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Abstract
We study three kernel levers important to HPC determinism and throughput: (1) tick-
less kernel with CPU isolation (nohz_full, isolcpus), (2) scheduler policy under Linux
(CFS vs. RT: SCHED_FIFO/SCHED_RR), and (3) kernel preemption models (NONE, VOL-
UNTARY, FULL). A first pass on a Linux Mint VM produced results inconsistent with
theory (flattened differences, higher std dev). Repeating on comparable bare metal yielded
the expected patterns. We report both sets, explain the divergence, and give a repro-
ducible checklist for real hardware.
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In this work I have used ChatGPT or another AI as follows:
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Kernel Tuning for HPC: Tickless Isolation, Scheduler Policies, and Preemption Models

VM Anomalies vs. Bare-Metal Confirmation

1 Introduction
Motivation. HPC jobs are sensitive to OS noise and tail latency; small percentage gains
compound into large time and cost savings at scale. Modern Linux offers practical levers
that directly affect interference, determinism, and responsiveness: full dynticks with CPU
isolation, scheduler class selection, and preemption depth. We provide concise theory and
guidance for each lever, then validate on a VM and on real bare-metal hardware with
identical code paths and pinning.

Contributions.

• Concise explanation of three kernel levers (tickless+isolation, scheduler policy, pre-
emption) and when to use them in HPC.

• Side-by-side VM vs. bare-metal measurements using the same harness, pinning, and
workloads.

• Practical configuration checklist and diagnostics for verification (pinning, IRQ affini-
ties, tracing).

• Reproducible scripts and code; figures generated from recorded runs (see Listings 1,
2 and 7).

• Summary guidance by workload class and risks of misuse (e.g., broad RT).

Paper outline. We introduce tickless+isolation, scheduler policies, and preemption,
then describe the setup, present VM vs. bare-metal results with a summary table, discuss
causes, outline threats to validity, relate to prior guidance, and conclude.

2 Tickless Kernel and CPU Isolation
2.1 Mechanism

Full dynticks (CONFIG_NO_HZ_FULL) suppress the periodic scheduler tick on CPUs that
run exactly one runnable task by switching to one-shot timers and context tracking;
kernel bookkeeping runs on demand rather than at HZ -periodic interrupts [1]. Pairing
nohz_full=CPU-LIST with isolcpus= keeps fair-class tasks off compute cores; irqaffinity=
steers device interrupts away; rcu_nocbs= offloads RCU callbacks to housekeeping CPUs
[2]. Housekeeping cores service timers, kthreads, RCU, and interrupts; compute cores
stay as quiescent as possible [3, 4].

As used in our experiments, the OpenMP matrix harness pins two threads to specific
CPUs; see Listing 1.

2.2 Expected impact on HPC

• Determinism: fewer involuntary wakeups reduce OS noise; p95/p99/p99.9 tails
tighten (especially in tight OpenMP regions and collectives).

Section 2 Salaheldin Soliman 1
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• Throughput: mean runtime for long compute-bound phases typically remains
near-neutral when cores are fully saturated; gains are mainly in tail reduction.

• Best use: noisy environments, IRQ-heavy nodes, and phases with latency-critical
control/progress threads.

2.3 Configuration guidance

• Reserve ≥1 housekeeping core per NUMA node; exclude them from application
pinning.

• Pin app threads to isolated CPUs; pin interrupts and daemon work to housekeeping
CPUs (irqaffinity, tuned or manual /proc/irq/*/smp_affinity).

• Make SMT/NUMA placement explicit; bind memory local to the thread’s NUMA
node.

• Check nohz_full, isolcpus, rcu_nocbs in /proc/cmdline; disable stray services
on isolated cores.

2.4 Pitfalls & diagnostics

• Pitfalls: missing housekeeping cores (kernel starvation), stray interrupts/daemons
on isolated CPUs, and hypervisor timer/device emulation attenuating effects [5].

• Diagnostics: cyclictest for latency variation; perf sched and ftrace/trace-cmd
to confirm fewer wakeups on isolated CPUs; always report percentiles alongside
means.

