
Seminar:
Scalable Computing Systems and Applications in AI, Big

Data and HPC

Report on
Scalable Quantum Computer Simulation on HPC Systems

Ughur Mammadzada
ughur.mammadzada@stud.uni-goettingen.de

Universität Göttingen

Supervisor: Tino Meisel

30 September 2024

Contents

1 Introduction 2

2 Background 2
2.1 Quantum Computers . 2
2.2 Simulation . 2
2.3 Schrödinger’s method . 2

3 Simulators 3
3.1 Intel Quantum Simulator (IQS) . 3
3.2 Quantum Exact Simulation Toolkit - QuEST . 3
3.3 IBM Qiskit . 3
3.4 Qibo . 3
3.5 Qulacs . 3
3.6 Cirq . 3
3.7 Quantum Toolbox in Python - QuTiP . 3
3.8 Overview . 4

4 Benchmarking 4

5 Methods 5
5.1 Process . 5
5.2 Python Script . 6
5.3 Environment . 7

6 Evaluation 7

7 Discussion 10

8 Conclusion 11

A Appendix 11
A.1 Slurm Submissions . 11

1

1 Introduction

This report covers practical project work conducted
during Summer Semester 2024 at the University of Goet-
tingen in the context of the seminar "Scalable Computing
Systems and Applications in AI, Big Data and HPC".

The report will cover the basics of quantum comput-
ers / machines (QC or QM) and explain the theories
behind their simulation on classical computers. More
detailed attention will be given to Schrödinger’s method
of simulation. After covering those principles the report
will cover some of the common Schrödinger style simula-
tors.

The report will also cover standardized ways of bench-
marking QC. After that, the report will explain the dif-
ferences in benchmarking QCs and QSs.

Next chapters will cover the practical project’s plan,
the benchmarking principle, the executed work and the
environment of execution. This will be followed by ob-
served results and conclusions made from those observa-
tions.

2 Background

2.1 Quantum Computers

Quantum computing is a type of computing that takes
advantage of the principles of quantum mechanics, such
as superposition, entanglement and quantum interfer-
ence. Unlike classical computers, which use bits (0 or
1) as the smallest unit of information, quantum comput-
ers use qubits. A qubit can represent a 0, 1, or both 0
and 1 simultaneously, thanks to the principle of super-
position. This state is maintained during the calculation
to let the calculation consider all possibilities [1].

In addition to superposition, qubits can also be entan-
gled. When qubits are entangled, the state of one qubit
is directly related to the state of another, no matter the
distance between them.

These features allow QCs to process calculations
much faster than classical computers, to the point where
until recently, all existing encryption methods were con-
sidered useless in a QC world, as QCs can brute-force the
decryption key in practical amounts of time. In compar-
ison classical computer would take time that orders and
orders of magnitude bigger than the currently agreed age
of the universe.

2.2 Simulation

While QCs are so exciting, they are expensive and
hard to build, maintain and operate for a variety of rea-

sons, including cooling and noise protection.
Although these problems will most likely be solved in

the future, one thing we’ve learned from history is that
waiting for hardware to develop software is not optimal.
That is one of the main reasons for QSs to exist.

Besides helping the engineers to develop QCs, such
simulators help developers to write software for the hard-
ware that doesn’t exists yet or is unavailable.

There are 3 main theories of quantum computer sim-
ulations:

• Schrödinger’s method

• Feynman’s method

• Heisenberg’s method

2.3 Schrödinger’s method

Schrödinger’s method, also known as linear-algebraic
method, is one of the most common approaches to sim-
ulating quantum systems on classical computers. It is
based on solving the wave function of the quantum sys-
tem, which describes the probabilities of different states
the system can be in. In this method, the quantum state
of a system of n qubits is represented as a vector in a 2n-
dimensional complex vector space. The evolution of this
quantum state is computed by applying unitary transfor-
mations, known as quantum gates, to the state vector.

|ψ⟩ = α|0⟩+ β|1⟩ (1)

