
What is new in Tensorflow and Keras

Yuvraj Singh

11 July 2024

SH ∞

yuvraj.singh@stud.uni-goettingen.de

)

yuvraj.singh@stud.uni-goettingen.de


Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

Table of contents

1 Introduction to TensorFlow & Keras

2 Hardware Compatibility

3 KerasCV

4 KerasNLP

5 Dtensor

Yuvraj Singh 2 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

Motivation

↭ Embrace the Future
↫ Stay updated with evolving tools like TensorFlow and Keras.

↭ Simplified Development
↫ New features and models make fine-tuning and deployment easier.

↭ Less Complexity
↫ Simplified usage and accelerated experimentation with minimal code.

↭ Increased Efficiency & Compatibility
↫ Improved frameworks save time and resources.

↭ Create Impact
↫ Use these tools to drive change and deliver real-world solutions.

Yuvraj Singh 3 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

TensorFlow

↭ Free and open-source software library for ML and DL

↭ Developed by - Google Brain Team

↭ Major Milestones
↫ February 2017 - Release of TensorFlow 1.0
↫ March 2018 - TensorFlow Extended (TFX) for end-to-end deploying platform
↫ September 2019 - TensorFlow 2.0 with major API changes
↫ TensorFlow.js for machine learning in JavaScript

Yuvraj Singh 4 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

TensorFlow

↭ Some Features
↫ Suitable for both research and production
↫ Can be used in a variety of programming languages, like Python & C++
↫ Cross-Platform development

↭ Current Version - TensorFlow 2.16.1 (9 March 2024)
↫ Keras 3 will be the default Keras version for TensorFlow 2.16 onward

Yuvraj Singh 5 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

Keras

↭ Keras
↫ High-level neural networks API, written in Python
↫ Runs on top of TensorFlow, Torch, or JAX
↫ Designed for fast experimentation, with a simple & user-friendly interface
↫ Modular and extensible for easy customization
↫ Supports a wide range of neural network architectures (CNNs, RNNs,

Transformers, etc.)

Yuvraj Singh 6 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

JAX & JAX2TF

↭ JAX
↫ High-performance numerical computing library developed by Google
↫ Leverage power of GPU/TPU
↫ Challenge: Lack of built-in deployment tools

↭ JAX2TF
↫ A lightweight API that links JAX and TensorFlow
↫ Inference: Deploy JAX models on servers/devices using TensorFlow
↫ Fine Tuning: Continue training JAX-trained models in TensorFlow

Yuvraj Singh 7 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

Comparison: TensorFlow vs. PyTorch

↭ Common Features
↫ GPU acceleration
↫ Large, active communities
↫ Flexible APIs for deep learning

↭ TensorFlow
↫ Comprehensive ecosystem (i.e. Hub, Graphics, Keras)
↫ TFX: Strong production and scalability support
↫ Offers more tools for custom features
↫ Native Keras integration

↭ PyTorch
↫ Favored by researchers for ease & quick prototyping
↫ Substantially less training time

Figure: StackOverflow: Market
share survey 2023

Yuvraj Singh 8 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

Outline

1 Introduction to TensorFlow & Keras

2 Hardware Compatibility

3 KerasCV

4 KerasNLP

5 Dtensor

Yuvraj Singh 9 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

Hardware Compatibility in TensorFlow

↭ Apple Silicon
↫ Native support for Apple M chips
↫ Optimized performance with Apple’s ML Compute framework

↭ NVIDIA GPUs
↫ NVIDIA CUDA libraries for Linux (Onwards tf 2.15)
↫ Upgrade to Clang 17.0.1 and CUDA 12.2 (tf 2.15)
↫ TensorFlow container images available with GPU support

↭ Cross-platform Compatibility
↫ Runs on a variety of hardware: CPUs, GPUs, & TPUs
↫ Supports deployment on cloud platforms like Google Cloud, AWS, & Azure
↫ TensorFlow-Lite for mobile & embedded devices i.e. RaspberryPi & Jetson

