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Abstract
The rapid proliferation of Large Language Models (LLMs) has unlocked transformative op-
portunities in specialized domains such as finance, where expert-level agents are required
for complex analytical tasks. However, full fine-tuning of massive models like GPT-3 175B
is prohibitively expensive, while deploying numerous independently fine-tuned instances
introduces severe system-level bottlenecks. Traditional serving architectures, designed
for single, monolithic models, struggle with inefficient memory allocation, inference la-
tency, and the “adapter proliferation” problem arising from parameter-efficient tuning
techniques. This report investigates Low-Rank Adaptation (LoRA), a parameter-efficient
fine-tuning (PEFT) strategy that reduces trainable parameters via rank decomposition
matrices, in conjunction with advanced multi-tenant serving frameworks such as vLLM,
Punica, S-LoRA, and dLoRA. These systems employ unified paging, custom CUDA ker-
nels for heterogeneous batching, and workload-aware scheduling to enable scalable, high-
throughput deployment of thousands of concurrent LoRA adapters with up to 4× higher
throughput than baseline systems. Through analysis and financial domain case studies
such as FinGPT and FinLoRA, we demonstrate that the synergistic integration of LoRA
with specialized serving architectures provides a cost-effective and scalable paradigm for
deploying robust financial intelligence agents, ultimately democratizing access to domain-
specific AI capabilities.
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Declaration on the use of ChatGPT and comparable tools
in the context of examinations

In this work I have used ChatGPT or another AI as follows:

□ Not at all

✓□ During brainstorming

□ When creating the outline

✓□ To write individual passages, altogether to the extent of 30% of the entire text

□ For the development of software source texts

□ For optimizing or restructuring software source texts

✓□ For proofreading or optimizing

□ Further, namely: -

I hereby declare that I have stated all uses completely.
Missing or incorrect information will be considered as an attempt to cheat.
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LoRA and Efficient LLM Serving for Financial Expert Agents

1 Introduction
1.1 The Rise of Domain-Specific LLMs in Finance

A significant current area of non-trivial problem-solving involves adapting Large Language
Models (LLMs) to specialized domains, such as finance, where acquiring the necessary
specialized knowledge, covering niche terminologies and complex multi-step processes, is
often time-intensive [Kal+24]. The dominant approach to achieving task-specific perfor-
mance is the "pretrain-then-finetune" paradigm, where a general model is refined using
domain-specific data [Hu+21; She+24]. Leveraging LLMs to emulate financial domain
experts promises to significantly offload routine responsibilities from human experts, al-
lowing them to focus on more strategic tasks [Kal+24].

1.2 Why Fine-Tuned LLMs Don’t Scale

As LLMs continue to grow exponentially in scale, with parameter counts reaching 175 bil-
lion and beyond, the conventional fine-tuning approach faces a critical scalability challenge
[Hu+21]. The major downside of full fine-tuning is that the newly trained model contains
as many parameters as the original, making storing and deploying many independent
instances of specialized models (like 175B Generative Pre-trained Transformer (GPT)-3
instances) a crucial deployment obstacle [Hu+21]. For LLM serving, the autoregres-
sive generation process results in the KV cache consuming a large portion of Graphics
Processing Unit (GPU) memory, and since its size dynamically grows and shrinks, ineffi-
cient contiguous memory management leads to severe memory fragmentation, limiting the
maximum achievable batch size and overall throughput [Kwo+23]. Furthermore, when
developing true expert agents, researchers must address inherent LLM limitations such
as hallucination, lack of long-term memory, and inconsistency when following complex,
multi-step instructions [Kal+24].

1.3 Memory Fragmentation and the Cost of Efficient Fine-Tuning

Historically, parameter-efficient methods sought to mitigate the high cost of fine-tuning by
adapting only a subset of parameters or learning external modules, such as adapter layers
or prefix tuning [Hu+21]. However, these techniques often introduced significant inference
latency by extending model depth or reduced the usable sequence length, posing a trade-
off between efficiency and model quality, often failing to match the performance baseline of
full fine-tuning [Hu+21]. Similarly, existing LLM serving systems, like FasterTransformer
and Orca, struggle with inefficient KV cache management due to fragmentation (internal
and external) because they require tensors to be stored in contiguous memory space
[Kwo+23]. When serving multiple models fine-tuned from the same base, utilizing existing
systems that treat each model independently leads to redundant weight copies, a high
memory footprint, and subsequent low GPU utilization [Wu+].