The Equation (1) shows the representation of a sin-
gle qubit. Here α and β are complex numbers, and
|α|2 + |β|2 = 1, meaning that the total probability is
1. In vector form, a single qubit can be represented as
Equation2:

|ψ⟩ = α|0⟩+ β|1⟩ =
[
α
β

]
(2)

and for 2 qubits (3):

|ψ⟩ = (α0|0⟩+ β0|1⟩)⊗ (α1|0⟩+ β1|1⟩) =

= v00|00⟩+ v01|01⟩+ v10|10⟩+ v11|1⟩ =

v00
v01
v10
v11

 (3)

and hence 2n. If the qubit is at state |0⟩ the vector

will be
[
1
0

]
meaning probability 1 for 0 and probability

0 for 1.
As more qubits are added, the size of the state vec-

tor grows exponentially, leading to a computational cost.

2

Simulating a system of 10 qubits requires handling a vec-
tor with 210 = 1024 complex entries.

While qubits are represented as vectors, quantum
gates are represented as matrices. For example the
Hadamard gate, which is used to put the qubit in a su-
perposition looks like this (4) [2]:

H =
1√
2

[
1 1
1 −1

]
(4)

when applied to a qubit in state |0⟩ will:

H|0⟩ = 1√
2
(|0⟩+ |1⟩) = 1√

2
|0⟩+ 1√

2
|1⟩ =

=

[
1√
2
1√
2

] (5)

With n increasing, the matrices will have dimensions
2n × 2n. This method is most intuitive and accurate,
however due to stated properties it is computationally
expensive. That is precisely why it is the most fitting
model in the context of High Performance Computing
(HPC).

3 Simulators

3.1 Intel Quantum Simulator (IQS)

The Intel Quantum Simulator (IQS)[3] is a high-
performance simulation tool designed to emulate quan-
tum circuits based on Schrödinger’s method. IQS is
highly scalable, enabling both single-instance simulations
for large qubit counts and parallel simulations for multi-
ple quantum states or noisy systems. It supports multi-
core and multi-node modes out of the box. Further-
more, it supports GPU acceleration. IQS has both C++
and Python interfaces, making it a versatile tool for re-
searchers in quantum computing.

3.2 Quantum Exact Simulation Toolkit -
QuEST

The Quantum Exact Simulation Toolkit (QuEST)[4]
is an open-source, high-performance quantum circuit
simulator (C library) that supports parralelism out of
the box. It is designed to run on various platforms, from
personal laptops to supercomputers, using a hybrid par-
allelization strategy with OpenMP and MPI, and it also
supports GPU acceleration.

3.3 IBM Qiskit

IBM’s Qiskit[5] is an open-source tool for quantum
computing, designed to build and run quantum circuits
on IBM’s quantum computers as well as on simulators.
With Qiskit users can build quantum circuits and run
them on a backend of their choice, including Qiskit’s sim-
ulator Qiskit Aer. It has modules (Aer is one of them),
which also include support of HPC. However Qiskit itself
is not designed for HPC as it is in origin just a frontend
to build and send a curcuit to a backend.

3.4 Qibo

Qibo[6] is an open-source framework for quantum
simulation, designed to rely on hardware acceleration,
particularly through GPUs, to boost the performance of
quantum circuit simulations. It uses TensorFlow as its
backend, but the backend can be customized, such as
CUDA for GPU utilization. Qibo allows for both single-
and multi-GPU computations.

3.5 Qulacs

Qulacs[7] is a high-performance quantum circuit sim-
ulator designed for fast simulations of quantum algo-
rithms on both classical hardware and specialized sys-
tems like GPUs. Written in C++ and with a Python
interface, Qulacs is optimized for flexibility and speed,
making it suitable for research in quantum computing,
especially in simulating large quantum circuits efficiently.
It supports both dense and sparse matrices, which en-
ables simulations with varying levels of precision and
complexity.

3.6 Cirq

Cirq[8] is an open-source Python framework devel-
oped by Google as part of its Quantum AI initiative,
aimed at building, simulating, and executing quantum
circuits, particularly for Noisy Intermediate-Scale Quan-
tum (NISQ) devices. It allows researchers to design
quantum circuits with a variety of gates, simulate these
circuits on classical computers, and test quantum algo-
rithms in noisy environments, reflecting real-world quan-
tum hardware conditions. Cirq is well-integrated with
Google’s quantum processors and can also support other
quantum backends, making it flexible for researchers ex-
ploring quantum algorithms and hardware.

