
SurveyofLog-BasedAnomalyDetec-
tion
From Classical ML to LLMs (Supervised by: Sadegh Keshtkar)

Mohamed Basuony

University of Göttingen

July 31, 2025

) Supervised by: Sadegh Keshtar

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

When Logs Save the Day

RuntimeError: CUDA out of memory. The kind of error you only see. . . in logs.

Mohamed Basuony 2/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

Agenda

1 Definitions and Taxonomy

2 Traditional and RNN-Based Methods

3 Transformer-Based Methods

4 LLM-Based Detection

5 Log Generators

6 Evaluation and Comparisons

7 Conclusion

Mohamed Basuony 3/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

What is Log-Based Anomaly Detection?

■ Detects unexpected patterns in system logs

■ Uses parsing, embeddings, or sequence modeling

■ Helps catch software failures, intrusions, config errors

■ Essential for observability in complex systems

Mohamed Basuony 4/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

Key Challenges

■ Logs are noisy, high-volume, and unstructured

■ Labels for anomalies are rare or missing

■ Logs evolve due to system upgrades

■ Sequence + semantic context matters

Mohamed Basuony 5/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

Taxonomy of Methods

■ Traditional ML: PCA, Isolation Forest, OC-SVM

■ RNN-Based DL: DeepLog, OC4Seq, LogRobust

■ Transformer-Based: LogAnomaly, LogBERT, UniLog, LogFormer

■ LLM-Based: LogGPT, LogPrompt, LogLLaMA, HuntGPT

Mohamed Basuony 6/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

Traditional ML Models

■ PCA (2009): Linear subspace
projection

■ Isolation Forest: Randomly isolates
outliers

■ OC-SVM: One-class kernel decision
boundary

Pros: Fast and interpretable
Cons: No sequence context, low F1

Illustration of model taxonomy used in this survey.

Mohamed Basuony 7/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

RNN-Based Models Overview

■ DeepLog (2017): LSTM predicts next
log key

■ OC4Seq (2021): Multi-scale GRU with
one-class loss

■ LogRobust (2019): Bi-LSTM with
attention + TF-IDF vectors

RNNs model sequence, but struggle with
unseen logs.

Mohamed Basuony 8/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

OC4Seq – Multi-Scale One-Class GRU

■ Objective: Detect anomalies in discrete event sequences without any
labeled anomalies.

■ Architecture:

▶ Uses two GRU modules: Global and Local.

■ Anomaly Scoring:

▶ Learns a compact hypersphere in latent space.
▶ Measures how far a sequence deviates from learned normal embedding.

■ Loss Function:

▶ Inspired by Deep SVDD — minimizes distance to center point.
▶ Combines global and local losses for multi-scale learning.

Mohamed Basuony 9/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

OC4Seq – Multi-Scale One-Class GRU

■ Objective: Detect anomalies in discrete event sequences without any
labeled anomalies.

■ Architecture:

▶ Uses two GRU modules: Global and Local.

■ Anomaly Scoring:

▶ Learns a compact hypersphere in latent space.
▶ Measures how far a sequence deviates from learned normal embedding.

■ Loss Function:

▶ Inspired by Deep SVDD — minimizes distance to center point.
▶ Combines global and local losses for multi-scale learning.

Mohamed Basuony 9/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

OC4Seq – Multi-Scale One-Class GRU

■ Objective: Detect anomalies in discrete event sequences without any
labeled anomalies.

■ Architecture:

▶ Uses two GRU modules: Global and Local.

■ Anomaly Scoring:

▶ Learns a compact hypersphere in latent space.
▶ Measures how far a sequence deviates from learned normal embedding.

■ Loss Function:

▶ Inspired by Deep SVDD — minimizes distance to center point.
▶ Combines global and local losses for multi-scale learning.

Mohamed Basuony 9/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

Transformer-Based Models – Overview

■ Transformers use self-attention to capture long-range dependencies in log
sequences.

■ Unlike RNNs, they model all positions in parallel — ideal for complex, long,
or noisy logs.

■ Most models use pretrained language modeling (e.g., BERT-style) on logs,
then fine-tune for detection.

Model Training Type Highlights

LogAnomaly Supervised Template2Vec + LSTM hybrid
LogBERT Self-supervised BERT masking on log keys
LogFormer Adapter-tuned Log-attention + efficient tuning
UniLog Unified multitask AD, prediction, summarization

Mohamed Basuony 10/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

Transformer-Based Models – Overview

■ Transformers use self-attention to capture long-range dependencies in log
sequences.

