
Kernel Compilation and Configuration

Optimizing Linux for HPC Workloads

Salaheldin Sameh

University of Göttingen

July 10, 2025
Seminar: Newest Trends in High-Performance Data
Analytics

SH

∞

https://github.com/salaheldinsoliman

)

https://github.com/salaheldinsoliman


Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps

Outline

1 Introduction

2 Overview & Project Structure

3 Tickless Kernel

4 Scheduler Benchmark

5 Preemption Model

6 Summary

7 Next Steps

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 2 /??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps

Introduction

■ HPC applications demand predictable, low-latency execution.

■ Linux kernel configurations (tickless kernel, scheduler choice, preemption
model) directly affect performance.

■ Goal: Identify optimal settings to minimize OS-induced noise and maximize
throughput.

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 3 /??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps

Overview & Project Structure

A single Github repository, a directory for each experiment:
https://github.com/salaheldinsoliman/kernel-experiments

1 Tickless Kernel Impact

2 Scheduler Benchmarking

3 Preemption Model Effects

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 4 /??

https://github.com/salaheldinsoliman/kernel-experiments


Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps

Tickless Kernel: Overview

■ A tick is a periodic timer interrupt generated by the system timer (typically
at 100–1000 Hz, often 250 Hz by default). That means the CPU gets
interrupted 250 times per second per core, just for timekeeping and system
maintenance.

■ Tickless Kernel Aims to reduce OS-induced noise and interruptions for
deterministic HPC workloads.

■ Applies CPU isolation and full tickless mode (nohz_full) to free cores from
scheduler ticks.

■ Detailed setup: https://github.com/salaheldinsoliman/
kernel-experiments/tree/main/tickless-kernel

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 5 /??

https://github.com/salaheldinsoliman/kernel-experiments/tree/main/tickless-kernel
https://github.com/salaheldinsoliman/kernel-experiments/tree/main/tickless-kernel


Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps

Tickless Kernel: Literature Expectations

■ Tickless mode reduces timer interrupt overhead, lowering latency and jitter
(Tsafrir et al., Linux RT documentation).

■ Expected to improve mean execution time and stabilize runtimes for
compute-bound tasks.

■ Prior studies report up to 10–15% runtime improvement in real-time and
HPC scenarios.

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 6 /??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps

Tickless Kernel: Experiment Results

Setup:

■ VirtualBox VM with 5 vCPUs running Linux Mint.

■ OpenMP matrix multiplication (SIZE=1024) pinned to isolated cores 1 and 2.

■ Kernel boot flags: isolcpus=1,2 and nohz_full=1,2; compared against
default.

Results (20 runs):

■ No tickless: Mean = 0.8033s, Std Dev = 0.0235s

■ Tickless: Mean = 1.8266s, Std Dev = 0.0673s

Interpretation: Results contradict literature; slowdown and jitter suggest
misconfiguration, virtualization effects or wrong setup.

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 7 /??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps

Tickless Kernel: Discussion & Debugging

■ Wrong Setup?: Linux Mint(Desktop) comes with many background
services—GUI compositors, power-management daemons, indexing
services—that can sneak onto “isolated” cores and generate noise.

■ Missing Config?: Should I set IRQ Affinity to non-isolated cores?

■ Virtualization Overhead?: Does a run on bare metal differ from a VM?

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 8 /??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps

Scheduler Benchmark: Overview

■ Evaluate SCHED_OTHER, SCHED_FIFO, SCHED_RR policies.

■ Workloads: compute-bound, memory-bound, I/O-bound, mixed.

■ Goal: Identify policy with lowest runtime per workload.

■ Detailed Setup: https://github.com/salaheldinsoliman/
kernel-experiments/tree/main/different-schedulers

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 9 /??

https://github.com/salaheldinsoliman/kernel-experiments/tree/main/different-schedulers
https://github.com/salaheldinsoliman/kernel-experiments/tree/main/different-schedulers


Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps

Scheduler Benchmark: Literature Expectations

■ Real-time policies (FIFO, RR) expected to boost compute-bound
determinism.

■ CFS (OTHER) balances fairness; may unpredictably preempt HPC tasks.

■ Prior work reports 5–10% speedup for compute-bound under FIFO vs CFS.

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 10 /??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps

Scheduler Benchmark: Experiment Results

Compute-bound

■ OTHER: 6.73 s

■ FIFO: 7.03 s

■ RR: 7.05 s

Memory-bound

■ FIFO: 0.55 s

■ RR: 0.55 s

■ OTHER: 0.56 s

I/O-bound

■ RR: 1.38 s

■ FIFO: 1.45 s

■ OTHER: 1.51 s

Mixed

■ All: 0.16 s

Observation: I/O bound and memory bound benefited from RR/FIFO, compute
bound did not. Compute bound did not benefit from FIFO contrary to literature

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 11 /??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps

Scheduler Benchmark: Discussion

■ Results may differ on a dedicated system: Desktop OS processes
interfered, favoring CFS.