3.7 Quantum Toolbox in Python -
QuTiP

The Quantum Toolbox in Python (QuTiP)[9, 10] is an
open-source, high-performance software framework de-

3

signed for simulating the dynamics of open quantum sys-
tems. QuTiP allows researchers to explore quantum phe-
nomena such as dissipation, decoherence, and quantum
state evolution. It supports simulations of both closed
and open quantum systems, using Schrödinger and Lind-
blad formalisms[11], respectively.

QuTiP is optimized for performance with support for
parallelization and can run on various platforms, includ-
ing workstations and high-performance computing envi-
ronments. The software also offers an extensive library of
quantum objects, operations, and solvers, which makes
it a popular choice for research in quantum optics, quan-
tum information, and quantum control.

3.8 Overview

There are many more simulators such as
Pennylane[12], ProjectQ[13] and many more. Most
of them use the same mathematical rules based on
Schrödinger’s method. Many of the listed simulators
are in their origin designed to be a frontend for a QC.
Actually, one of the advantages of Qulacs according
to the developers is that it was not designed to be an
interface, but the complete simulator.

There are a lot of simulators and the main property
that make one better than another is not the simulation
accuracy and modeling, but the functional calls, data
distribution, wall clock performance. The computations
themselves are deterministic. The goal is to optimize the
way workload is distributed on a cluster (if execution on
cluster is supported).

In this project 5 simulators with Python interface
were used:

• Cirq

• Qibo

• Qiskit

• Qulacs

• QuTiP

4 Benchmarking

The current state of the art method of benchmarking
QMs is Qunatum Volume (QV) metric. Developed by
IBM, QV measures how well a quantum computer can
handle increasingly complex circuits by looking at fac-
tors like the number of qubits, gate quality, connectivity
between qubits, and error rates. A higher QV means the
machine can run larger and deeper circuits before errors
take over.

To calculate QV, a quantum computer runs random-
ized circuits of different sizes, and the results are checked
against ideal, error-free outputs. The largest circuit size
where the machine produces reliable results gives the QV
score. This method is useful because it provides a broad
measure of the system’s overall performance.

During the benchmark process the generated circuits
are always square circuits, meaning number of qubits and
layers of gates (depth) is equal.

c0

c1

q0 U

q1 I

Figure 1: A square quantum circuit with 2 qubits and
2 layers. The first layer consists of U and I gates, the
second layer is a SWAP gate, and the third layer includes
measurements on both qubits with outputs c0 and c1.

c0

c1

c2

q0 U

q1 H

q2 I

Figure 2: A square quantum circuit with 3 qubits and 3
layers. The first layer consists of U , H, and I gates. The
second layer includes CNOT gate between q0-q1. The
third layer includes CNOT between q1-q2. The measure-
ments are stored as c0, c1 and c2

With this benchmark if a QM can run a circuit of size
4× 4 that means the QM has QV of 24 = 16.

However, while this benchmark is useful for QMs it is
not designed for simulators. The main problem is that in
case of a QM at some point it will fail to do the compu-
tations right, while the simulator is always deterministic
and theoretically the number of qubits and the depth can
be increased indefinitely. The only constrain is really just
the computation cost.

The reason QV benchmark exists is to understand
how reliable are the results of the computation done by
a QM. In case of QS they are reliable all the time (unless
noise is added on purpose).

That is why we cannot use QV to benchmark the sim-
ulator directly. To understand how to benchmark a QS
first we need to understand the purpose of the simula-
tor and what are the requirements it has to met. One
of such requirements is to be fast. In this project the
computation performance will be main focus of bench-
marking. QV benchmarking will be a proxy to bench-

4

mark the simulators. This means that the benchmark
will not be evaluating QV of the QS but instead running
QV benchmark and measuring how fast QS can complete
the calculations.

5 Methods

5.1 Process

Initially, the goal of the project was to benchmark
QSs. QV benchmark which is used for QCs was inspected
and was initially chosen as the benchmark. The first
codebase was built around running the circuits in differ-
ent simulators and test their accuracy as the quantum
circuits become more complex.

