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Abstract
This seminar report discussed and practically presents advancements within the TensorFlow
(TF) and Keras ecosystem, focusing mainly on functionality, performance improvements,
and hardware compatibility. Highlights of this report are KerasComputer Vision (CV)
and KerasNatural language processing (NLP), as they attempt to provide all required
tools for computer-vision and NLP tasks, respectively. This report also includes practi-
cal tasks performed using tools from KerasCV and KerasNLP Application Programming
Interface (API)s. Whether it is using state-of-the-art object detection models like You
Only Look Once (YOLO) or Large Language Models (LLM)s like Generative Pre-trained
Transformer (GPT)-2(small ) or BARD, Keras makes it possible just by a few lines of
code. In the end, this report discusses DTensor and its basic concepts for scalable and
distributed computing using Single Program, Multiple Data (SPMD) parallel computing
paradigm under the hood. DTensor provides one global development environment while
managing the distribution of tensors among devices internally. The combination of these
tools showcases the growing potential of TF and Keras in both research and industry
applications.
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What is new in Tensorflow and Keras

1 Introduction to TensorFlow & Keras
1.1 TensorFlow

The TF has emerged as one of the most preferred frameworks for Machine Learning (ML)
& Deep Learning (DL). TF is a flexible and comprehensive framework that has enabled
students, researchers, engineers, scientists, analysts, and developers to try their hands on
ML & DL. TF has made it easy to create ML & DL applications.

1.1.1 Some features and developments

TF was an initiative started by the Google Brains team in the year 2015. Its first version
was released in February 2017 as TF 1.0. It has seen significant changes and additions
since then. Including the integration of Keras, which is high-level API for building mod-
els, importing datasets & other libraries with convenience. TF 2.0 was released with
major API changes. It was TF 2.0, where model making was made more simpler and
user-friendly while maintaining performance. TF can be used using various programming
languages like Python, C++ & JavaScript. But, Python is the programming language
that is used most in TF framework, one of the reasons for that is Python’s short and
easy-to-understand syntax. The ML & DL models can be developed and deployed across
a range of platforms in TF, meaning that a model or application can be made or deployed
on Linux, macOS, and Microsoft Windows Operating Systems (OS). TF can also run on
different types of hardware like Central Processing Unit (CPU), GPU, & Tensor Process-
ing Unit (TPU). [Goo24]

TF Core: TF includes core API for building, training, and deploying ML models. TF
Core offers to support both high and low-level operations, i.e. Keras(high-level).

TensorFlow Extended (TFX): In March of 2018, TFX was released to enable end-to-
end ML pipelines. It provides all the necessary tools and libraries to manage workflows,
model training, monitoring, and validation.

TF Lite: TF Lite, which is for edge or computationally resources-limited devices like
Raspberry Pi. TF Lite models are lightweight making them suitable for deployment on
edge devices.

TensorFlow.js: is a library for ML in JavaScript. To develop ML models in JavaScript,
and to use ML directly in the browser or Node.js, etc. TF documentation and tutorials
show how to use TensorFlow.js with end-to-end examples.

TF data: offers a collection of datasets that are ready to use. All these datasets are
exposed as TF.js. TF datasets enable high performance and easy-to-use input pipeline.
This makes development and experimentation with models faster and more convenient.

TF Hub: is component of TF ecosystem that allows to use trained ML models, with
possibility to publish models. This promoted re-usability. Therefore, there is no need to
train models from scratch every time.

Section 1 Yuvraj Singh 1
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There are more components in TF ecosystem like TF Serving, TF Model Garden, TF
Probability, TF Cloud, TF Quantum, etc.

The version of TF was 2.16.1 during this project. To add, Keras 3 will be the default
version of Keras from this version of TF, and onwards.

