animal:choose_step

animals.animal.Animal:calculate_weights

animals.ani...ate_weights

animals.animal.Animal:calculate_weights

animals.animal.Animal:calculate_weights

animals.animal.Animal:calculate_weights

animals.animal.Animal:calculate_weights

animals.animal.Animal:calculate_weights

animals.animal.Animal:calculate_weights

animals.animal.Animal:calculate_weights

animals.animal.Animal:calculate_weights

4.66995 s 4.67000 s

animal..._ste

animals....le_steps

animals.animal.A...alculate_weig

animals.animal...culate weig

animals.anima...ulate_weigq

animals.anim...late_weid

animals.ani...ate weid

animals.an...te_ wei

: animals.a...e_weid

animals...._weig

animals...weig

animal...eig

Performance

runtime in seconds

Master Worker Performance over different amounts of Threads

300 A

250 A

200 A

150 +

100 +

50 A

-
-

0 50 100 150 200 250 300
number of threads

55

runtime in seconds

Comparison runtime Master Worker vs Parallel Agents

600 - —&— Master Worker

—&— Parallel Agents
500 A
400 -
300 A
200 -
100 A

—e

0 i Ll Ll T 1 L I Ll
0 50 100 150 200 250 300

number of threads

56

Master Worker more
efficient for lower thread
numbers

Master Worker possibility
for more threads employed
Parallel Agents more
efficient around 50-100
threads

runtime in seconds

6004 @

500 A

400 -

300 A

N
[=]
o

100 A

Comparison runtime Master Worker vs Parallel Agents

—8— Master Worker
»— Parallel Agents

50 100 150 200 250 300
number of threads

57

Performance

Not linear either

Capped by number of Animals x Threads per Workgroup
(100 x 11 =1100)

Number of Threads must be divisible by Threads per
Workgroup

300 threads — 24 seconds runtime

What about photos?

e
4215s 4220s 42255 4230s 4235s 4240 s 42455 4250s 4.255s

animals.animal.Animal:data_collection animals.animal.Animal:data_collection
ani...hts a..s a.s a.s
ani...hts a.s a.s a.s
ani...hts as 3.5 a.S
ani...hts a.s a.s a.s
ani...hts a..s a.s a.s
ani...hts a.s 3.5 a.s
ani...hts a.s a.S a.s
3.5 3.5 3.5 3.5 a.5
ani...hts 3.5 a.s a.s

ani...hts a.s a.s a.s

Problem

10 Workers waiting for 1 Master for a “long” time

ldea:
For multiple Workgroups (Master + 10 Workers) assign one
“Photographer”

Master Worker v3

taking photo while animals keep running catching up with other
bookkeeping

Timeline
6.90 s 6.91s
P hOtogra phe r Master thread:0 animals.animal.Animal:data_collection
M aster Master thread:1
Master thread:2 an...ts anim...ghts anim..ghts anim...ghts anim...ghts anim...ghts anim...ghts anim...ghts anim...ghts anim...ghts anim..ghts anim...g
Workers

Master thread:3 an...ts anim...ghts anim...ghts anim...ghts anim...ghts anim...ghts anim...ghts anim...ghts anim...ghts anim...ghts anim...ghts anim...g

63

runtime in seconds

Is this quicker?

Comparison runtimes

600 -

500 -

400 -

300 -

200 A

100 A

—8— Master Worker
—&— Parallel Agents
—8— Master Worker Photographer

100

150 200 250 300
number of threads

64

Is this quicker?

No.

Challenges:
- alot of communication overhead
- volatile and instable
- hard to implement (MPI buffer overwriting problem)

= Previous solution was better

Conclusion

Conclusion

didn’t get linear growth in speed by resources
reached goal: 24 seconds < 45 seconds

Parallel Agents approach is already very quick
Master Worker v2 is the most efficient and can scale
longer

Key Lessons

parallel programming is highly variable and
unpredictable (race conditions, etc.)

= Make the program Waterproof
Vampir is great to see weaknesses and if the program
even works properly
environment setup on the cluster is complex (python)
Often the easiest solutions are the best (80:20 rule)
dividing into subfunctions is useful for parallelizing
already existing sequential code
parallel programming is fun

Thank you!

Questions?