To measure the accuracy of the simulators the entopy
of their outputs was calculated. However during the in-
spection of the result data it was discovered that the
simulators in terms of their accuracy are almost identi-
cal (Fig. 3):

Figure 3: Entropy of different simulators

Additionally, the computations are heavily depended
on the backend used and most "simulators" are just in-
terfaces for different backends and the user can switch
the backends.

After those discoveries it was decided to fall back on
more classical benchmarking methods used for classical
computers. It was evaluated, if the execution would fit
the project context.

The project is dominately about benchmarking the
simulators on HPC, using classical benchmarking ap-
proaches was seen as apropiate next step.

The main issue for the next step was to come up with
an artificial task for the benchmark. As the main objec-
tive of the benchmarking is to identify how good the sim-
ulator scales by problem size and scale of parallelization,

the task should involve gradually increasing complexity
of calculations.

In case of simulating n qubit QC, the complexity
of the calculations increase as n increases. Those the
straightforward way to give an artificial task is by doing
the same kind of computations with increasing number
of qubits.

The existing codebase which involves QV benchmark-
ing was revieved and it was decided that the existing
benchmark task already meets the requirements. The
only alterations to the benchmark had to be done on the
measurements.

More classical performance measurements were added
to the benchmark. Also after this stage the codebase was
refactored and made modular in order to make it easier
to add new simulators.

Instead of using random circuits it was decided to use
a stable circuit design:

c0

c1

q0 H

q1

Figure 4: A 2×2 square GHZ circuit.

c0

c1

c1

q0 H

q1

q1

Figure 5: A 3×3 square GHZ circuit.

The circuits in Figures 4 and 5 are Green-
berger–Horne–Zeilinger (GHZ) State Circuits[14], which
is mainly applied in quantum communication and en-
cryption technologies. In those circuits first the
Hadamard gate is used to put the the qubit 0 in super-
position. Then the Control gates are applied from each
qubit to the next qubit, to entangle them. At the end all
qubits end up being entangled.

After those operations all qubits are entangled,
meaining the state of each qubit depend on every other
qubit, but at the same time all qubits are in the super-
position:

|GHZ⟩ = 1√
2
(|000...0⟩+ |111...1⟩) (6)

After the measurement either all states are 0 or 1.

5

All simulators build the same circuit described above
and run it, adding one more qubit and CNOT gate each
iteration.

5.2 Python Script

The main benchmark toolkit is a list of python scripts
that create circuits and run them. Every simulator that
has a Python or C interface can be benchmarked.

The main entry point of the script is:

1 import sys
2

3 from helpers import get_args , is_MPI
4

5 def main():
6 args = get_args ()
7

8 if is_MPI ():
9 from runners import benchmark_runner_MPI

10 benchmark_runner_MPI(args)
11 else:
12 from runners import benchmark_runner
13 benchmark_runner(args)
14

15 if __name__ == "__main__":
16 main()

Here the script first determines if the environment
supports MPI and if it is needed. The script accepts the
following parameters:

• –-simulator: The simulator to benchmark (qiskit,
qibo, qulacs, qutip, cirq)

• –-save_dir: Directory to save results

• –-total_shots: Total number of shots

• –-min_qubits: Minimum number of qubits

• –-max_qubits: Maximum number of qubits

Depending on the simulator parameter the runner
will import necessary libraries and benchmark the sim-
ulator. The circuit builder is designed in a way to work
even if not all libraries are installed. For example, if the
user wants to benchmark only qiskit they can install all
necessary libraries with:

$ pip install .[qiskit] # basic install for
qiskit

$ pip install .[qiskit , mpi] # for mpi support
$ pip install .[<simulator >] # different

simulator
$ pip install .[all{-mpi}] # full install (

optionally with mpi)

Of course this set up assume openmpi already present
on the system.

When the runner receives simulator, it will make call
to circuits which has the build and run codes for all
circuits. For qiskit as example the run can be:

1 def run_qiskit(shots: int , num_qubits: int) ->
Dict[str , int]:

2 """
3 Runs a quantum circuit with the specified

number of qubits and shots using Qiskit
AerSimulator.

