GEORG-AUGUST-UNIVERSITAT . . ey
< =7\ GOTTINGEN &7 =2 University of Gottingen

HPS

https://github.com/salaheldinsoliman

Salaheldin Sameh
Kernel Compilation and Configuration

Optimizing Linux for HPC Workloads

Seminar: Newest Trends in High-Performance Data

ly 10, 2025 .
120 Analytics


https://github.com/salaheldinsoliman

Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps
(o] (o] 0000 0000 0000 (o] 000

Outline

Introduction

™|

Overview & Project Structure

]

Tickless Kernel

Scheduler Benchmark

o~

Preemption Model

Summary

~|

Next Steps

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 2/??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps
L

Introduction

B HPC applications demand predictable, low-latency execution.

B Linux kernel configurations (tickless kernel, scheduler choice, preemption
model) directly affect performance.

B Goal: Identify optimal settings to minimize OS-induced noise and maximize
throughput.

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 3/?



Introduction Overview & Project Structure
°

less Kernel

Summary

Ne}(} Steps

Overview & Project Structure

A single Github repository, a directory for each experiment:
https://github.com/salaheldinsoliman/kernel-experiments

Tickless Kernel Impact
Scheduler Benchmarking
Preemption Model Effects

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics

4/272


https://github.com/salaheldinsoliman/kernel-experiments

Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps
@000

Tickless Kernel: Overview

B A tick is a periodic timer interrupt generated by the system timer (typically
at 100-1000 Hz, often 250 Hz by default). That means the CPU gets
interrupted 250 times per second per core, just for timekeeping and system
maintenance.

B Tickless Kernel Aims to reduce OS-induced noise and interruptions for
deterministic HPC workloads.

B Applies CPU isolation and full tickless mode (nohz_full) to free cores from
scheduler ticks.

B Detailed setup: https://github.com/salaheldinsoliman/
kernel-experiments/tree/main/tickless-kernel

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 5/?7?


https://github.com/salaheldinsoliman/kernel-experiments/tree/main/tickless-kernel
https://github.com/salaheldinsoliman/kernel-experiments/tree/main/tickless-kernel

Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark

Preemption Model Summary Next Steps
[o] lele}

Tickless Kernel: Literature Expectations

B Tickless mode reduces timer interrupt overhead, lowering latency and jitter
(Tsafrir et al., Linux RT documentation).

B Expected to improve mean execution time and stabilize runtimes for
compute-bound tasks.

B Prior studies report up to 10-15% runtime improvement in real-time and
HPC scenarios.

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 6/2?



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps
ooeo

Tickless Kernel: Experiment Results

Setup:
B VirtualBox VM with 5 vCPUs running Linux Mint.
B OpenMP matrix multiplication (SIZE=1024) pinned to isolated cores 1 and 2.
B Kernel boot flags: isolcpus=1,2 and nohz_full=1,2; compared against
default.
Results (20 runs):
B No tickless: Mean = 0.8033s, Std Dev = 0.0235s
B Tickless: Mean = 1.8266s, Std Dev = 0.0673s

Interpretation: Results contradict literature; slowdown and jitter suggest
misconfiguration, virtualization effects or wrong setup.

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 7/?



Introduction Overview & Project Structure Tickless Kernel

Scheduler Benchmark Preemption Model Summary
[eJele] ]

Next Steps

Tickless Kernel: Discussion & Debugging

B Wrong Setup?: Linux Mint(Desktop) comes with many background
services—GUI compositors, power-management daemons, indexing
services—that can sneak onto “isolated” cores and generate noise.

B Missing Config?: Should | set IRQ Affinity to non-isolated cores?
B Virtualization Overhead?: Does a run on bare metal differ from a VM?

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics

8/2?



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps
@000

Scheduler Benchmark: Overview

B Evaluate SCHED_OTHER, SCHED_FIFO, SCHED_RR policies.
B Workloads: compute-bound, memory-bound, I/0O-bound, mixed.
B Goal: Identify policy with lowest runtime per workload.

B Detailed Setup: https://github.com/salaheldinsoliman/
kernel-experiments/tree/main/different-schedulers

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 9/2?


https://github.com/salaheldinsoliman/kernel-experiments/tree/main/different-schedulers
https://github.com/salaheldinsoliman/kernel-experiments/tree/main/different-schedulers

Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps

Introduction
[o] lele]

Scheduler Benchmark: Literature Expectations

B Real-time policies (FIFO, RR) expected to boost compute-bound
determinism.

B CFS (OTHER) balances fairness; may unpredictably preempt HPC tasks.

B Prior work reports 5-10% speedup for compute-bound under FIFO vs CFS.

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 10/??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark

Sche Preemption Model Summary Next Steps
Scheduler Benchmark: Experiment Results

Compute-bound 1/0-bound
B OTHER: 6.73 s B RR:1.38s
B FIFO: 7.03s M FIFO:1.45s
B RR:7.05s B OTHER: 1.51s

Memory-bound Mixed
M FIFO: 0.55s M All: 0.16 s
B RR:0.55s

B OTHER: 0.56 s
Observation: 1/0 bound and memory bound benefited from RR/FIFO, compute
bound did not. Compute bound did not benefit from FIFO contrary to literature

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 11/??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps
[eJele] )

Scheduler Benchmark: Discussion

B Results may differ on a dedicated system: Desktop OS processes
interfered, favoring CFS.