1.4 Scalable Serving Architectures for LoRA-Enhanced LLMs

The core solution relies on LoRA, which cApplication Programming Interface (API)talizes
on the hypothesis that weight changes during model adaptation reside on a low intrin-
sic dimension [Hu+21]. LoRA addresses the training cost by freezing the large pre-
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trained weight matrix (W0) and optimizing only small rank decomposition matrices (A ∈
Rh×r, B ∈ Rr×d) such that the update ∆W = BA is applied in parallel to W0, where the
rank r is significantly smaller than the dimensions h and d [Hu+21]. LoRA reduces train-
able parameters by up to 10, 000× and GPU memory usage by 3× for GPT-3 175B, while
eliminating inference latency by merging ∆W with W0 at deployment [Hu+21]. Building
upon this, high-throughput serving architectures, such as vLLM (with PagedAttention),
Punica, Switchable Low-Rank Adaptation (S-LoRA), and Dynamic Low-Rank Adapta-
tion (dLoRA), have been developed. These systems enable scalable serving by efficiently
managing memory via techniques like Unified Paging for concurrent KV cache and adapter
weights, and employ advanced custom Compute Unified Device Architecture (CUDA)
kernels for heterogeneous batching of requests destined for different adapters [She+24].
For specific financial expert agents, a comprehensive framework enhances the underlying
LoRA-LLM with a layered architecture, incorporating data extraction, Python scripting
for complex analysis, and a vector database memory layer for storing expert processes
and keyword knowledge [Kal+24].

1.5 Empirical Validation of LoRA in Financial LLMs

The effectiveness of LoRA has been validated across various models (RoBERTa, De-
BERTa, GPT-2, GPT-3), frequently matching or exceeding the model quality of full fine-
tuning [Hu+21]. When applied to the financial domain (FinLoRA), parameter-efficient
fine-tuning achieved substantial performance gains of 36% on average over base models
when tackling complex eXtensible Business Reporting Language (XBRL) analysis tasks
[Wan+25]. Specialized serving systems demonstrate superior efficiency: S-LoRA is ca-
pable of serving thousands of LoRA adapters concurrently, achieving throughput up to
4× higher than naive vLLM implementations and 30× higher than HuggingFace PEFT
[She+24]. Furthermore, dLoRA demonstrates optimal performance under skewed work-
loads by dynamically switching between merged and unmerged inference, achieving up to
1.8× lower average latency compared to S-LoRA. The iterative agent framework (Kaler et
al., 2024) significantly improved accuracy on complex financial analysis questions, rising
from ∼ 66.79% (coding layer with retries) to ∼ 82.86% (with the addition of the memory
layer) in a zero-shot setting [Kal+24].

1.6 Contributions

The work described draws upon and synthesizes several key contributions from the liter-
ature:

• LoRA: Proposing and demonstrating the efficacy of freezing pre-trained weights and
injecting low-rank decomposition matrices for parameter-efficient adaptation [Hu+21].

• PagedAttention and vLLM: Introducing block-based KV cache memory manage-
ment, inspired by operating system paging, to drastically reduce memory fragmentation
in LLM serving [Kwo+23].

• Punica’s SGMV Kernel: Designing the SGMV CUDA kernel to enable efficient
batching of requests destined for multiple, different LoRA models simultaneously on a
shared GPU [Che+23].

• S-LoRA’s Unified Paging: Developing a scalable serving system featuring a unified
memory pool to jointly manage dynamic adapter weights and KV cache tensors in a paged
fashion, enabling the concurrent serving of thousands of adapters [She+24].
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• dLoRA’s Dynamic Orchestration: Proposing a system that dynamically switches be-
tween merged and unmerged LoRA inference modes and uses adapter-request co-migration
to efficiently handle diverse and skewed workloads across a cluster [Wu+].

• Financial Expert Agent Framework: Demonstrating an iterative, zero-shot frame-
work that layers domain-specific capabilities (data extraction, Python scripting, and mem-
ory) onto LLMs to achieve high performance in complex financial analysis [Kal+24].

1.7 Report Outline

The remainder of this report details the foundational technology of LoRA, reviews the
challenges and innovations in high-performance serving systems, and illustrates their crit-
ical application in building specialized financial domain expert agents. Section 2 provides
background on the Transformer architecture, the KV cache, and the mechanism and ben-
efits of LoRA. Section 3 analyzes the state-of-the-art serving systems (vLLM, Punica,
S-LoRA, and dLoRA) focusing on their memory management and heterogeneous batch-
ing strategies. Section 4 explores specific applications in finance, including iterative agent
architectures and key fine-tuning projects (FinLoRA, FinGPT). Section 5 summarizes
relevant evaluation metrics. Finally, Section 6 provides a comprehensive conclusion.