1.2 Keras

Keras is a high-level Neural Network (NN) API which is written in Python. It is designed
in a way that can run on top of frameworks like TF, PyTorch, JAX. However, Keras is
more integrated with TF ecosystem, which is now its default backend. Keras makes it
possible to do fast experimentation with a simple and user-friendly interface. It is modular
and extensible, which makes it easier to customize models and plug in and out different
types of NN layers, and optimizers. This kind of flexibility makes Keras a valuable tool for
both research and production-focused environments. Keras supports a wide range of NN
architectures, which includes Recurrent Neural Networks (RNN), Convolutional Neural
Networks (CNN), transformers, etc. [ONE]

1.3 JAX & JAX2TF

JAX is a high-performance library from Google for numerical computation. It is specially
designed to leverage the power of special hardware like GPU and TPU if available to
provide faster computations. JAX is good for research and prototyping but lacks built-in
tools for deployment.

Here comes JAX2TF, which is a lightweight API to fill the gap between TF and JAX.
This enables JAX to use tools from TF ecosystem. As a result, it is also possible to build
and train models with JAX and deploy on edge devices like Raspberry Pi using TF Lite
from TF ecosystem. Furthermore, JAX2TF allows fine-tuning of models trained with
JAX in TF.

This combination enables model experimentation with JAX and followed by TF for
smooth deployment.

1.4 Comparison: TensorFlow vs. PyTorch

Figure 1: StackOverflow: Market share survey 2023

Both TF and PyTorch are renowned and powerful ML & DL frameworks. Both of
these frameworks support GPU & TPU acceleration. Both consist of large and active
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communities. Another highlight of both these frameworks is flexible APIs for ML&DL
tasks.

Parameter TensorFlow PyTorch
Ecosystem

• More comprehensive ecosys-
tem including TF Hub, TF
Graphics, and Keras.

• Less comprehensive compared
to TF, but a growing ecosys-
tem.

Production
Readiness • TFX provides support for scal-

ability, deployment, & man-
agement.

• Offers a range of tools for pro-
duction.

• Less focus on production & de-
ployment.

• PyTorch is gaining with tools
like TorchServe but lags be-
hind TensorFlow.

Prototyping
and Research • Slightly more complex to set

up.

• Suited for large-scale research
and deployment.

• Favored by researchers due to
its ease of use.

• Faster for rapid prototyping
and experimentation.

Training Time

• Efficient training may require
more setup for custom experi-
ments.

• Requires less training time,
making it suitable for quicker
experiments.

Customization

• Offers more tools for cus-
tomization, especially through
Keras and TF’s APIs.

• TensorFlow offers more op-
tions for customization.

Table 1: Comparison between TensorFlow and PyTorch framwork [Vih24][Alv24]

2 TF’s Hardware Compatibility
2.1 Apple Silicon:

TF 2.13 first provided Apple Silicon wheels. This TF native support for Apple Silicon
chips enabled optimized performance on Apple’s ML compute framework. This framework
also includes automatic hardware switching between CPU and GPU, to be specific, Metal

Section 2 Yuvraj Singh 3
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Performance Shaders (MPS) in the case of Apple GPUs. Such features ensure efficient
resource utilization of Apple’s hardware for ML tasks.[TT23a][23]

2.2 NVIDIA GPUs:

TF now provides integrated NVIDIA Compute Unified Device Architecture (CUDA) li-
braries on Linux systems, this feature is available from TF 2.15. TF 2.15 also included
an update to Clang 17.0.1 and CUDA 12.2 to boost NVIDIA’s GPU performance. Fur-
thermore, Clang 17 will be the default C++ compiler for TF. [TT23b]

2.3 Cross-Platform Compatibility:

TF is designed to support a wide range of hardware, which includes CPU, GPU, &
TPU. TF also supports deployment on cloud platforms like Google, Amazon Web Services
(AWS), Microsoft Azure, allowing flexible deployment on cloud-bases environments. For
mobile and resource-constrained devices, TF provides TF Lite, which includes tools to
convert TF models or weights to run on edge devices.[Boe23]

3 KerasCV
KerasCV is an extension of the Keras framework which is specifically designed for CV
tasks. It provides a range of models, which includes state-of-art models like YOLO, and
tools to develop CV applications. KerasCV provides all the required methods for image
augmentation, image processing, model training, etc. KerasCV provides a wide range of
pre-trained models for object detection, classification, segmentation, and even image gen-
eration using the Diffusion Model. This framework is built with the motive to provide an
easy-to-use and highly customizable interface. KerasCV is well-documented, with relevant
and well-explained examples, these documentations are actively maintained.[Ker24b]

3.1 What is new in KerasCV

3.1.1 Advanced Data Augmentation:

KerasCV offers API for using complex data augmentation layers with just a few lines of
code. Examples of these layers could be RandAugment, CutMix, MixUp, and the list goes
on. Using these layers effort for augmentation is decreased, following the contribution to
improve the model’s accuracy and robustness.