4

5 Args:
6 shots (int): Number of measurement shots

.
7 num_qubits (int): Number of qubits in

the circuit.
8

9 Returns:
10 Dict[str , int]: Measurement counts.
11 """
12 try:
13 from qiskit import QuantumCircuit ,

transpile
14 from qiskit_aer import AerSimulator
15 from qiskit.transpiler import

CouplingMap
16

17 backend = AerSimulator ()
18

19 circuit = QuantumCircuit(num_qubits)
20

21 # Put the first qubit in superposition
22 circuit.h(0)
23

24 # Entangle each subsequent qubit
25 for qubit in range(num_qubits - 1):
26 circuit.cx(qubit , qubit + 1)
27

28 # Take measurements
29 circuit.measure_all ()
30

31 # Run the Circuit
32 coupling_map = CouplingMap.from_full(

num_qubits)
33 transpiled_circuit = transpile(circuit ,

backend , coupling_map=coupling_map)
34 result = backend.run(transpiled_circuit ,

shots=shots).result ()
35

36 return result.get_counts ()
37 except Exception as e:
38 exception_return(num_qubits , e)

The benchmark runner receives this function as a
callable reference via:

1 def get_simulator(args: argparse.Namespace) ->
Callable [[int , int], Dict[str , int]]:

and passes it to the benchmark function. The bench-
mark function with given number of qubits and total
shots calls the run_<simulator> which builds a square
circuit and runs it for the given amount if shots. The
benchmark function measures the total runtime, the
build and execution time of the circuit, the entropies
from the circuit runs and memory usage. The bench-
mark runner then saves then saves the results as CSV
and PNG files.

The codebase is as modular as possible to make it
easy to add new simulators. Furthermore, even if the
simulator does not support python, custom interface can
be passed to the benchmark runner as long as it is a

6

callable function.
Each simulator function / interface follows a similar

pattern, focusing on building a circuit, executing it, and
returning the measurement counts. This structure ab-
stracts the differences between simulators, enabling users
to benchmark any quantum framework with minimal ef-
fort.

Each simulator’s specific syntax is handled inside the
run_<simulator> functions, and the main script doesn’t
need to worry about the details of circuit construction
or execution. This separation of concerns ensures the
codebase remains clean and maintainable. Simulators
like Qiskit, Qibo, Qulacs, and Cirq all require a different
way of defining and running circuits, but the benchmark
suite abstracts this so that the benchmark logic remains
consistent across different frameworks.

This also reducec risk of mistakes during addition of
new simulators as the argument that the runner passes to
the circuit builder and the results that the builder return
remain the same, so the circuit builder has to be adapted
to meet the benchmark requirements, instead of writing
a new benchmark for the new simulator.

5.3 Environment

The benchmark was run on NHR-NORD@Göttingen
system “Grete”[15]. The cluster itself is designed for GPU
workloads and a better alternative would have been the
"Emmy" system, however this was the only available op-
tion and considering the capabilities of the benchmark
were enough.

The system has 2 Zen3 EPYC 7513 processors, each
with 32 cores on zen3 architecture[16]. At the time of
execution, the system was running on Rocky Linux 8[17].

To install the packages the following commands have
to be executed:
$ module load openmpi miniforge3
$ conda create -n env python =3.12
$ source activate env
$ pip install .[all -mpi]

The benchmark then can be run with:
$ srun --mpi=pmix_v3 -n ${workers} python

benchmark.py \
--simulator ${simulator} \
--save_dir ${save_dir} \
--total_shots ${total_shots} \
--min_qubits ${min_qubits} \
--max_qubits ${max_qubits}

For simplicity the benchmark on all simulators with
different number of workers was run as a job array. See
the job submission scripts in A.1.

Initially, it was planned to use the apptainer tool on
the cluster and run each simulator in a container, how-
ever due to circumstances the idea was dropped. Expla-
nations will be in 7 Discussion.

6 Evaluation

First of all we compared the accuracy of the simu-
lators during the runs up to 20 qubits. The reason for
limiting the benchmark to 20 qubits was due to Qibo
requiring too much memory after around 22-24 qubits.
While it does mean that it has poor memory efficiency,
more details about the circumstances will be explained
later.