2 Background Theory
The modern foundation of Large Language Models rests on the Transformer architecture,
a sequence-to-sequence model introduced by Vaswani et al. in 2017 that relies heavily
on self-attention mechanisms [Hu+21]. The Transformer typically consists of an encoder
and a decoder. The encoder processes input data (e.g., a query) into context-rich vectors,
essentially deeply understanding the input. The decoder then uses this context along with
the partially generated output to predict the next token, utilizing masked self-attention
to prevent information leakage from future tokens.

2.1 The Critical Role of the KV Cache

A core component within the Transformer’s self-attention module is the generation of
query (Wq), key (Wk), and value (Wv) vectors through linear transformations applied to
the input hidden states. During the generative inference process, LLMs exhibit an autore-
gressive pattern, generating one token at a time [Wu+; Kwo+23]. Since the generation of
a new token requires attention to all preceding tokens in the sequence (both the prompt
and previously generated output), the key and value vectors of these tokens are cached in
GPU memory to avoid redundant re-computation, a mechanism known as the KV cache
[Wu+].

The KV cache poses significant challenges for high-throughput serving. The memory
consumption of the KV cache is proportional to the number of tokens and grows dynami-
cally throughout the request lifetime. For instance, the KV cache for a single token in the
OPT 13B model can require 800 KB of space, making KV cache management critical for
determining the maximum achievable batch size. This dynamic nature, combined with the
often unpredictable output lengths of user requests, is a primary cause of memory-bound
performance and fragmentation in traditional LLM serving systems [Kwo+23].
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2.2 Mechanism and Benefits of LoRA

LoRA emerged as a technique to mitigate the escalating cost of fine-tuning large pre-
trained models. The key insight behind LoRA is the hypothesis that the learned over-
parametrized models and the change in weights during adaptation reside on a low intrinsic
dimension or rank [Hu+21].

2.2.1 LoRA Technical Implementation

For a pre-trained weight matrix W0 ∈ Rd×k, LoRA introduces an update ∆W constrained
by a low-rank decomposition ∆W = BA, where B ∈ Rd×r, A ∈ Rr×k, and r ≪ min(d, k)
[Hu+21; Wu+]. During the fine-tuning process:

1. The original weights W0 are frozen and do not receive gradient updates [Hu+21;
Wu+].

2. Only the rank decomposition matrices A and B contain trainable parameters
[Hu+21].

3. The matrix A is typically initialized using a random Gaussian distribution, while
B is initialized to zero, ensuring that ∆W = BA is zero at the beginning of training
[Hu+21].

4. The final adapted weight matrix is W = W0 +BA [Hu+21].
LoRA is typically applied to the weight matrices within the Transformer’s self-attention

module, specifically the query (Wq), key (Wk), value (Wv), and output (Wo) projection
matrices [Hu+21].

2.2.2 Performance and Efficiency Gains

The low-rank representation drastically reduces the number of trainable parameters. For
GPT-3 175B, LoRA can reduce the number of trainable parameters by 10, 000× and
cut the GPU memory requirement by 3× during training. This reduction in trainable
parameters also results in a significant speedup during training (e.g., a 25% speedup was
observed on GPT-3 175B compared to full fine-tuning) [Hu+21].

Crucially, LoRA eliminates inference latency compared to a fully fine-tuned model.
This is achieved by explicitly computing and storing the merged weight matrix W =
W0+BA when deploying the model for production. When switching between downstream
tasks, the system can quickly recover W0 by subtracting BA and adding a different B′A′

(a quick operation with very little memory overhead) [Hu+21].
Empirical studies confirm that LoRA matches or exceeds the performance quality

of full fine-tuning across models like RoBERTa, DeBERTa, and GPT-3. For instance,
when scaled up to GPT-3 175B, LoRA matched or exceeded the fine-tuning baseline on
WikiStructured Query Language (SQL), MNLI-m, and SAMSum datasets. The observed
effectiveness suggests that the update matrix (∆W ) during adaptation often possesses a
very low "intrinsic rank" [Hu+21].
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3 High-Throughput LoRA Serving Sys-
tems

The efficiency of LoRA solves the fine-tuning and storage problem, but the subsequent de-
ployment of thousands of concurrent LoRA adapters requires specialized serving systems
to handle multi-tenancy, dynamic batching, and memory constraints [Hu+21]. Several
advanced systems leverage operating system principles and custom kernels to address
these High Performance Computing (HPC) challenges.