As mentioned, KerasCV provides augmentation layers like AutoAugment which auto-
matically searches for the best augmentations, which helps the model to generalize well.
[Ker22a]

3.1.2 Object Detection & Image Classification:

KerasCV provides variety of state-of-art models which includes YOLO object detection
models with variety of weights like YOLOs(small) for edge devices. YOLOm(medium)
and YOLOl(large) for more complex object detection tasks with the help of more param-
eters.[Ker23]

Section 3 Yuvraj Singh 4
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KerasCV includes state-of-art models for object classification like for example pre-
trained EfficientNetV2B0 backbone.[luk23]

KerasCV also gives options to users to use these pre-trained models and further fine-
tune them according to their specific needs. These models can be adapted by custom
datasets, which saves a lot of time, effort, and computation resources.

3.1.3 High-performance image generation using Stable Diffusion in KerasCV:

KerasCV now offers to use the Stable Diffusion model with just a few lines of code. Stable
Diffusion is a powerful open-source text-to-image generator. There are uncountable open-
source implementations to create images from text, but KerasCV offers components like
Accelerated Linear Algebra (XLA) compilation and mixed precision support, which help
to achieve state-of-art generation speed. XLA is an open-source compiler for ML, it takes
model from frameworks like PyTorch, TF and, JAX, and optimize their performance
across different hardware platforms like GPUs. Whereas, Mixed Precision belongs to
TF, which uses both 16- and 32-bit floating point during model training making it use
less memory and run faster. Using Keras mixed precision API performance can increase
by 3 times on modern GPUs, about 60% on TPUs, and more than 2 times on CPUs.
[Ker22b][Ker24c][Ten24b]

3.2 KerasCV-Practical Task-I

This practical task demonstrates the practical application with KerasCV for object detec-
tion like drone flying in complex settings. By using tools from KerasCV model can adapt
to tackle with situations like rapid camera or drone movement, low light, reflection, low
resolution, complex background, etc.

3.2.1 Fine-tuning pre-trained YOLOv8 model for DJI 300 RTK drone

In this task, tools from KerasCV were used. The main components were the data aug-
mentation layer and pre-trained object detection layer, from which the YOLOm v8 model
was used.

3.2.2 Task Outline

This task focuses on fine-tuning of pre-trained YOLOm v8 model on a high-quality cus-
tom DJI 300 RTK drone dataset. With an emphasis on the impact of advanced data
augmentation on model performance.

The outline of the task is following:-

1. Advanced data augmentation.

2. MODEL 1: Fine-tuning the pre-trained YOLOv8 model without augmentation.

3. MODEL 2: Fine-tuning the pre-trained YOLOv8 model with augmentation.

4. Evaluation of Trained Models.

5. Deployment of Model.

6. Challenges and possible improvements.

Section 3 Yuvraj Singh 5
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3.2.3 Dataset Preparation

The dataset for this task consisted of images of a DJI 300 RTK drone. The photos of
the drone were taken both indoors and outdoors, in daylight and evening, at rest and
while in the air, with and without natural occlusions, in reflection and under full light, to
make the model as robust as possible to handle complex test situations. About 500-600
high-quality photographs of the drone were taken in the setting described. The cameras
used were of iPhone 12, Raspberry Pi 12 MP HQ Camera, and Sony Alpha 7 III to get
one of the best quality datasets with available resources. This dataset was labeled using
MAKE SENSE image annotator[Sen].

3.2.4 Data augmentation

In the task, data augmentation was used to enhance the diversity in the dataset. Although
image collection was taken in all possible settings, it is generally not possible to capture
all the settings. There comes data augmentation, which helps the model to generalize by
simulating different real-world situations using KerasCV data augmentation API. Various
data augmentation were applied to datasets like basic random rotations with appropriate
angles and horizontal flips. The advanced data augmentations included MixUp, Motion-
Blur, Varying Red Green & Blue (RGB), RandomGridMask, RandomChannelShift, and
RandomHue.