3 Scheduler Policies: CFS and Real-Time
(FIFO, RR)

3.1 Mechanism

CFS (SCHED_OTHER) balances fairness and throughput using virtual runtime and red–black
trees; tasks migrate to maintain balance and cache locality [6]. RT classes provide fixed
priority; FIFO runs until block/yield; RR adds a budgeted time slice; both preempt lower
priorities [7, 8, 9]. Priority inheritance via rt-mutexes limits inversion on contended locks.

Representative kernels for compute, memory, I/O, and mixed workloads appear in
Listings 3, 4, 5, and 6. We switch policies per run using chrt as shown in Listing 2.

3.2 Expected impact on HPC

• Compute-bound: with per-core pinning, CFS usually maximizes aggregate through-
put.

• Latency-sensitive roles: a handful of RT threads (often RR) can reduce tails for
progress/control/I/O threads under interference.

Section 3 Salaheldin Soliman 2
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• Risk trade-off: broad RT usage can starve system daemons; benefits concentrate
when few critical threads are isolated and prioritized.

3.3 Configuration guidance

• Default to CFS for bulk compute threads pinned per core.

• Place a small number of RT threads on housekeeping CPUs; use conservative prior-
ities.

• Enforce cgroup caps (e.g., cpu.rt_runtime_us) where appropriate; log priorities
centrally.

• Validate pinning (taskset, cset shield); keep RT threads off isolated compute
cores unless purely application-internal.

3.4 Pitfalls & diagnostics

• Pitfalls: overuse of RT causes starvation; mispinned RT threads defeat isolation;
kernel/FS daemons can become bottlenecks.

• Diagnostics: /proc/schedstat, perf sched timehist, queue-depth and tail-
latency metrics; compare p95/p99, not only averages.

4 Preemption Models (NONE, VOLUN-
TARY, FULL)

4.1 Mechanism

Preemption depth trades throughput for responsiveness [10]. NONE minimizes involuntary
preemption; VOLUNTARY adds cooperative preemption (cond_resched()) in long kernel
paths; FULL enables preemption across most kernel code paths, shortening worst-case
scheduling latency. Recent kernels explore dynamic switching (e.g., PREEMPT_AUTO) [11].

In the disturbance regime, a background thread injects periodic CPU spikes; see List-
ing 7.

4.2 Expected impact on HPC

• Stable compute: NONE and VOLUNTARY often tie on mean runtime for quiet,
pinned workloads; userland dominates time.

• Under disturbance: FULL improves responsiveness and tail latency for service
threads (progress engines, I/O completion) with small CPU overhead.

• Trade-off: FULL may slightly increase mean time in noise-free scenarios; measure
tails to justify it.

Section 4 Salaheldin Soliman 3
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4.3 Configuration guidance

• Prefer VOLUNTARY for balanced throughput/responsiveness on quiet nodes.

• Use FULL when external interference is likely or responsiveness affects makespan.

• Keep pinning/IRQ affinities/housekeeping constant across models to isolate the ef-
fect.

4.4 Pitfalls & diagnostics

• Pitfalls: changing preemption while altering pinning/IRQs confounds results; com-
paring means alone hides tail wins.

• Diagnostics: ftrace latency tracers (irqsoff, preemptoff), perf sched; compare
latency CDFs and p99 shifts.

5 Setup
Code and artifacts. Experiments: (1) tickless+isolation with OpenMP matrix; (2)
scheduler policy benchmarks; (3) preemption models under load. All code, scripts, and
CSVs live at https://github.com/salaheldinsoliman/kernel-experiments.

VM. Linux Mint/Ubuntu in VirtualBox: 6 vCPUs, 14GB RAM, 100GB VDI.

Bare metal. Same OpenMP pinning and scripts; 6-core/12-thread CPU, 16GB RAM.