3.1 vLLM: PagedAttention for Efficient Memory Management

The vLLM serving system was developed specifically to overcome the inherent inefficiency
of KV cache management in traditional systems, which suffer from fragmentation and
memory waste due to storing KV cache in contiguous memory. PagedAttention: vLLM
introduces PagedAttention, an attention algorithm inspired by virtual memory and paging
techniques in operating systems [Kwo+23].

• Non-Contiguous Memory: PagedAttention partitions the KV cache of each sequence
into fixed-size KV blocks. Crucially, these blocks are not required to be stored in con-
tiguous physical memory, similar to how virtual pages are mapped to physical memory
frames [Kwo+23].

• Fragmentation Reduction: This design alleviates internal fragmentation by utilizing
small blocks allocated on demand and eliminates external fragmentation as all blocks
share the same fixed size. This efficient management reduces memory waste from 60-80%
in existing systems to near-zero waste [Kwo+23].

• Memory Sharing: PagedAttention enables memory sharing at the block granular-
ity, which is vital for complex decoding algorithms. For instance, in parallel sampling
(generating multiple outputs from one prompt), the KV cache of the shared prompt is
mapped to the same physical blocks. vLLM uses a copy-on-write mechanism, similar to
OS virtual memory, at the block granularity when a shared block needs modification,
minimizing unnecessary memory duplication. This sharing achieves significant memory
savings, such as $37.6% - 55.2%$ in beam search scenarios [Kwo+23].

3.2 Punica: Multi-Tenant Batching with SGMV

Punica is designed explicitly as a multi-tenant serving framework for LoRA models that
share a pre-trained backbone model. Its architecture focuses on maximizing GPU effi-
ciency by consolidating multiple LoRA serving workloads onto a small number of GPUs
[Che+23].

Core Strategy and SGMV: Unlike the conventional LoRA deployment approach of
merging weights (which is necessary for zero latency in single-adapter inference), Punica
operates on unmerged weights to enable multi-tenant batching. The computation is sep-
arated into the batched base model computation (xW ) and the batched LoRA addition
(xAB), which is calculated on-the-fly [Che+23].

• Segmented Gather Matrix-Vector Multiplication (SGMV): Punica’s key novelty is
the SGMV CUDA kernel. SGMV allows batching GPU operations for multiple, different
LoRA models concurrently. It parallelizes feature-weight multiplication for different re-
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quests and groups requests corresponding to the same LoRA model to enhance operational
intensity and utilize GPU Tensor Cores [Che+23].

• Deployment Efficiency: By keeping the base model computation separate and batch-
ing the LoRA additive computations, Punica allows a GPU to hold only a single copy of
the underlying pre-trained model while serving many different LoRA models. This con-
solidation significantly improves memory efficiency and allows for a fast cold-start since
only the smaller A and B matrices need to be loaded for a new LoRA model [Che+23].

3.3 S-LoRA: Scalable Serving with Unified Paging

S-LoRA is a system specifically designed for the scalable serving of thousands of concurrent
LoRA adapters on a single machine or across GPUs [She+24]. Unified Paging: To manage
the two major sources of dynamic memory usage—the dynamically sized KV cache tensors
and the dynamically loaded adapter weights of various ranks—S-LoRA introduces Unified
Paging [She+24].

• Unified Paging uses a unified memory pool to jointly manage both KV cache blocks
and adapter weights. Both are stored in this pool in a paged manner: a KV cache
tensor consumes S pages (where S is sequence length), and a LoRA weight tensor of
rank R consumes R pages. This unified, paged memory structure significantly reduces
memory fragmentation caused by dynamic loading/offloading of different-sized adapters
and varying KV cache sizes [She+24].

• S-LoRA stores all adapters in main memory (CPU RAM) and only fetches the
necessary adapters into the GPU memory for the currently running batch. This approach
allows the number of served adapters to be constrained only by the available main memory
size, enabling scaling to thousands of adapters [She+24].

• S-LoRA proactively addresses Input/Output (I/O) latency through dynamic pre-
diction and prefetching of adapters needed for the next batch while the current batch is
running, overlapping I/O with computation [She+24].