■ Unlike RNNs, they model all positions in parallel — ideal for complex, long,
or noisy logs.

■ Most models use pretrained language modeling (e.g., BERT-style) on logs,
then fine-tune for detection.

Model Training Type Highlights

LogAnomaly Supervised Template2Vec + LSTM hybrid
LogBERT Self-supervised BERT masking on log keys
LogFormer Adapter-tuned Log-attention + efficient tuning
UniLog Unified multitask AD, prediction, summarization

Mohamed Basuony 10/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

LogAnomaly (2019)

■ Architecture: LSTM model with Template2Vec embeddings as input.
■ Dual Prediction:

▶ Predicts the next log template (sequence anomaly).
▶ Predicts the expected frequency of log types (quantitative anomaly).

■ Detection Rule: A sequence is flagged anomalous if either prediction
deviates from expected behavior.

Template2Vec encodes log templates into dense vectors for sequence modeling.

Mohamed Basuony 11/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

LogBERT (2021)

■ Architecture: Transformer model trained using masked log key
prediction (BERT-style).

■ Training: Self-supervised on normal logs, no need for labeled anomalies.
■ Anomaly Detection:

CLS token summarizes the sequence.
▶ Deep SVDD loss forces normal embeddings into a compact hypersphere.

Figure adapted from LogBERT paper (arXiv:2103.04475), illustrating masked modeling + Deep SVDD.

Mohamed Basuony 12/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

UniLog (2021)

■ Goal: Provide a unified Transformer-based model for multiple log analysis
tasks.

■ Tasks Handled:

▶ Anomaly detection (unsupervised)
▶ Failure prediction (supervised)
▶ Log summarization (sequence-to-sequence)
▶ Log compression (semantic entropy modeling)

■ Architecture:

▶ Shared pretrained encoder with task-specific heads.
▶ BERT-style masked modeling during pretraining.

Mohamed Basuony 13/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

LogFormer (2024)

■ Architecture: Transformer encoder with parallel adapter layers for
efficient fine-tuning.

■ Key Feature – Log-Attention:

▶ Injects structured information from parsed logs into attention scores.
▶ Retains token-level semantics lost in traditional parsing.

■ Training Strategy:

▶ Pretrained on source domain logs.
▶ Tuned on new domains by updating only adapter layers (5

Mohamed Basuony 14/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

LLM-Based Detection – Overview

■ Foundation models like GPT and LLaMA are now applied to log anomaly
detection.

■ These models are typically adapted using:

▶ Fine-tuning (e.g., GPT-3, LogLLaMA)
▶ Prompt engineering (e.g., LogPrompt, ChatGPT)
▶ Reinforcement learning (e.g., LogGPT, LogLLaMA)

Model Tuning Type Highlights

LogGPT RL fine-tuning GPT-2 + Top-K reward
LogLLaMA RL fine-tuning LLaMA-2 + REINFORCE
LogPrompt Prompting ChatGPT + Chain-of-Thought
HuntGPT Prompting GPT + SHAP/LIME explanations

Mohamed Basuony 15/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

LogGPT (2023)

■ Architecture: GPT-2 autoregressive model fine-tuned using reinforcement
learning.

■ Training Objective:
▶ Maximize Top-K inclusion of the true next log key.
▶ Rewards correct predictions via REINFORCE algorithm.

■ Detection Strategy:
▶ A log sequence is flagged as anomalous if the true next log key is outside the

predicted Top-K.

Architecture of LogGPT: GPT-2 + RL fine-tuning with Top-K reward (source: arXiv:2309.14482).Mohamed Basuony 16/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

LogLLaMA (2024)

■ Base Model: LLaMA-2 fine-tuned for
anomaly detection on normal logs only.

■ Anomaly Detection:

▶ Uses Top-K REINFORCE objective, similar to
LogGPT.

▶ Token-level prediction with binary decision
threshold.

■ Training Strategy:

▶ Retains LLaMA backbone; only reward
shaping is learned.

▶ Fully unsupervised — trained only on
normal logs.

Illustration of LogLLaMA architecture
(GPT-style RL over LLaMA-2).

Mohamed Basuony 17/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

LogPrompt (2024)

■ Approach: Uses ChatGPT with zero-shot and Chain-of-Thought (CoT)
prompting.

■ Prompt Strategies:

▶ Few-shot examples.
▶ Justifications + rules.
▶ Context summarization.