Reporting convention. Unless noted otherwise, each configuration is run with N=5
repetitions. We report mean runtime, standard deviation (std dev), and the p95 percentile
across runs. We use the term “std dev” consistently (earlier drafts used “jitter” to refer
to the same statistic). VM preemption results are single-run exploratory (N=1) and are
called out explicitly.

5.1 Reproducibility

The repository contains scripts for each experiment; below are minimal commands.

• Tickless + isolation (OpenMP matrix): ensure kernel parameters are active on
boot (verify with cat /proc/cmdline showing nohz_full, isolcpus, rcu_nocbs,
irqaffinity). Then:

– cd kernel-experiments/tickless-kernel

– gcc -O3 -fopenmp omp_matrix.c -o omp_matrix

– ./run_experiment.sh tickless_out.txt (pins 2 threads to CPUs 1,2;
prints mean, std dev, and p95)

• Scheduler policies (compute, memory, I/O, mixed):

Section 5 Salaheldin Soliman 4
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– cd kernel-experiments/different-schedulers

– chmod +x run_experiment.sh && ./run_experiment.sh

– Note: RT runs use chrt -f/-r 99 and may require sudo or appropriate ca-
pabilities.

• Preemption modes (stable vs. disturbance):

– cd kernel-experiments/preemption-modes

– chmod +x run_experiment.sh && ./run_experiment.sh

– Script auto-detects preemption from kernel config and writes results_.txt;
change kernel preemption model between runs to compare.

6 Results: VM vs. Bare Metal
6.1 Experiment 1: Tickless Kernel + CPU Isolation

Figures 1 and 2 report mean runtime and std dev for the OpenMP matrix benchmark
with and without tickless+isolation on the VM and on bare metal, respectively. We cite
them explicitly here so that the figures appear directly below this discussion.

Figure 1: Tickless+Isolation on VM: mean time and std dev (OpenMP matrix). In the
VM, enabling tickless+isolation increased mean and std dev. N=5 runs per configuration.

Figure 2: Tickless+Isolation on bare metal: small mean change, lower std dev when OS
noise is moved off compute cores. N=5 runs per configuration.

Section 6 Salaheldin Soliman 5
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Observation (VM). As shown in Figure 1, enabling tickless+isolation raised mean run-
time from 0.8033 s to 1.8266 s (≈ ×2.27) and std dev from 0.0235 s to 0.0673 s (≈ ×2.86),
contrary to theory.
Observation (Bare metal). As shown in Figure 2, mean time changed modestly (0.780 s
→ 0.800 s, +2.6%), while std dev dropped from 0.020 s to 0.015 s (−25%), matching
expectations when OS noise is moved off compute cores.

6.2 Experiment 2: Scheduler Policies (CFS vs. RT)

Figure 3 summarizes the VM results across compute, memory, I/O and mixed workloads;
Figure 4 shows the same experiments on bare metal.

Figure 3: Schedulers on VM (N=5 per configuration): compute favors CFS; memory and
I/O show small RT edges; mixed is flat. Differences are small and noisy on VM.

VM. In Figure 3, compute favors CFS (6.73 s vs. 7.03–7.05 s for RT); memory shows a
negligible RT edge (0.55–0.56 s); I/O favors RT—RR best at 1.38 s (vs. 1.45–1.51 s); mixed
is effectively flat (0.160–0.162 s).
Bare metal. In Figure 4, compute: CFS best (6.50 s vs. 6.75–6.78 s). Memory: small
RT advantage (0.53 s vs. 0.55 s). I/O: RR improves ≈ 11.7% over CFS (1.28 s vs. 1.45 s).
Mixed: near-equal (0.158–0.159 s).

6.3 Experiment 3: Preemption Models

Figure 5 shows VM results for stable and interrupt-heavy regimes; Figure 6 shows the
corresponding bare-metal results.
VM. As seen in Figure 5, VOLUNTARY was fastest in both regimes: stable 15.016 s
(−4.9% vs. NONE), interrupt 5.091 s (−5.7% vs. NONE).

Section 6 Salaheldin Soliman 6
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Figure 4: Schedulers on bare metal (N=5 per configuration): clearer separation—CFS
best for compute; RT (especially RR) edges I/O; memory modest RT edge; mixed near-
equal.