Yuvraj Singh 10 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

Outline

1 Introduction to TensorFlow & Keras

2 Hardware Compatibility

3 KerasCV

4 KerasNLP

5 Dtensor

Yuvraj Singh 11 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

What is KerasCV

↭ KerasCV: Keras framework extension, which focuses on computer vision
↫ Provides tools for image preprocessing, augmentation, and model training
↫ Includes state-of-the-art models for image classification, object detection,

segmentation, and more
↫ Designed to be user-friendly and highly customizable
↫ Well documented with examples

Yuvraj Singh 12 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

What is new in KerasCV - I

↭ Advanced Data Augmentation
↫ API to apply complex augmentations with minimal code
↫ Advanced augmentation layers, i.e., RandAugment

↭ Object Detection & Image Classification
↫ Access to state of state-of-the-art models, i.e., YOLO
↫ Possible to fine-tuning pre-trained models

↭ Benefits
↫ Reduces effort for data augmentation
↫ Reduces training time & faster convergence.
↫ Improves accuracy and robustness of the model

Yuvraj Singh 13 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

KerasCV Practical Task-I

↭ Finetuning pre-trained YOLOv8 model for DJI 300 RTK drone
↫ Objective: To detect and track DJI 300 RTK drone flying at a significant

distance in complex settings including lighting conditions, rapid camera
movements, etc.

Figure: Images of DJI 300 RTK Drone

Yuvraj Singh 14 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

KerasCV Practical Task-I

↭ Task Outline
↫ Advanced data augmentation
↫ Model-1: Finetuning pre-trained YOLOv8 without data augmentation
↫ Model-2: Finetuning pre-trained YOLOv8 with data augmentation
↫ Performance comparison of models
↫ Challenges

↭ Dataset Preparation
↫ HD images were taken using iPhone 12 & DSLR
↫ Images were taken in daylight - during flight, and indoors
↫ 671 labeled images and 50 background images, using makesense.ai

Yuvraj Singh 15 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

KerasCV Practical Task-I: Data augmentation

Figure: Random samples of augmentation performed

Yuvraj Singh 16 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

KerasCV Practical Task-I: Model Training

Model-1 Model-2
GPU Used NVIDIA A100 NVIDIA A100
Model Used YOLOv8 m YOLOv8 m
Dataset size 671 images 3.177 images
Background images 50 images 185 images
Training image size 1080 px 1080 px
Training time 26 mins 125 mins

Table: Training settings for Model-1 & Model-2

Yuvraj Singh 17 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

KerasCV Practical Task-I: Model Evaluation

Description
Test 1 Video recorded in a similar setting as training dataset
Test 2 Completely unseen, lower resolution, & distant flying
Test 3 Unseen, lower resolution, distant flying & complex background

Table: Description of tests performed

Figure: Shots from Test 2 & 3

Yuvraj Singh 18 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

KerasCV Practical Task-I: Model Evaluation

Figure: Model 1 & 2 performance comparison

Yuvraj Singh 19 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

KerasCV Practical Task-I: Challenges

↭ Possible improvements
↫ Advanced trackers like CSRT can hold pixels if the model fails until recovery.

↭ Model deployment
↫ High-performance models on devices like Pi compromise performance
↫ Can be deployed on embedded devices like Jetson boards. i.e. Jetson Orin
↫ Use a high-resolution camera with appropriate bandwidth

Yuvraj Singh 20 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

What is New in KerasCV-II

↭ High-performance image generation using Stable Diffusion
↫ Implement Stable Diffusion using KerasCV
↫ Generate high-quality, realistic images at no cost
↫ Generate images based on text prompts
↫ Suitable for applications in art, design, and entertainment

Listing: Text prompt to generate image using Keras-Stable Diffusion

1 import keras_cv
2 model = keras_cv.models.StableDiffusion(
3 img_width=512, img_height=512, jit_compile=False
4 )
5 images = model.text_to_image("steampunk airship, flying in the sky,

ω→ intricate mechanical details, Victorian era style", batch_size=1)

Yuvraj Singh 21 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

KerasCV Practical Task-II

Figure: Image generation using Stable Diffusion on Mac M1
Yuvraj Singh 22 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

KerasCV Practical Task-II

↭ Limitations of Stable Diffusion
↫ High specification hardware required (10-30GB VRAM GPU)
↫ Can only generate images of up to 1024x1024, standard size 512x512
↫ Biased towards English language and Western culture
↫ Generates unrealistic faces & limbs