■ Output:

▶ Human-readable explanations per anomaly.
▶ Label + justification.

■ Tradeoff: Most interpretable output, but lower F1 (0.38–0.45).

Mohamed Basuony 18/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

HuntGPT and Logsy

■ HuntGPT (2023):

▶ Combines a Random Forest anomaly detector with SHAP and LIME.
▶ GPT-3.5 explains model decisions in a dashboard chatbot.
▶ CISM-certified and readable (grade level: college).
▶ F1 Score: 0.825

■ Logsy (2020):

▶ BERT encoder + attention + spherical loss.
▶ Trained only on normal logs using self-supervised objectives.
▶ Embeddings used directly for anomaly classification.
▶ F1 Score: 0.86

Mohamed Basuony 19/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

HuntGPT and Logsy

■ HuntGPT (2023):

▶ Combines a Random Forest anomaly detector with SHAP and LIME.
▶ GPT-3.5 explains model decisions in a dashboard chatbot.
▶ CISM-certified and readable (grade level: college).
▶ F1 Score: 0.825

■ Logsy (2020):

▶ BERT encoder + attention + spherical loss.
▶ Trained only on normal logs using self-supervised objectives.
▶ Embeddings used directly for anomaly classification.
▶ F1 Score: 0.86

Mohamed Basuony 19/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

What Are Log Generators and Why Are They Important?

■ Problem: Real-world log datasets are limited in coverage, often lack labels,
and are expensive to collect.

■ Solution: Log generators automatically produce synthetic log sequences
— simulating system behavior at scale.

■ Benefits:

▶ Create training data without requiring real system crashes.
▶ Provide control over log coverage and anomaly types.
▶ Help evaluate models on rare or future edge cases.

■ Approaches:

▶ Static program analysis (e.g., AutoLog)
▶ LLM-based semantic simulation (e.g., AnomalyGen)

Mohamed Basuony 20/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

What Are Log Generators and Why Are They Important?

■ Problem: Real-world log datasets are limited in coverage, often lack labels,
and are expensive to collect.

■ Solution: Log generators automatically produce synthetic log sequences
— simulating system behavior at scale.

■ Benefits:

▶ Create training data without requiring real system crashes.
▶ Provide control over log coverage and anomaly types.
▶ Help evaluate models on rare or future edge cases.

■ Approaches:

▶ Static program analysis (e.g., AutoLog)
▶ LLM-based semantic simulation (e.g., AnomalyGen)

Mohamed Basuony 20/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

AutoLog (2023)

■ Purpose: Automatically generate log sequences from code using static
analysis.

■ Method:

▶ Builds Control Flow Graphs (CFGs) from source code.
▶ Extracts log-related call paths without executing the program.

■ Benefits:

▶ Covers log paths even without runtime data.
▶ Scales to large codebases.

■ Limitations:

▶ Misses dynamic behaviors (e.g., exceptions).
▶ Does not annotate anomalies.

Mohamed Basuony 21/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

AutoLog (2023)

■ Purpose: Automatically generate log sequences from code using static
analysis.

■ Method:

▶ Builds Control Flow Graphs (CFGs) from source code.
▶ Extracts log-related call paths without executing the program.

■ Benefits:

▶ Covers log paths even without runtime data.
▶ Scales to large codebases.

■ Limitations:

▶ Misses dynamic behaviors (e.g., exceptions).
▶ Does not annotate anomalies.

Mohamed Basuony 21/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

AnomalyGen (2024)

■ Purpose: Generate realistic and annotated log sequences using LLMs.

■ Pipeline:

▶ Extracts call graphs and CFGs from code.
▶ Uses LLM + Chain-of-Thought reasoning to simulate log flows.
▶ Annotates both explicit (e.g., "ERROR") and implicit (semantic) anomalies.

■ Impact:

▶ Achieves 97.5% log event coverage.
▶ Improves downstream F1 scores by up to 3.7%.

■ Strength: Combines program structure with LLM semantics to generate
high-quality training data.

Mohamed Basuony 22/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

AnomalyGen (2024)

■ Purpose: Generate realistic and annotated log sequences using LLMs.

■ Pipeline:

▶ Extracts call graphs and CFGs from code.
▶ Uses LLM + Chain-of-Thought reasoning to simulate log flows.
▶ Annotates both explicit (e.g., "ERROR") and implicit (semantic) anomalies.