Figure 5: Preemption on VM: single-run (N=1) exploratory result; small, non-robust
differences; VOLUNTARY slightly ahead.

Bare metal. As seen in Figure 6, stable: VOLUNTARY leads at 14.95 s (−1.6% vs.
NONE). With injected interrupts: FULL leads at 4.80 s (−7.7% vs. NONE; −3.0% vs.
VOLUNTARY).

Section 7 Salaheldin Soliman 7
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Figure 6: Preemption on bare metal (N=5 per configuration): stable workload favors
VOLUNTARY; with injected disturbance, FULL improves responsiveness.

Table 1: Compact summary of key outcomes (VM vs. bare metal).

Aspect VM outcome Bare-metal outcome
Tickless + isolation Mean ↑, std dev ↑ Mean ≈, std dev ↓
Schedulers: compute CFS best CFS best
Schedulers: memory Tiny RT edge Small RT edge
Schedulers: I/O RR best RR ≈ +11.7% vs CFS
Schedulers: mixed Near-equal Near-equal
Preemption: stable VOLUNTARY best (single-

run)
VOLUNTARY best

Preemption: with dis-
turbance

VOLUNTARY best (single-
run)

FULL best

6.4 Summary of findings

7 Discussion
Why the VM diverged. Hypervisor scheduling, timer emulation, and host I/O flatten
or invert effects [5, 12].

Why bare metal aligns. Direct control exposes the intended trade-offs: isolation
lowers IRQ/scheduler noise; CFS vs. RT splits by workload; deeper preemption improves
responsiveness under disturbance [3, 4].

8 Threats to Validity
• Virtualization artifacts: hypervisor scheduling, timer and I/O device emulation

can flatten effects; host contention varies by time of day.

• Frequency/thermal drift: CPU governor, Turbo/boost, or thermal throttling
alter timings; fix governor and monitor temperatures.

Section 8 Salaheldin Soliman 8
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• I/O caching: page cache and write-back buffering affect I/O runs; specify cache
state or use direct I/O when relevant.

• Pinning/IRQ leakage: misconfigured housekeeping cores or stray daemons/IRQs
on isolated CPUs confound tickless+isolation results.

• Sample size/variance: single-run results (noted) are less robust; report repeti-
tions, confidence intervals, and percentiles.

• Privileges: RT experiments require capabilities; ensure consistent environment
across modes to avoid bias.

9 Related Work
Vendor guidance summarizes best practices for isolation, scheduling, and preemption on
modern CPUs [3, 4] and community reports analyze preemption trade-offs [11]. Broader
HPC literature on OS noise and scheduling interference motivates moving kernel activity
off compute cores and prioritizing latency-critical threads; our results align with that
body of work. A more extensive review (e.g., OS noise characterization and mitigation
techniques) can be added if required by page limits.

10 Conclusion
This work examined three kernel levers—tickless execution with CPU isolation, scheduler
policy, and preemption depth—across a VM and a real bare-metal system running the
same code paths. On the VM, kernel-level effects were largely flattened, producing results
that conflicted with intuition. On bare metal, the expected behaviors re-emerged: remov-
ing periodic OS activity from compute cores tightened tail latencies, CFS sustained the
best throughput for pinned compute threads, and deeper preemption primarily benefited
responsiveness under interference. Taken together, the experiments confirm that kernel
configuration materially influences determinism and performance, but the magnitude and
direction of impact depend on the workload class.

Implication by workload type.

• Compute-bound kernels: prefer pinned threads under CFS; nohz_full+isolation
mainly reduces p95/p99 without changing means materially; PREEMPT_VOLUNTARY
is a solid default.

• Latency-sensitive/service threads (progress, control, I/O completion):
keep compute threads on CFS, but assign a small number of carefully prioritized RT
threads on housekeeping cores; consider PREEMPT_FULL when external interference
is present; steer IRQs away from compute cores.