Custom Kernels and Parallelism: S-LoRA employs custom CUDA kernels—such as
Multi-size Batched Gather Matrix-Matrix Multiplication (MBGMM) for the prefill stage
and MBGMV for the decode stage—that operate directly on the non-contiguous, paged
memory structure. Additionally, S-LoRA introduces a novel tensor parallelism strategy
that aligns the LoRA computation partitioning with the Megatron-LM strategy used for
the base model, minimizing communication costs by scheduling communications on small
intermediate tensors [She+24].

3.4 dLoRA: Dynamic Orchestration and Load Balancing

dLoRA (Dynamically Orchestrating Requests and Adapters for LoRA LLM Serving)
builds on techniques like PagedAttention and fine-grained scheduling but focuses on dy-
namically adapting to changing workload patterns and improving efficiency across clus-
tered replicas [Wu+].

Dynamic Cross-Adapter Batching: dLoRA addresses the inefficiency arising from
skewed request types within a single replica by proposing dynamic cross-adapter batching.
This technique dynamically switches between two inference modes at runtime:

1. Merged Inference: Where the adapter weights are fused into the base model (stan-
dard, low-latency approach, similar to single-adapter LoRA deployment). This is benefi-
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cial when requests are highly skewed toward a single adapter type, minimizing computa-
tional overhead [Wu+].

2. Unmerged Inference: Where the computation of the base model (xW ) and the
adapter (xAB) are separated, allowing batching across different adapter types. This is
crucial when request types are diverse, maximizing GPU utilization. The system uses an
adaptive threshold tuning algorithm, guided by the workload ratio, and a credit-based
mechanism to prevent starvation of low-frequency adapter types [Wu+].

Adapter-Request Co-migration: To manage load imbalance across multiple replicas
(caused by variable input/output lengths and bursty request patterns), dLoRA employs
an adapter-request co-migration technique. This mechanism reactively migrates both
LoRA adapters and the corresponding requests (including their intermediate KV cache
states) from overloaded replicas to underloaded ones. This problem is modeled and solved
using an Integer Linear Programming (ILP) formulation to determine the optimal place-
ment plan that minimizes overall running time across the cluster. By leveraging selective
migration and constraint relaxation, dLoRA efficiently solves the optimal migration plan
within milliseconds, effectively balancing load and improving stability [Wu+].

4 Applications in the Financial Domain
The deployment of specialized Large Language Models (LLMs) in high-stakes environ-
ments, such as the financial sector, requires models that possess domain-specific knowl-
edge, precision, and the capability for complex, multi-step reasoning. Leveraging LLMs
to emulate financial domain experts can significantly offload routine responsibilities from
human experts, freeing them to focus on more strategic tasks [Kal+24]. The efficiency of
LoRA combined with high-performance serving systems makes the mass deployment of
these specialized agents feasible.

Financial LLMs generally focus on three major application areas:
1. Fundamental Analysis: This involves analyzing a company’s financial health and

valuation, typically by reviewing official documents like SEC filings (10-K, 10-Q, 8-K).
2. Technical Analysis: Focuses on predicting future price movements based on histor-

ical price data and volume, utilizing technical indicators and quantitative strategies.
3. Qualitative Analysis: Pertains to interpreting unstructured text data, such as news

articles, market events, Annual General Meetings (Annual General Meetings (AGMs)),
conference call transcripts, and earning reports, to assess market sentiment or risk factors.

Achieving expert-level performance in these areas requires highly customized LLMs
developed using various techniques and trained on specialized data sources.

4.1 Architecture Overview for Financial Domain Expert Agents

A Retrieval-Augmented Generation (RAG) pipeline alone is insufficient for constructing
financial domain expert agents, as such systems must support multi-source data access,
analytical reasoning, and domain-specific terminology grounding [Kal+24]. A modular,
layered architecture provides a more robust foundation.

(1) Data Extraction Layer: The language model generates structured queries (e.g.,
SQL or API calls) to retrieve heterogeneous financial data, including structured state-
ments, time-series OHLCV and technical indicators, as well as unstructured sources such
as earnings call transcripts, AGMs, news, and research reports. A tool executes these
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queries and returns the results to the model. However, this layer alone exhibits high fail-
ure rates on complex queries and may introduce compliance risks when relying on remote
execution.

(2) Scripting Layer: To support analytical computation beyond declarative query-
ing, a scripting interface (e.g., Python execution) enables statistical modeling, indicator
computation, and visualization. The model decomposes tasks into sequenced data ex-
traction and scripting steps. Error feedback from failed executions enables self-correction,
while sandboxed execution ensures security.