Figure 2: Random samples of augmentations performed

MixUp: It happens with the blending of two images, making the model generalize
by learning from combined features.

MotionBlur: Simulates real-world motion or movement, making the model more
robust to moving and blurred objects. This augmentation will help to detect the drone
in a dynamic environment, or with rapid movements.

VaryingRGB: simulates different changes in environment light & color. This will
give the model the ability to handle different lighting conditions in real-world scenarios.

RandomGridMask: In this augmentation part of the image is masked on random
areas with random size. This model can detect objects with occlusion or missing features
of the target object.

Section 3 Yuvraj Singh 6
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RandomChannelShift: Random color shifts, simulates environmental and camera
sensor differences. This makes the detection model more resilient to varied images in
terms of color consistency.

RandomHue: Adjusting Hue can simulate lighting and color conditions, it also pro-
vides the model the ability to generalize across different lighting and color shifts.

These augmentations collectively can improve the model’s ability to handle a range of
real-world conditions by simulating those conditions that were not in the original dataset,
also increasing the size of the dataset at the same time. To note, these augmentation
layers ask for arguments like upper and lower limits to rotate the image, or range of each
RGB channel to perform augmentations.

3.2.5 Model Training

Model-1 Model-2
GPU Used NVIDIA A100 NVIDIA A100
Model Used YOLOv8 m YOLOv8 m
Dataset size 671 images 3.177 images
Background images 50 images 185 images
Training image size 1080 px 1080 px
Training time 26 mins 125 mins

Table 2: Training settings for Model-1 & Model-2

For training both models, YOLOm v8 backbone was used.
Model-1 is a basic model which was trained with 671 original images only, without

any data augmentation. It consists of just 50 background images(the absence of a drone
in the frame). This model was just trained in 26 minutes using NVIDIA A100 GPU from
Google-Colab. This model was trained with an image size of 1080 pixels. This model
was trained as a base model to compare Model-2 with it, to see the impact that data
augmentation using KerasCV API makes.

Model-2 involved a more extensive image dataset, which included basic and advanced
augmentations as mentioned above. This dataset consisted of 185 background images,
making the total size of the dataset to 3.177 images. GPU used, image size, and backbone
were the same as for Model-1. The training time taken was about 125 minutes.

3.2.6 Model Evaluation

The fine-tuned YOLOv8 models were evaluated using three different test videos acquired
from the web. The objective was to measure the performance of both models with varied
levels of difficulty, including resolution, lighting, flying distance, etc. in each of the test
cases.

Description
Test 1 Video recorded in a similar setting as training dataset
Test 2 Completely unseen, lower resolution, & distant flying
Test 3 Unseen, lower resolution, distant flying & complex background

Table 3: Description of tests performed

Section 3 Yuvraj Singh 7



What is new in Tensorflow and Keras

Figure 3: Shots from Test 2 & 3

Test-1: Is a video recorded in the same scenario as when the original training dataset
was recorded. This test allowed how well the model performs on the resembling the
training conditions.

Test-2: This is a completely unseen video with lower resolution and a DJI 300 RTK
drone flying at a significant distance. This test pushed the model to perform on unseen
data, and how it tacked challenging frames.

Test-3: Is also a completely unseen video with lower resolution, complex background,
lighting, and DJI 300RTK drone flying at a significant distance. This test also pushed
the model to perform on unseen data, and how it tacked challenging frames.

In Figure 3, example shots from test videos 2 & 3 can be seen.

Figure 4: Model 1 & 2 performance comparison

By comparing the performance of both models with the help of the Average Confidence
Score(%) and the number of total detections made by the models throughout each video.

Average Confidence Score(%) graph shows that both Model-1 and Model-2 per-
formed equally well on Test-1. On the contrary, Model-2 performed significantly well
compared to Model-1 in Test-2 and Test-3. This supports that augmentation enables the
model to make detection with higher confidence.