As expected, the initial theory that the results of the
calculation will be the same for the simulators was con-
firmed (Fig. 6). This also confirms that when it comes
to the accuracy there is no difference in simulators and
any of them can be used to achieve the same results.

The second interesting observation for all simulators
was that, even though the memory consumption was re-
duced per worker with increasing number of workers, it
had the same pattern for all simulators (Fig. 7). The
memory consumption had reduction scale 4. For 1 and
2 workers the memory consumption was the same. It
reduced with 4 workers, and then only when it was 16
workers. If the pattern continues this means that the
memory consumption reduces when log4(num_workers)
is an integer, and it will be reduced with number of work-
ers being 64, then 256 etc.

When it comes to execution time (Fig. 8) and (Fig.
9), some of the simulators have repeating pattern of high
execution time at the beginning which then drops and
grows as expected. It was tested with different initial
number of qubits, and it looks like that is not the factor.
Rather it might be more related to the backend initializa-
tion and loading into the memory. When running the cir-
cuit with 2 qubits and then unloading the program from
the memory, to start it again with the another number
of qubits, the execution time increases as expected but
from the initial high point. For Cirq for example, with
32 workers 2 qubits circuits is executed in ∼ 7 seconds.
With increasing number of qubits this number grows, if
it is allowed to unload the program from the memory.

For this reason the Figure 9 is provided, which shows
more practical comparison of the simulators.

While Qibo initially seems to dominate, it doesn’t
benefit from parallelization when compared to Cirq and
Qiskit. At 20 qubits qibo is still faster it also start to
consume more memory and as said gets killed due to Out
Of Memory error after around 24 qubits (each workers
had at least 2 GiB of memory) (Fig. 10).

Another finding with number of qubit more than 20 is
that Cirq exectuion time becomes more predictable and
follows the same pattern as other simulators except for
Qiskit (Fig. 11)

In comparison Cirq and Qiskit have more constant
memery consumption and their total execution time, de-
spite being overall higher, grows more linearly instead

7

Figure 6: Entropy of different simulators and number of workers. The values almost do not differ, making the
comparison meaningless.

Figure 7: Memory consumption per worker with increasing number of qubits for all simulators.

8

Figure 8: Benchmark execution time with increasing number of qubits for all simulators.

Figure 9: Benchmark execution time with increasing number of qubits for all simulators excluding the first record.

9

of a defined curve and benefits from the parallelization
most. Qulacs and Qutips, as well as Qiskit and Cirq ben-
efit from the parallelization almost linearly, as doubling
number of workers decreases the execution time 2 times.

However Qulacs and Qutip have total execution times
too high. The pattern, where top 3 simulators in Figure
8 have first initialization time happens in Qulacs and
Qutip as well. However compared to the total execution
time as the number of qubits grow that initialization time
becomes insignificant.

Figure 10: Memory consumption of Qibo as number of
qubits increase.

The reason why Qibo was efficient is related to its
backend. While most simulators use TensorFlow or
NumPy in their backend in one way or another, Qibo
here used qibojit which uses numba for computations.
Numba already has some optimization techniques related
to parallelization. More appropriate decision would be to
use TensorFlow backend, however according to the de-
velopers this backend is not optimized and is designed
for Quantum ML mainly. An alternative to numba was
their another backend qibotn, which uses Tensor Net-
works to simulate even biggen number of qubits. So,
using numba was a middle ground. Additionally, Qibo
supports a backend interface for Qulacs.

Figure 11: Exectuion time of Cirq starts to curve and
have a predictable progression.

While using Numba does explain the efficiency via
multi-threading, it still does not explain how paralleliza-
tion over multiple CPUs did not improve the execution
time significantly. Especially considering that the paral-
lelization was not over number of qubits but number of
shots:

Listing 1: Parallelization of Shots
1 shots_per_rank = total_shots // size
2 remainder = total_shots % size
3 if rank < remainder:
4 shots_per_rank += 1

7 Discussion

Initially, the benchmarks were planned to be run in
containers. However accessing the host MPI communica-
tion from the container did not seem to work as indented,
so a conda environment was used instead. A custom con-
tainer with MPI paths bound to the host did not work
either.