Yuvraj Singh 23 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

Outline

1 Introduction to TensorFlow & Keras

2 Hardware Compatibility

3 KerasCV

4 KerasNLP

5 Dtensor

Yuvraj Singh 24 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

What is KerasNLP

↭ KerasNLP is an extension of the Keras to focus on NLP tasks.
↫ Provides tools for text preprocessing, tokenization, and model training.
↫ Offers state-of-the-art models for text generation, text classification, machine

translation, and more.
↫ Designed to be user-friendly and highly customizable.

Yuvraj Singh 25 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

KerasNLP Practical Task-I: Text Generation

↭ Text Generation using pre-trained GPT-2 model
↫ Utilize pre-trained GPT-2 weights for generating text sequences
↫ Auto-generate text from prompts, with just a few lines of code
↫ Fully integrated with the TensorFlow ecosystem

Listing: Loading and initializing GPT-2 mode

1 #default length: 1024 words.
2 preprocessor =
3 keras_nlp.models.GPT2CausalLMPreprocessor.from_preset(
4 "gpt2_base_en",
5 sequence_length=128,
6 )
7 gpt2_lm = keras_nlp.models.GPT2CausalLM.from_preset(
8 "gpt2_base_en", preprocessor=preprocessor
9 )

Yuvraj Singh 26 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

KerasNLP Practical Task-I: Text Generation

Listing: Example prompt to generate text

1 output = gpt2_lm.generate("Autonomous vehicles (AV)", max_length=100)
2 print("\nGPT-2 output:")
3 print(output)

Output:

1 Autonomous vehicles (AV) and unmanned vehicles (UAVs) could become a major
ω→ driver of transportation in the future, said an industry group.

2 The first autonomous vehicles were introduced in the United States in the
ω→ 1970s. They were used in commercial vehicles to carry passengers,
ω→ carry goods and carry out other tasks, and to carry out military
ω→ missions.

Yuvraj Singh 27 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

KerasNLP Practical Task-I: Fine-tuning Text Generator

↭ Fine-tuning pre-trained GPT-2 model
↫ Customize GPT-2 on your specific text dataset
↫ Improve performance on domain-specific tasks
↫ Steps involved:

• Load and preprocess your dataset
• Configure the training parameters
• Train fine-tune the model

GPT Backbone gpt2_base_en
Description of Text Used Ethical issues with Autonomous Vehicles
Trained for Epochs 10
Training Time 7.5 Minutes

Table: Fine-tuning details

Yuvraj Singh 28 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

KerasNLP-Practical Task: Fine-tuning Text Generator

Listing: Example prompt for finetuned text generator

1 output = gpt2_lm.generate("Autonomous vehicles (AV)", max_length=100)
2 print("\nGPT-2 output:")
3 print(output)

Output after fine-tuning:

1 Autonomous vehicles (AV) are autonomous vehicles designed to operate safely.
ω→ Autonomous vehicles (AV) represent a remarkable technological
ω→ development in road transportation. Autonomous vehicles (AV) are
ω→ highly dependent on data coming from the sensors, AI, and software
ω→ making decisions.

Yuvraj Singh 29 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

Outline

1 Introduction to TensorFlow & Keras

2 Hardware Compatibility

3 KerasCV

4 KerasNLP

5 Dtensor

Yuvraj Singh 30 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

DTensor Overview

↭ DTensor: TensorFlow extension for distributed computing

↭ Inspiration & Idea
↫ Scale up models and train them efficiently by combining and fine-tuning

multiple parallelism techniques

↭ Example Case
↫ Building transformer model, like the Open Pre-trained Transformer (OPT)

through KerasNLP

↭ Global programming model for Tensors, manages distribution internally

↭ DTensor decoupling allows the App to run on multiple devices/clients

Yuvraj Singh 31 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

DTensor’s Model of Distributed Tensors

↭ Mesh
↫ Defines the group of devices for computation
↫ Supports CPUs, GPUs, or TPUs
↫ Represents available hardware resources

↭ Layout
↫ Specifies how tensor is divided and spread across devices
↫ Indicates which parts of the tensor go to which devices