Number of total detections graph shows that in all the test cases Model-2 detects
DJI 300 RTK drone more than Model-1. Again this supports that augmentation improves
model performance. To avoid any kind of bias, special care of Frames Per Second (FPS)
and test video resolution was kept the same.

3.2.7 Challenges

Sometimes, even well-trained models can lose the track of target object. In that case,
we can use Kalman filters, or Channel and Spatial Reliability Tracker (CSRT) trackers

Section 3 Yuvraj Singh 8
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provided by Python’s computer vision library. The CSRT can hold the pixels from the
last bounding box provided by the object detection model until the model can detect the
target object again.

Model deployment is another crucial aspect of the ML/DL pipelines. TF and Keras
provide a range of tools for smooth and effective deployment. An example of this could
be converting this trained YOLOm v8 model as TFlite model, and to be deployed on
resources-constrained devices like Raspberry Pi. But, embedded devices like Jetson Orin
can be used for better inference, and speed in combination with high-resolution cameras
with appropriate bandwidth to get the best out of the trained models.

3.3 KerasCV-Practical Task-II

3.3.1 High-performance image generation using Stable Diffusion

Figure 5: Astronaut riding horse by Stable Diffusion[Ker22b]

KerasCV provides support for Stable Diffusion enabling users to produce high-resolution,
realistic images with XLA compilation and mixed precision support, which together
achieve state-of-the-art generation speed. Stable Diffusion is a powerful deep-learning
model for high-quality and realistic image generation. In just a few lines of code and de-
scription as an argument what to create, enabling possibilities in creative applications like
designs, fantasy art, and entertainment. It is free to use, without any need for expensive
proprietary software.[Ker22b]

3.3.2 Image generation using Stable Diffusion on Mac M1 Pro Chip

1 images = model.text_to_image(
2 "A detailed airship floating above a steampunk city at sunset. The

airship has a spherical , metal structure with Victorian technology.
The city below has tall , gothic buildings with metalwork. The
atmosphere is misty with warm , golden sunlight.",

3 batch_size =2
4 )
5 def plot_images(images):
6 plt.figure(figsize =(20, 20))
7 for i in range(len(images)):
8 ax = plt.subplot(1, len(images), i + 1)
9 plt.imshow(images[i])

10 plt.axis("off")
11 plot_images(images)

Listing 1: Example Prompt for generating image

It takes about 5 minutes to generate a single image using Stable diffusion on an Apple
MacBook Pro with M1 Chip(10 Core CPU & 16 Core GPU).

Section 3 Yuvraj Singh 9



What is new in Tensorflow and Keras

Figure 6: Image generation using Stable Diffusion on Mac M1 Pro

3.3.3 Limitations of Stable Diffusion

Stable diffusion typically requires highly specified hardware, 10 to 30 Gigabyte (GB)s of
VRAM on a GPU to generate images quickly and efficiently. The maximum image size
can be 1024x1024 pixels, whereas the default size is 512x512 pixels.

Figure 7: Example of generating human figures using Stable Diffusion

Stable Diffusion has language and cultural biases to the English language and West-
ern culture. Furthermore, Stable Diffusion is not the best to generate faces and limbs,
especially human beings. This is evident in Figure 7.

4 What is KerasNLP
KerasNLP is a special extension of Keras DL framework designed to perform various NLP
tasks with ease. Some of the highlights of KerasNLP are following:-

Text Preprocessing: KerasNLP contains tools for essential NLP tasks such as tok-
enization and text processing.

State-of-the-Art-Models: KerasNLP offers a range of pre-trained models for text
generation, classification, translators, and more. KerasNLP provides many pre-trained
models, such as Google Bard and GPT-2.

Easy integration: KerasNLP simplifies the process of integrating NLP functions
into projects or applications, whether it is a custom solution or a pre-trained model.

Section 4 Yuvraj Singh 10
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4.1 KerasNLP-Practical Task

This practical task shows how KerasNLP can be used to generate text and further fine-
tune a text generation model. This text generation can be achieved by using LLMs. LLMs
are types of models that are trained on very large corpus text to generate output for NLP
tasks, such as text generation, machine translation, etc. Generative LLMs are based on
DL NN, such as Transformers which were invented by Google in 2007. [Ker]

4.1.1 Text Generation using GPT-2

This part shows GPT-2 model can used from KerasNLP API to generate human-like
texts. It is fully integrated within the TF ecosystem.