B Policy selection is Workload-dependent:
Compute-bound — real-time policies should excel, if the environment is
noise-free.
Memory-bound — FIFO/RR give a slight edge by removing timeslice
overhead.
I/0-bound — RR often best, due to predictable timeslices allowing rapid
wake-up.

B Next steps: Re-run on a dedicated system to reduce noise, compare the
results

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 12/??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps
@000

Preemption Model: Overview

B Preemption is the operating system’s ability to interrupt a running kernel
task—pausing its execution at safe points—so that a more critical or
higher-priority task can take over the CPU.

B Compare kernel preemption models: PREEMPT_NONE, PREEMPT_VOLUNTARY,
PREEMPT.

B Assess runtime performance of OpenMP workload of different types
(interrupted and stable).

B Goal: Identify configuration with lowest latency and highest stability for
HPC.

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 13/??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps
[o] lele]

Preemption Model: Literature Expectations

B PREEMPT_NONE minimizes context-switch overhead, ideal for compute-bound
tasks.

B PREEMPT_VOLUNTARY adds preemption points; may reduce latency but
introduce spikes.

B PREEMPT enables full kernel preemption, improving responsiveness at some
overhead.

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 14/2?



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps
[eJe] le]

Preemption Model: Experiment Results

PREEMPT_VOLUNTARY
B Stable workload: 15.015882 s
B Interrupt workload: 5.090901 s

PREEMPT_NONE
B Stable workload: 15.791380 s
B Interrupt workload: 5.396742 s

PREEMPT
Bl Stable workload: 15.298632 s

B Interrupt workload: 5.301512 s

Observation: PREEMPT_VOLUNTARY yielded the fastest stable workload time, while PREEMPT_NONE had the
slowest. Under interrupt load, PREEMPT_VOLUNTARY again performed best, followed by PREEMPT and then
PREEMPT_NONE. PREEMPT_NONE offered neither performance nor responsiveness advantages in this
environment.

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 15/??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps
[eJele] )

Preemption Model: Discussion

B Workload type determines ideal model The performance impact of
preemption depends entirely on whether the workload is compute-bound,
I/0-bound, or latency-sensitive. There’s no “best” model universally.

B Real-world benchmarks matter more than theory: Since performance
depends on load type and its environment, benchmarks are critical to
determine the best preemption model.

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 16/??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps
L ]

Summary

B Performed three experiments (Tickless kernel, Scheduler choice, Preemption
mode), none of which yielded the expected results

B Spent quite a bit of time to debug the results, using common tools: top,
htop, free, ps, vmstat, and perf

B Dr.Giorgi mentioned there might be something wrong with the setup(distro
choice), how | measure time or a virtualization effect.

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 17/??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary

Next Steps

@00

Next Steps

B Re-run experiments on a server distro or bare metal
B Examine the Lustre distributed FS (detailed in next slide)

B Prepare detailed report with tables and charts.

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics

18/??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps
oeo

Lustre FS

B Problem: Distributed filesystems like Lustre handle all metadata
operations using simple FIFO queues, without considering workflow context.

B AI/ML workloads generate burst-heavy, metadata-intensive patterns (e.qg.
millions of small file opens), which are handled identically to generic HPC
workloads.

B This leads to performance degradation for latency-sensitive Al/ML jobs,
especially under filesystem contention.

B Task: Examine how to append Lustre with mechanisms to prioritize more
critical I/O requests

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 19/??



Introduction Overview & Project Structure Tickless Kernel Scheduler Benchmark Preemption Model Summary Next Steps
ooe

References |

B Dan Tsafrir, Yonatan Etsion, Dror G. Feitelson. System Noise, OS Clock Ticks, and Fine-Grained Parallel
Applications. In: Proceedings of the 21st Annual International Conference on Supercomputing (ICS '07),
ACM, 2007, pp. 303-312. doi:10.1145/1274971.1275013

B The Linux Foundation. Linux Kernel Documentation: Real-Time System Design. kernel.org, 2023.
https://www.kernel.org/doc/html/latest/real-time/index.html

B Vijay Tam, Saeid Abtahi, Ibrahim Kharbutli, Dhabaleswar K. Panda. The Impact of OS Schedulers on
Multithreaded Applications. International Journal of Parallel Programming, vol. 43, no. 1, 2015, pp.
163-188. doi:10.1007/s10766-014-0321-2

B Thomas Gleixner, Mickaél Desnoyers. Preemption Model in the Linux Kernel. Linux Plumbers
Conference, 2013. https://events.linuxfoundation.org/sites/events/files/slides/
Preemption_Model_in_Linux_Kernel.pdf

Salaheldin Sameh Seminar: Newest Trends in High-Performance Data Analytics 20/7?


https://doi.org/10.1145/1274971.1275013
https://www.kernel.org/doc/html/latest/real-time/index.html
https://doi.org/10.1007/s10766-014-0321-2
https://events.linuxfoundation.org/sites/events/files/slides/Preemption_Model_in_Linux_Kernel.pdf
https://events.linuxfoundation.org/sites/events/files/slides/Preemption_Model_in_Linux_Kernel.pdf

	Introduction
	Overview & Project Structure
	Tickless Kernel
	Scheduler Benchmark
	Preemption Model
	Summary
	Next Steps