• Mixed phases: expect modest, workload-specific trade-offs; begin with the conser-
vative profile (CFS + VOLUNTARY + isolation) and adjust only where measure-
ment shows tail outliers dominate makespan.

Section 10 Salaheldin Soliman 9
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Methodological lesson. Theory and vendor guidance are necessary to form hypothe-
ses, but they are not sufficient to select a configuration. The “best” kernel settings are
workload- and platform-specific. Practitioners should rely on systematic benchmarking—
multiple repetitions, stable pinning and IRQ affinities, and reporting of both means and
tail percentiles (p95/p99)—augmented by scheduler/IRQ tracing to verify that the ker-
nel behaves as intended. Only with that evidence can one justify deviations from the
conservative baseline for a given HPC application and machine.

Section 10 Salaheldin Soliman 10
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A Code samples

Listing 1 OpenMP matrix harness: pinned run on isolated CPUs; N=5; prints mean,
std dev, and p95.

1 # tickless-kernel/run_experiment.sh (excerpt)
2 RUNS=5
3 PROGRAM="taskset -c 1,2 ./omp_matrix 2" # pin 2 OMP threads to CPUs 1,2
4

5 for i in $(seq 1 $RUNS); do
6 $PROGRAM | grep "Elapsed time" | awk '{print $4}'
7 done | sort -n | awk '{a[NR]=$1; s+=$1; ss+=$1*$1} \
8 END {n=NR; m=s/n; sd=sqrt(ss/n-m*m); \
9 idx=int(0.95*n + 0.5); if (idx<1) idx=1; if (idx>n) idx=n; \

10 p95=a[idx]; \
11 printf("Mean: %.4f s\nStd dev: %.4f s\np95: %.4f s\n", m, sd, p95)}'

Listing 2 Switching scheduler policy per run with chrt.

1 # different-schedulers/run_experiment.sh (excerpt)
2 case $sched in
3 SCHED_OTHER)
4 /usr/bin/time -f "%e" ./$prog > /dev/null ;;
5 SCHED_FIFO)
6 sudo /usr/bin/time -f "%e" chrt -f 99 ./$prog > /dev/null ;;
7 SCHED_RR)
8 sudo /usr/bin/time -f "%e" chrt -r 99 ./$prog > /dev/null ;;
9 esac

Listing 3 Compute-bound kernel: dense arithmetic loops.

1 // different-schedulers/compute_bound.c (core loop)
2 for (int i = 0; i < N; ++i)
3 for (int j = 0; j < N; ++j)
4 sum += i * 0.000001 + j * 0.000002; // compute-bound

Listing 4 Memory-bound kernel: sequential cache-line walk.

1 // different-schedulers/memory_bound.c (core walk)
2 for (long i = 0; i < SIZE; i += 64)
3 arr[i] += 1; // touch each cache line → memory-bound
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Listing 5 I/O-bound kernel: buffered sequential file writes.

1 // different-schedulers/io_bound.c (core loop)
2 for (long i = 0; i < FILE_SIZE; i += 4096)
3 fwrite(buffer, 1, 4096, fp); // I/O-bound sequential write

Listing 6 Mixed kernel: compute with periodic checkpoint I/O.

1 // different-schedulers/mixed.c (checkpointing snippet)
2 for (int i = 0; i < N; ++i) {
3 for (int j = 0; j < N; ++j)
4 sum += i * 0.000001 + j * 0.000002;
5 if (i % 1000 == 0) fwrite(buffer, 1, 4096, fp); // periodic I/O
6 }

Listing 7 Injected disturbance for preemption tests: periodic CPU spike thread.

1 // preemption-modes/compute_interrupt.c (interrupt generator)
2 void *interrupt_simulator(void *arg) {
3 while (1) {
4 usleep(300000); // every 0.3s
5 volatile double dummy = 0.0;
6 for (int i = 0; i < 1e7; i++)
7 dummy += i; // CPU spike
8 }
9 }

10 // ... in main(): pthread_create(&tid, NULL, interrupt_simulator, NULL);
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