↭ Summary
↫ Mesh: Defines list of devices
↫ Layout: Defines distribution of tensor across devices

Yuvraj Singh 32 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

Mesh Simplified

↭ Example
↫ Hardware: 6 virtual CPUs

1 configure_virtual_cpus(6)
2 DEVICES = [f’CPU:{i}’ for i in range(6)]

↫ 1D Mesh: 6 CPU devices along a mesh dimension ’x’

1 mesh_1d = dtensor.create_mesh([(’x’, 6)], devices=DEVICES)

Yuvraj Singh 33 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

Mesh Simplified

↭ Example
↫ Multi-Dimensional Mesh: A grid with more than one dimension

1 mesh_2d = dtensor.create_mesh([(’x’, 3),
ω→ (’y’, 2)], devices=DEVICES)

Yuvraj Singh 34 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

Layout Simplified

↭ 1D Mesh (6 devices)
↫ Shard the second axis of tensor across 6 devices

1 layout = dtensor.Layout([dtensor.UNSHARDED, ’x’], mesh_1d)

Yuvraj Singh 35 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

Layout Simplified

↭ 2D Mesh (3x2 devices)
↫ First axis sharded across ’y’, second axis across ’x’ of rank-2 Tensor

1 layout = dtensor.Layout([’y’, ’x’], mesh_2d)

Yuvraj Singh 36 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

Conclusion

↭ Explored TensorFlow Ecosystem:
↫ Key features and advancements in TensorFlow and Keras
↫ Enhanced hardware compatibility for Apple Silicon, NVIDIA GPUs

↭ KerasCV & KerasNLP:
↫ KerasCV Project 1: Fine-tuning YOLOv8 for drone detection
↫ KerasCV Project 2: Image generation using Stable Diffusion
↫ KerasNLP: Trying GPT-2 model text generation and fine-tuning

↭ Introduction to DTensor:
↫ Distributed training techniques with DTensor for efficient scaling

Yuvraj Singh 37 /38



Introduction to TensorFlow & Keras Hardware Compatibility KerasCV KerasNLP Dtensor

Sources

1 https://blog.tensorflow.org/2023/05/google-io-2023-whats-new-in-
tensorflow-and-keras.html

2 https://www.tensorflow.org/guide/dtensor_overview

3 https://keras.io/guides/keras_cv/object_detection_keras_cv/

4 https://keras.io/guides/keras_cv/classification_with_keras_cv/

5 https://keras.io/guides/keras_cv/generate_images_with_stable_diffusion/

6 https://keras.io/guides/keras_cv/cut_mix_mix_up_and_rand_augment/

7 https://www.tensorflow.org/tutorials/images

8 https://keras.io/examples/generative/gpt2_text_generation_with_kerasnlp/

Yuvraj Singh 38 /38



Introduction to TensorFlow Hardware Compatibility KerasCV KerasNLP Dtensor Conclusion

Mesh Simplified

↭ Logical Grid
↫ Organizes devices into a grid with named dimensions
↫ Each dimension is called a "Mesh dimension"

↭ Unique Names
↫ Each dimension in the same Mesh must have a unique name

↭ Reference by Layout
↫ Names of Mesh dimensions are used by Layout to describe tensor division

↭ Multi-Dimensional Array
↫ Mesh as a multi-dimensional array, where each element is a device

Yuvraj Singh 30 /38



Introduction to TensorFlow Hardware Compatibility KerasCV KerasNLP Dtensor Conclusion

Layout Simplified

↭ Terms
↫ Dimension: Linked to the Mesh
↫ Axis & Rank: Linked to the Tensor and Layout

↭ Rank
↫ The rank (number of axes) of the Layout must match the rank of the Tensor

↭ Sharding
↫ Each axis of the Tensor can be sharded across a Mesh dimension.
↫ Tensor could also remain "UNSHARDED"

↭ Matching Dimensions and Axes
↫ Number of Layout axes does not need to match number of Mesh dimensions

Yuvraj Singh 33 /38


	Introduction to TensorFlow & Keras
	Hardware Compatibility
	KerasCV
	KerasNLP
	Dtensor