■ Impact:

▶ Achieves 97.5% log event coverage.
▶ Improves downstream F1 scores by up to 3.7%.

■ Strength: Combines program structure with LLM semantics to generate
high-quality training data.

Mohamed Basuony 22/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

AutoLog vs AnomalyGen

Feature AutoLog (2023) AnomalyGen (2024)

Log generation method Static CFG analysis CFG + LLM + CoT reasoning
Dynamic behavior support ✗ ✓
Anomaly annotation ✗ ✓
Needs runtime execution ✗ ✗

Event coverage ✓ ✓
Improves model performance ✗ ✓
LLM involvement ✗ ✓

AnomalyGen significantly extends AutoLog by adding semantic reasoning and labeled
output.

Mohamed Basuony 23/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

F1 Score Comparison Across Datasets

Mohamed Basuony 24/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

Which Model Wins per Category?

■ Traditional ML: Isolation Forest

■ RNN-Based: OC4Seq

■ Transformer-Based: LogFormer

■ LLM-Based: LogGPT

Mohamed Basuony 25/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

Capability Matrix

Model OOV Support Online? Interpretable? Uses RL?

PCA ✗ ✗ ✓ ✗

DeepLog ✗ ✗ ✗ ✗

OC4Seq ✗ ✗ ✗ ✗

LogBERT ✓ ✗ ✗ ✗

LogFormer ✓ ✓ ● ✗

LogGPT ✓ ✓ ● ✓
LogLLaMA ✓ ✓ ● ✓
LogPrompt ✓ ✓ ✓ ✗

HuntGPT ✓ ✗ ✓ ✗

✓= Supported ✗= Not supported ● = Partial/indirect support

Mohamed Basuony 26/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

Model Robustness on Unstable Logs

■ Real-world logs evolve: new templates, dropped keys, noisy sequences.
■ LogGPT and LogLLaMA maintain high F1 due to reinforcement learning.
■ LogPrompt and DeepLog suffer major drops under instability.

RL-based models are robust to noise and structural drift in log sequences.
Mohamed Basuony 27/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

Takeaways and Emerging Trends

■ Log anomaly detection is shifting from pattern matching to semantic
modeling.

■ Transformer models (e.g., LogFormer) capture long-range structure
effectively.

■ Prompting (LogPrompt) enables quick deployment but trails fine-tuned
models in accuracy.

■ Reinforcement learning (LogGPT, LogLLaMA) improves robustness to
unstable logs.

■ Tools like AnomalyGen show that LLMs can help create data — not just
analyze it.

Mohamed Basuony 28/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

What’s next?

■ Token limits make long log sequences hard to process.

■ High inference cost prevents real-time LLM deployment.

■ Interpretability remains limited, especially for autoregressive models.

■ No unified benchmarks exist for LLM-based log anomaly detection.

■ Underexplored: Google’s T5 model

▶ Uses a full encoder–decoder architecture
▶ Reframes all tasks as text → text
▶ Could generate natural-language justifications for anomalies — not just labels.

Mohamed Basuony 29/30

Definitions and Taxonomy Traditional Transformers LLM-Based Detection Log Generators Evaluation and Comparisons Conclusion

References

■ DeepLog – ACM CCS 2017

■ OC4Seq – WSDM 2021

■ LogAnomaly – IJCAI 2019

■ LogRobust – FSE 2019

■ PCA – Classical Baseline

■ Isolation Forest – Classical Baseline

■ OC-SVM – Classical Baseline

■ LogBERT – arXiv:2103.04475

■ UniLog – arXiv:2112.03159

■ LogFormer – AAAI 2024

■ LogGPT – arXiv:2309.14482

■ LogPrompt – arXiv:2308.07610

■ HuntGPT – arXiv:2309.16021

■ Logsy – arXiv:2008.09340

■ Deep SVDD – ICML 2018

■ AutoLog – ASE 2023

■ AnomalyGen – arXiv:2504.12250

■ LogHub – arXiv:2008.06448

■ Drain – Log Parsing Baseline

■ LogCluster – Traditional Baseline

■ Invariant Mining – Traditional Baseline

■ BGL / HDFS / Thunderbird – Benchmark
Datasets

■ T5 – Raffel et al., JMLR 2020

Mohamed Basuony 30/30

	Definitions and Taxonomy
	Traditional and RNN-Based Methods
	Transformer-Based Methods
	LLM-Based Detection
	Log Generators
	Evaluation and Comparisons
	Conclusion