(3) Memory Layer: This enhances an agent by providing domain expertise, en-
abling it to handle complex, multi-step processes more accurately. Unlike relying solely
on zero-shot reasoning or a few static examples, it allows the agent to store and recall
relevant knowledge, interpret specialized terminology, and learn from past interactions.
This structured memory improves the agent’s ability to answer detailed questions with
precision and reduces errors. In testing, incorporating the Memory Layer increased accu-
racy on complex tasks, such as financial analysis processes, from approximately 67% to
83%, demonstrating its effectiveness in enhancing domain-specific reasoning [Kal+24].

Together, these layers form a unified framework that integrates heterogeneous data
ingestion, analytical computation, and long-term process memory, enabling scalable fi-
nancial LLM systems that operate beyond conventional RAG-based designs.

Memory Layer

User

Figure 1: Financial LLM Architecture Overview

4.2 Different Techniques for Making Finance Specific LLMs

Building a financial domain expert agent can be approached through a spectrum of meth-
ods, ranging from basic prompting to highly resource-intensive pretraining. These tech-
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niques often prioritize different goals, such as maximizing accuracy, minimizing cost, or
enhancing domain internalization.

Table 1: Techniques for Making Finance Specific LLMs
Goal Best Method
Q&A over financial documents RAG (Retrieval-Augmented Generation)
Internalize financial knowledge
style

LoRA or Instruction Tuning

Lightweight deployment Prompt Engineering + LoRA
Deep adaptation to domain Domain-Adaptive Pretraining (DAPT) +

Finetuning
Report automation or analysis
agent

Tool-Augmented LLM Agent

4.2.1 Prompt Engineering and System Prompts

This method relies on carefully crafted instructions to guide the LLM’s behavior, making
it act like a financial analyst. This includes role-playing prompts (e.g., "You are a CFA-
certified analyst...") and providing few-shot examples to demonstrate desired outputs.
It may also incorporate tool or function-calling instructions (e.g., "Run a Discounted
Cashflow (DCF) with the following inputs..."). A major drawback is that complex tasks
can lead to high token usage.

4.2.2 Retrieval-Augmented Generation (RAG)

RAG leverages a vector database containing finance-specific documents (e.g., 10-Ks, earn-
ings calls, research reports). The LLM retrieves relevant information from this external
knowledge base to formulate its response. This technique requires no explicit model fine-
tuning and offers flexibility and interpretability. However, initial setup costs can be high,
and it is less suited for real-time high-frequency data compared to other methods.

4.2.3 Tool-Augmented Agents (AutoGPT-style)

This approach combines the reasoning capabilities of an LLM with external tools. Tools
typically include a Python or spreadsheet engine for complex financial calculations, a Web
search API for real-time news, or PDF parsers for extracting data from reports. Agents
like FinGPT agents are examples of this, capable of sophisticated actions such as "scrape
earnings release, analyze it, generate report".

4.2.4 PEFT and LoRA

LoRA is specifically employed when the developer seeks to make the LLM internalize
financial tone, structure, or language. It involves injecting trainable adapters into key
model layers and training them on small, domain-specific datasets (e.g., financial Q&A
or analyst reports). LoRA is recommended for internalizing financial knowledge style and
for lightweight deployment when combined with prompt engineering.
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4.2.5 Instruction Tuning

This technique involves fine-tuning the model with financial tasks phrased as explicit in-
structions (e.g., "Explain the difference between EBITDA and net income."). It often uses
FLAN-style instruction tuning formats and is frequently combined with LoRA, serving
to enhance the model’s understanding of financial reasoning tasks.

4.2.6 DAPT

DAPT represents the most expensive but often the most effective method for creating a
customized base model. It uses unsupervised learning on a vast financial corpus (news,
filings, Reddit, blogs, research reports) to help the model adapt the style, jargon, and
semantics specific to finance, often resulting in "FinanceBERT" or "FinGPT"-style foun-
dation models. DAPT is the best method for deep adaptation to a domain.