■ Policy selection is Workload-dependent:
Compute-bound → real-time policies should excel, if the environment is
noise-free.
Memory-bound → FIFO/RR give a slight edge by removing timeslice
overhead.
I/O-bound → RR often best, due to predictable timeslices allowing rapid
wake-up.

■ Next steps: Re-run on a dedicated system to reduce noise, compare the
results

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 12 /??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps

Preemption Model: Overview

■ Preemption is the operating system’s ability to interrupt a running kernel
task—pausing its execution at safe points—so that a more critical or
higher-priority task can take over the CPU.

■ Compare kernel preemption models: PREEMPT_NONE, PREEMPT_VOLUNTARY,
PREEMPT.

■ Assess runtime performance of OpenMP workload of different types
(interrupted and stable).

■ Goal: Identify configuration with lowest latency and highest stability for
HPC.

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 13 /??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps

Preemption Model: Literature Expectations

■ PREEMPT_NONE minimizes context-switch overhead, ideal for compute-bound
tasks.

■ PREEMPT_VOLUNTARY adds preemption points; may reduce latency but
introduce spikes.

■ PREEMPT enables full kernel preemption, improving responsiveness at some
overhead.

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 14 /??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps

Preemption Model: Experiment Results

PREEMPT_VOLUNTARY

■ Stable workload: 15.015882 s

■ Interrupt workload: 5.090901 s

PREEMPT_NONE

■ Stable workload: 15.791380 s

■ Interrupt workload: 5.396742 s

PREEMPT

■ Stable workload: 15.298632 s

■ Interrupt workload: 5.301512 s

Observation: PREEMPT_VOLUNTARY yielded the fastest stable workload time, while PREEMPT_NONE had the
slowest. Under interrupt load, PREEMPT_VOLUNTARY again performed best, followed by PREEMPT and then
PREEMPT_NONE. PREEMPT_NONE offered neither performance nor responsiveness advantages in this
environment.

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 15 /??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps

Preemption Model: Discussion

■ Workload type determines ideal model The performance impact of
preemption depends entirely on whether the workload is compute-bound,
I/O-bound, or latency-sensitive. There’s no “best” model universally.

■ Real-world benchmarks matter more than theory: Since performance
depends on load type and its environment, benchmarks are critical to
determine the best preemption model.

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 16 /??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps

Summary

■ Performed three experiments (Tickless kernel, Scheduler choice, Preemption
mode), none of which yielded the expected results

■ Spent quite a bit of time to debug the results, using common tools: top,
htop, free, ps, vmstat, and perf

■ Dr.Giorgi mentioned there might be something wrong with the setup(distro
choice), how I measure time or a virtualization effect.

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 17 /??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps

Next Steps

■ Re-run experiments on a server distro or bare metal

■ Examine the Lustre distributed FS (detailed in next slide)

■ Prepare detailed report with tables and charts.

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 18 /??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps

Lustre FS

■ Problem: Distributed filesystems like Lustre handle all metadata
operations using simple FIFO queues, without considering workflow context.

■ AI/ML workloads generate burst-heavy, metadata-intensive patterns (e.g.
millions of small file opens), which are handled identically to generic HPC
workloads.

■ This leads to performance degradation for latency-sensitive AI/ML jobs,
especially under filesystem contention.

■ Task: Examine how to append Lustre with mechanisms to prioritize more
critical I/O requests

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 19 /??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps

References I

■ Dan Tsafrir, Yonatan Etsion, Dror G. Feitelson. System Noise, OS Clock Ticks, and Fine-Grained Parallel
Applications. In: Proceedings of the 21st Annual International Conference on Supercomputing (ICS ’07),
ACM, 2007, pp. 303–312. doi:10.1145/1274971.1275013

■ The Linux Foundation. Linux Kernel Documentation: Real-Time System Design. kernel.org, 2023.
https://www.kernel.org/doc/html/latest/real-time/index.html

■ Vijay Tam, Saeid Abtahi, Ibrahim Kharbutli, Dhabaleswar K. Panda. The Impact of OS Schedulers on
Multithreaded Applications. International Journal of Parallel Programming, vol. 43, no. 1, 2015, pp.
163–188. doi:10.1007/s10766-014-0321-2

■ Thomas Gleixner, Mickaël Desnoyers. Preemption Model in the Linux Kernel. Linux Plumbers
Conference, 2013. https://events.linuxfoundation.org/sites/events/files/slides/
Preemption_Model_in_Linux_Kernel.pdf

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 20 /??

https://doi.org/10.1145/1274971.1275013
https://www.kernel.org/doc/html/latest/real-time/index.html
https://doi.org/10.1007/s10766-014-0321-2
https://events.linuxfoundation.org/sites/events/files/slides/Preemption_Model_in_Linux_Kernel.pdf
https://events.linuxfoundation.org/sites/events/files/slides/Preemption_Model_in_Linux_Kernel.pdf

	Introduction
	Overview & Project Structure
	Tickless Kernel
	Scheduler Benchmark
	Preemption Model
	Summary
	Next Steps