Considering the project was also limited to react
nodes on the cluster, number of available slots at a time
was limited, so debugging on cluster execution in differ-
ent settings took more time than expected.

Programming the benchmark was not hard, it proba-
bly took the least amount of time. Most time was spend
in exploring the simulators and trying to set them in sim-
ilar conditions. While this partially is not fair, since some
simulators are designed to perform the best on GPUs, us-
ing different hardware was not beneficial for the bench-
mark.

There was an attempt to do some basic GPU inter-
facing to run all simulators on GPUs instead, also con-
sidering the available cluster partitions, however it was
not a successful attempt.

The 5 simulators for the benchmark were selected as
they are already present on the cluster as containers.
IQS was also planned to be added, however learning the
details about that many simulators and running them
without accidentally putting them in disadvantage takes
time. After the decision to not use containers the bench-
mark codebase was refactored and made modular with
the expectation that new simulators will be added later.

A slightly different approach for the benchmark could
have been benchmarking not the simulators but the back-
ends, as long as the backend are indented to be run on
the same kind of hardware.

There is also possibility to test how dose the scaling
go with the increasing number of shots, however it was
not tested to not complicate the visuals and due to the
expectation of the linear parallelization because of the
parallelization depicted above (Lis. 1).

10

One of the primary drawbacks of this benchmark is
that it was conducted solely on a CPU-based system,
even though some simulators are optimized for GPU ac-
celeration. This may have skewed the results. Future
work could include a comprehensive benchmark on both
CPU and GPU systems to evaluate how the simulators
perform across different hardware environments.

8 Conclusion

The project aimed to benchmark different simulators
on a HPC system, first using QV as a metric and then
as a task and using classical benchmark measurements
as metrics instead.

It was quicly discovered that the results of the compu-
tations by different simulators do not significantly differ.
However their performance differs significantly depend-
ing on their backend, when run on the same hardware.

The results showed that while simulators like Qibo
performed exceptionally well in smaller qubit bench-
marks, their performance diminished as the qubit count
grew, particularly due to memory constraints. Simula-
tors like Cirq and Qiskit, on the other hand, demon-
strated better scalability and parallelization efficiency,
even though they had higher initial execution times.

The main learning outcome from the project work
were the internal structures of different simulators and
their modification options.

The project was successful in achieving its goals. It
gathered valuable measurements about the performance
characteristics of the simulators in the context of HPC
environments. The modular structure of the benchmark
codebase also enables easy extension for future tests with
additional simulators or hardware configurations, such as
GPUs.

The results of the project can be used to choose sim-
ulator for the concrete task, or to contribute to the back-
end structures of elss efficient simulatros in order to im-
prove them.

A Appendix

A.1 Slurm Submissions

Listing 2: This script runs all sbatch scripts from sbatch-
scripts. The reason to run the benchmark job arrays
this way is to run them with different number of workers
without requesting more workers than needed.

1 #!/bin/bash
2 # Base directory for saving output/error files

and saving calculation results
3 base_run_dir=$1
4 base_save_dir=$2
5

6 for script in sbatch -scripts/run_benchmark_n *.sh
; do

7 workers=$(echo $script | grep -oP ’(?<=_n)\d+’
| sed ’s/^0*// ’)

8

9 # Create a directory for the specific worker
count

10 # e.g run_0001/num_workers_0008 for the base
dir run_0001 and number of workers 8

11 workers_padded=$(printf "%04d" $workers)
12 output_dir="${base_run_dir }/ num_workers_${

workers_padded}"
13 echo $workers
14 echo $output_dir
15 echo $base_save_dir
16

17 mkdir -p $output_dir
18

19 sbatch --export=ALL \
20 --output=${output_dir }/output -%A_%a.out \
21 --error=${output_dir }/error -%A_%a.err \
22 $script $base_save_dir
23 done

Listing 3: An example of a job array that request 4 work-
ers for each job. There are several such scripts with only
difference in number of workers.