1 preprocessor = keras_nlp.models.GPT2CausalLMPreprocessor.from_preset("
gpt2_base_en",sequence_length =128,)

2 gpt2_lm = keras_nlp.models.GPT2CausalLM.from_preset("gpt2_base_en",
preprocessor=preprocessor)

Listing 2: loading & initializing the GPT-2

GPT-2 model can be loaded and initialized using KerasNLP API as shown in Listing-2.
1 output = gpt2_lm.generate("Autonomous vehicles (AV)", max_length =200)
2 print(output)
3 print(f"TOTAL TIME ELAPSED: {end - start :.2f}s")

Listing 3: Example prompt to generate text

After loading the model, text can be generated by simply calling method generate() from
gpt2_lm. For example, the prompt is passed as "Autonomous vehicles (AV)" shown in
Listing-3.

1 Autonomous vehicles (AV) and unmanned vehicles (UAVs) could become a
major drivers of transportation in the future , said an industry group
.

Listing 4: Output

Output can be seen after passing the prompt as shown in Listing-4. This output is
based on information on which GPT-2 the model was trained.

4.1.2 Fine-tuning

KerasNLP makes it possible to fine-tune or train the model on the text of the user’s choice.
Fine-tuning allows GPT-2 model to adapt knowledge from provided text, enhancing its
ability to generate outputs specific to the domain of interest. To demonstrate this process
pre-trained GPT-2 model was used. [Ker24a]

In this practical task, GPT-2 model was trained with setting as shown in Table 4.
The model was fine-tuned using a university seminar report as a custom dataset written
on Ethical Issues with Autonomous Vehicles.

1 output = gpt2_lm.generate("Autonomous vehicles (AV)", max_length =200)
2 print(output)
3 print(f"TOTAL TIME ELAPSED: {end - start :.2f}s")

Listing 5: Example prompt to generate text after fine-tunning
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GPT Backbone gpt2_base_en
Description of Text Used Ethical issues with Autonomous Vehicles
Trained for Epochs 10
Training Time 7.5 Minutes

Table 4: GPT-2 Fine-tuning details

1 Autonomous vehicles (AV) are autonomous vehicles designed to operate
safely. Autonomous vehicles (AV) represent a remarkable technological
development in road transportation. Autonomous vehicles (AV) are

highly dependent on data coming from the sensors , AI, and software
making decisions.

Listing 6: Fine-tuned Output

From the output in Listing-6, it is evident that the response this time was based on
knowledge from paper Ethical Issues with Autonomous Vehicles.

5 DTensor
DTensor is a global programming model that allows developers to design an application
that operates on Tensors globally while DTensor manages the distribution across devices
automatically. DTensor scales up models using a procedure called SPMD expansion.
SPMD is a parallel computing model where multiple processors collaborate in the execu-
tion of a program to solve computations faster. And DTensor uses SPMD to distribute
programs and tensors according to sharding directives. This decoupling allows running
the same application on a single device, multiple devices, or even on multiple clients while
preserving global semantics internally. DTensor can be used on devices like CPUs, GPUs,
or even TPUs, including virtual or simulated ones. [Ten24a][Ten23]

5.1 DTensor’s Model of Distributed Tensors

DTensor has mainly two concepts, namely Mesh and Layout. Mesh defines the list of
devices on which computations would be carried out. And Layout defines how to shard
the Tensor’s dimension on a Mesh.[Ten24a]

5.1.1 Mesh

Mesh is a concept that defines the group of devices, such as CPUs, GPUs, or even TPUs,
in other words, it represents available hardware resources that are responsible for the
distributed computations. Mesh has some conventions and features as follows:-

1. Logical Grid: Organizes devices into a grid with named dimensions, each dimen-
sion is called Mesh dimension.

2. Unique Names: Each of the dimensions in the same Mesh can not have the same
name, must be unique by rule.

3. Reference by Layout: Names of Mesh are used by Layout to describe tensor’s
division.

4. Multi-Dimensional Array: Mesh can be laid out as a multi-dimensional array,
where each element is a device.
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Mesh Examples

1 configure_virtual_cpus (6)
2 DEVICES = [ f CPU :{i} for i in range (6)]

Listing 7: Hardware: 6 virtual CPUs

1 mesh_1d = dtensor.create_mesh ([(’x’, 6)], devices=DEVICES)

Listing 8: Example 1D Mesh: 6 devices along a mesh dimension ’x’

In Listing-7, six virtual CPUs have been created to configure them into a mesh. Fol-
lowing that in Listing-8, the mesh has been created, which expands across dimension ’x’.
as shown in Figure-8.