4.3 Data Sources for Finance LLMs

Training and adapting LLMs for finance requires access to extensive, high-quality, and
specialized datasets. The necessary data sources span diverse formats, from structured
market indicators to complex legal text:

Table 2: Representative Data Sources and Formats for Finance LLMs
Source Type Examples Data Formats
Regulatory Filings 10-K, 10-Q, 8-K, S-1 XBRL, Portable Doc-

ument Format (PDF)
Earnings Calls Transcripts, Analyst Q&A PDF
Research Reports Equity Research, DCF Models, Market

Outlooks
PDF, DOCX

News Articles Reuters, Yahoo Finance, Bloomberg Raw Text, JSON
Market Data Technical Indicators, Open, High,

Low, Close, Volume (Financial Data)
(OHLCV) Prices

JavaScript Object No-
tation (JSON)

5 Evaluation Metrics
Effective evaluation of high-performance serving systems and specialized LLMs requires
a comprehensive set of metrics covering quality, speed, and resource efficiency

5.1 LoRA-Specific Financial Models

5.1.1 FinLoRA

FinLoRA is an exemplary project demonstrating how PEFT can create specialized finan-
cial LLMs in an affordable and scalable manner.

Motivation and Goals
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The project was developed in response to resource-intensive efforts like the BloombergGPT
model, which highlighted the potential of specialized FinLLMs but required one million
GPU hours, estimated to cost around $3 million in 2023. The core goal of FinLoRA is to
democratize financial intelligence by reducing the computational cost of creating special-
ized models to less than $100.

Methodology
FinLoRA focuses on Llama 3.1 models and utilizes the LoRA fine-tuning method. The

crucial domain area targeted is the eXtensible Business Reporting Language (XBRL), the
global standard for digital business reporting, which is inherently complex due to its
Extensible Markup Language (XML)-based structure [Wan+25].

1. Datasets: Using four novel XBRL analysis datasets derived from 150 SEC filings.
2. LoRA Variants: Employing multiple LoRA variants, including LoRA, QLoRA,

DoRA, and rService Level Objective (SLO)RA. These variants were configured in various
ways, such as 8-bit rank 8 and 4-bit rank 4 settings.

3. Efficiency: By using LoRA, the project reduced the number of trainable parame-
ters to as little as $0.01%$ of the full model’s parameter count.

Applications and Outcomes
FinLoRA targeted two key XBRL applications:
• Financial Reporting: Assisting small and medium-sized businesses in generating

compliant financial reports in the XBRL format.
• Financial Statement Analysis: Facilitating the extraction of data from XBRL

reports and enabling insightful analysis.

The fine-tuned adapters achieved substantial performance gains of 36% on average
over the base models. This performance, achieved through lightweight, low-cost LoRA
tuning, validated the parameter-efficient approach as a viable alternative to monolithic,
expensive foundation models.

5.1.2 FinGPT

FinGPT is an open-source financial LLM project that operates as a Tool-Augmented
Agent, integrating LLM capabilities with external data sources and complex techniques
[YLW23].

Key Technology: A distinguishing feature of FinGPT is its incorporation of Reinforcement
Learning from Human Feedback (RLHF), a technology noted as being absent from the
initial BloombergGPT model. RLHF is crucial because it allows the LLM model to learn
individual user preferences—such as their risk-aversion level, investing habits, or person-
alized robo-advisor needs—which is essential for advanced personalization.
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Architecture and Workflow: FinGPT’s operation relies
heavily on external tools to acquire and structure data before
feeding it to the core LLM for analysis.
Report Analysis Module: Data is collected from
Securities and Exchange Commission (SEC) filings (10-K,
10-Q, 8-K via sec-API.io), market fundamentals and financial
statements (via yfinance and FinancialModelingPrep), ana-
lyst recommendations, price targets, historical prices, and
earnings call transcripts. Relevant sections are extracted us-
ing Retrieval-Augmented Generation (Retrieval-Augmented
Generation (RAG)) pipelines (e.g., LangChain) and sup-
plied to an LLM (e.g., GPT-4-turbo) via structured system
prompts.
Forecasting Module: News (via Finnhub) and historical fi-
nancial metrics (yfinance, Finnhub) are aggregated and con-
verted into structured prompts. An LLM generates forward-
looking assessments, which are labeled with observed future
price movements (e.g., next-week return). The resulting
dataset is used to fine-tune forecasting models using LoRA
applied to architectures such as ChatGLM2-6B or LLaMA-
2-7B.

Module Overview

5.2 Language Model Performance Metrics

These metrics assess the accuracy and quality of the specialized LLM’s output for specific
financial tasks:

• Accuracy/F1-Score: Standard classification metrics [Hu+24].
• Binary Accuracy (bin_acc): Used in forecasting to evaluate the accuracy of up/down/neutral

trend direction predictions.
• Mean Squared Error (MSE): Measures the squared difference between predicted and

ground-truth numerical prediction margins, crucial for quantitative analysis.
• Recall-Oriented Understudy for Gisting Evaluation (ROUGE) Scores (ROUGE-L,

ROUGE-N): Measures the quality of machine-generated text (e.g., summarization or re-
port generation) by comparing overlap of n-grams or longest common subsequences with
human-written references [WM25; YLW23].

• Correlation Metrics: Pearson correlation (for tasks like STS-B) or Matthew’s corre-
lation (for Corpus of Linguistic Acceptability (CoLA)).

5.3 Serving System Metrics

These metrics quantify the efficiency and performance of the multi-tenant serving systems
under dynamic load:

• Throughput (Tokens/sec, Requests/sec): Measures the rate at which the system
processes output tokens or full requests, representing overall capacity [Zho+24].

• Latency: Critical metrics include Average Request Latency, First Token Latency
(important for user experience), P90 Latency, and component-specific latencies (Decode,
Prefill, Kernel Latency) [Zho+24].

• Resource Efficiency: Includes GPU Utilization (Streaming Multiprocessor/SM Uti-
lization), KV Cache Memory Usage, and Memory Fragmentation levels.
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• User-Centric Metrics: SLO Attainment (the percentage of requests meeting a Service
Level Objective, typically a latency target) and User Satisfaction Score (a more fine-
grained analysis of latency relative to the SLO).

• Scalability Overhead: Includes the measurable cost of operations introduced by
advanced serving features, such as the Switching Overhead (for dLoRA’s mode switching)
and I/O Computation Overhead (for adapter swapping/loading).

5.4 LoRA-Specific Metrics

Evaluation often involves assessing the unique characteristics of LoRA deployments:
• Rank Deficiency: Investigating the "intrinsic rank" of the update matrix ∆W to

determine the minimal sufficient rank (r) for optimal performance.
• Weight Selection Logic: Determining which specific Transformer layer weight matri-

ces (Wq,Wk,Wv,Wo) should receive LoRA adapters for maximal downstream performance
given a limited parameter budget. Empirically, adapting both Wq and Wv often yields
the best performance.

• Performance vs. Efficiency Tradeoff: Analyzing how changes in trainable parameters
(or rank r) affect task performance, noting that performance may not always benefit
monotonically from having more trainable parameters, especially for methods like prefix
tuning.

6 Conclusion
The demand for specialized LLMs, particularly in high-stakes domains like finance, neces-
sitates a transition from resource-intensive full fine-tuning to highly scalable, parameter-
efficient solutions. LoRA serves as the fundamental technical enabler, dramatically reduc-
ing training costs, storage requirements (by 10, 000×), and eliminating inference latency
by merging adapter weights [Hu+21]. This technological foundation has spurred the de-
velopment of specialized serving systems that overcome HPC challenges inherent in scaling
LLM deployment:

• vLLM and its PagedAttention operator revolutionized KV cache management by
applying OS paging concepts, enabling near-zero memory fragmentation and increasing
batch capacity [Kwo+23].

• Punica enabled the concurrent batching of requests to multiple different LoRA
adapters on a single shared GPU using the novel SGMV kernel, maximizing shared back-
bone efficiency.

• S-LoRA achieved massive scalability by introducing Unified Paging to manage dy-
namic KV cache and adapter weights jointly, allowing systems to serve thousands of
distinct LoRA adapters constrained only by CPU memory [She+24].

• dLoRA addressed operational volatility across clusters by implementing dynamic
batching (switching between merged and unmerged inference) and optimal adapter-request
co-migration, yielding superior performance under skewed and variable workloads [Wu+].

In the financial domain, these innovations are already proving transformative. Projects
like FinLoRA demonstrate that affordable, low-cost LoRA fine-tuning can achieve high
performance on complex tasks like XBRL analysis (a $36%$ gain over base models), ef-
fectively lowering the barrier to entry for developing FinLLMs [Wan+25]. Furthermore,
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the architectural framework for Financial Domain Expert Agents demonstrates that it-
eratively adding capabilities—including Python scripting for complex numerical analysis
and a memory layer for storing expert processes, significantly enhances performance and
reduces ambiguity in zero-shot execution [Kal+24].

Collectively, the integration of LoRA with high-performance serving architectures pro-
vides the required computational foundation to deploy specialized, high-accuracy, and
scalable LLM agents, signaling a pivotal shift toward the practical democratization of
domain-specific artificial intelligence.
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