1 #!/bin/bash
2 #SBATCH --job -name=benchmark_runs
3 #....
4 #SBATCH --partition=react
5 #SBATCH --mem -per -cpu=2G
6 #SBATCH --time =1 -12:00:00
7 #SBATCH --array =0-4
8 #SBATCH -n 4
9

10 # ---------------------------
11 # Load Required Modules
12 # ---------------------------
13 module load openmpi
14 module load miniforge3
15

16 # ---------------------------
17 # Activate Conda Environment
18 # ---------------------------
19 source activate env
20

21 # ---------------------------
22 # Define Simulators and Worker Counts
23 # ---------------------------
24

25 simulators =(qiskit qibo qulacs qutip cirq)
26 min_qubits =2
27 max_qubits =20
28 total_shots =65536
29

30 workers =4
31

32 num_sims=${#simulators[@]}
33

34 # ---------------------------
35 # Map Job Array Index to Simulator
36 # ---------------------------
37

38 # Calculate simulator index based on
SLURM_ARRAY_TASK_ID

11

39 sim_index=$((SLURM_ARRAY_TASK_ID % num_sims))
40

41 # Just in case
42 if [$sim_index -ge $num_sims]; then
43 echo "Error: SLURM_ARRAY_TASK_ID=${

SLURM_ARRAY_TASK_ID} is out of range."
44 exit 1
45 fi
46

47 # ---------------------------
48 # Define Save Directory
49 # ---------------------------
50

51 base_run_dir=$1
52

53 workers_padded=$(printf "%04d" $workers)
54

55 save_dir="${base_run_dir }/ run_workers_num -${
workers_padded }/"

56

57 mkdir -p "${save_dir}"
58

59

60 # ---------------------------
61 # Execute the Benchmark
62 # ---------------------------
63

64 simulator=${simulators[$sim_index]}
65

66 echo "=============================="
67 echo "Job ID: ${SLURM_JOB_ID}"
68 echo "Array Task ID: ${SLURM_ARRAY_TASK_ID}"
69 echo "Simulator: ${simulator}"
70 echo "Workers: ${workers}"
71 echo "Save Directory: ${save_dir}"
72 echo "=============================="
73

74 srun --mpi=pmix_v3 -n ${workers} python
benchmark.py \

75 --simulator ${simulator} \
76 --save_dir ${save_dir} \
77 --total_shots ${total_shots} \
78 --min_qubits ${min_qubits} \
79 --max_qubits ${max_qubits}

The benchmark will create in the save directory sepa-
rate directories for each simulator and run in the format:
result_<simulator>_<i>.

References

[1] Wikipedia contributors, “Quantum comput-
ing — Wikipedia, the free encyclopedia.”
https://en.wikipedia.org/w/index.php?
title=Quantum_computing&oldid=1247283925,
2024.

[2] Wikipedia contributors, “Quantum logic
gate — Wikipedia, the free encyclopedia.”
https://en.wikipedia.org/w/index.php?
title=Quantum_logic_gate&oldid=1240670066,
2024.

[3] G. G. Guerreschi, J. Hogaboam, F. Baruffa, and

N. P. D. Sawaya, “Intel quantum simulator: a cloud-
ready high-performance simulator of quantum cir-
cuits,” Quantum Science and Technology, vol. 5,
p. 034007, May 2020.

[4] T. Jones, A. Brown, I. Bush, and S. C. Benjamin,
“Quest and high performance simulation of quantum
computers,” Scientific Reports, vol. 9, July 2019.

[5] G. Aleksandrowicz, T. Alexander, P. Barkoutsos,
L. Bello, Y. Ben-Haim, D. Bucher, F. J. Cabrera-
Hernández, J. Carballo-Franquis, A. Chen, C.-F.
Chen, J. M. Chow, A. D. Córcoles-Gonzales, A. J.
Cross, A. Cross, J. Cruz-Benito, C. Culver, S. De La
Puente González, E. De La Torre, D. Ding, E. Du-
mitrescu, I. Duran, P. Eendebak, M. Everitt, I. F.
Sertage, A. Frisch, A. Fuhrer, J. Gambetta, B. G.
Gago, J. Gomez-Mosquera, D. Greenberg, I. Hama-
mura, V. Havlicek, J. Hellmers, