
GWDG Tutorial 1 / 07.04.2025
WG Computing Practical Course in Parallel Computing / SoSe 2025
Jack Ogaja 50 Minutes Total

Node-Level Performance Analysis with VAMPIR

Learning Objective

The objective of this tutorial is:

• To learn how to use VAMPIR performance tools to explore and understand performance characteristics
of a matrix multiplication algorithm

• To learn how to develop an Empirical Performance Model and identify optimization options of common
computational kernels.

Tools

• VAMPIR

Contents

1 Introduction 1
1.1 Cannon’s Algorithm . 2

Use VAMPIR to visualize trace data 2: Tutorial (15 min) 2

Empirical Roofline Model 3: Tutorial (35 min) 3

1 Introduction

In this tutorial and exercises we use VAMPIR performance tool-suite to evaluate the performance of a specific
computational kernel. The included source code does matrix multiplication using Cannon’s algorithm - designed
to improve memory efficiency. The exercise is to instrument the code, generate trace files using Score-P and
visualize the trace files using VAMPIR to learn about the performance characteristics of the algorithm on
the available hardware. You are also expected to use customized performance metrics e.g. (FLOPS and
L3 TCM) to generate a Roofline model, identify bottlenecks and computation and bandwidth boundedness of
the algorithm. Suggest Optimization strategy based on an Empirical Roofline Model.

1.1 Cannon’s Algorithm

NOTE: Tasks for this tutorial and exercises should be performed in compute nodes of GWDG’s Scientific
Compute Cluster (SCC).

Use VAMPIR to visualize trace data 2: Tutorial (15 min)

Use VAMPIR tool-suite to generate and explore trace data of the given source code to characterize the perfor-
mance of Cannon’s algorithm.

Steps

1. Compile and instrument the source code main.c

2. Generate trace data from the instrumented code

3. Explore the Master Timeline chart from the trace data

4. Explore the Process Timeline chart from the trace data

5. Explore the Counter Data Timeline chart from the trace data

6. Explore the Performance Radar from the trace data

7. Customize the performance metric, Wait time

8. Customize the performance metric, FLOPS

9. Explore the memory allocation

10. Explore the function and process summaries

PCHPC – Tutorial 1 2/3

11. Explore the communication matrix and identify communication imbalances if any.

Hints

• Use the provided shell scripts, compile instrument.sh and run trace.sh.

Empirical Roofline Model 3: Tutorial (35 min)

Use customized performance metrics to measure the performance of the given program. Is the program compu-
tation or communication bound? Can you identify any bottleneck? Are there possible additional optimization
strategy?

Steps

1. Compile and instrument the given source code

2. Customize and measure performance metrics FP FLOPS and L3 TBW - L3 bandwidth to generate an em-
pirical Roofline Model

3. Compare the measured performance to vendor’s specifications.

Hints

• Use the provided shell scripts, compile instrument.sh and run trace.sh.

Further Reading

• VAMPIR Performance Tools - https://vampir.eu/tutorial/manual

• Samuel W. Williams (2008) Auto-tuning Performance on Multicore Computers, University of California
at Berkeley, Technical Report No. UCB/EECS-2008-16

PCHPC – Tutorial 1 3/3

	Introduction
	Cannon's Algorithm

	Use VAMPIR to visualize trace data 2: Tutorial (15 min)
	Empirical Roofline Model 3: Tutorial (35 min)