Figure 8: 1D Mesh expanding along ’x’ dimension[Ten24a]

1 mesh_2d = dtensor.create_mesh ([(’x’, 3), (’y’, 2)], devices=DEVICES)

Listing 9: Example 2D Mesh

Figure 9: Example 2D Mesh[Ten24a]

In Listing-9, an example 2D mesh is been created, visual representation can be seen
in Figure-9.

5.1.2 Layout

Layout describes how tensor or data will be distributed across the defined Mesh. The
Layout ensures that tensors are distributed to appropriate devices, to enable parallel
computing.
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The layout has some conventions and features as follows:-
1. Terms: The terms Axis and Rank are used in the Layout context. Whereas, the

term Dimension is used in the context of the Mesh.
2. Rank: Is the number of axis of the Layout, which must match the rank of the

tensor.
3. Sharding: Each axis of the Tensor can be shared across the Mesh dimension,

tensor also could remain "unsharded".
4. Matching Dimensions and Axes: Number of Layout axes does not need to

match the number of Mesh dimensions.

Layout Examples
Continuing with Listing-8, Listing-10 shows how a tensor’s second axis can be shard

across 6 devices or along the x-dimension of 1D Mesh. The visual representation can be
seen in Figure 10.

1 layout = dtensor.Layout ([ dtensor.UNSHARDED , ’x’], mesh_1d)

Listing 10: Shard the second axis of tensor across 6 devices

Figure 10: Shard the second axis of tensor across 6 devices[Ten24a]

1 layout = dtensor.Layout ([’y’, ’x’], mesh_2d)

Listing 11: First axis sharded across ’y’, second axis across ’x’ of rank-2 Tensor

Figure 11: 1st axis sharded across ’y’, second axis across ’x’ of rank-2 Tensor[Ten24a]

Now continuing with Listing-9, Listing-11 shows how a tensor’s first axis can be
sharded across the "y"-dimension, and the second axis across the "x"-dimension of the
rank-2 Tensor. The visual representation can be seen in Figure 11.

As models are getting bigger and bigger, fitting them into one device is getting harder.
Therefore, DTensor is one of the options to fit these models and training environments
on multiple devices while getting unified global semantics. [Ten23]
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6 Conclusion
In this paper, the latest features of TensorFlow and Keras, and the growing ecosystem
were explored. TF and Keras ecosystem are consistently evolving, including advancement
in hardware compatibility and efficiency. TF support for Apple Silicon and NVIDIA
GPUs is making it possible to work on a wide range of devices with ease, improving both
power efficiency and training times.

KerasCV and KerasNLP provide dedicated tools for computer vision and natural lan-
guage processing applications. In KerasCV projects 1 and 2, it was observed that it is
convenient to use state-of-the-art models with just a few lines of Python code, and fol-
lowing that fine-tuning those models on custom datasets with little more effort. As data
augmentation was part of this, it was also evident that Keras also provides augmentation
layers to handle these tasks effectively. Last but not least KerasCV also makes it possible
to use Stable Diffusion with just a few lines of code followed by a prompt to generate free
Artificial Intelligence (AI) generated images.

With KerasNLP it is possible to use LLMs like GPT-2 and Bart with just a few lines
of code, and it is even possible to fine-tune them on personal or choice of text corpus.
KerasNLP provides all other required tools to perform NLP tasks requiring the least
effort.

Last, the DTensor could be a major player when it comes to distributed training by
efficiently enabling parallel computing, for example along multiple devices.

TF and Keras are continually growing in terms of performance and accessibility, by
coming up with new tools that empower both research and industry applications.
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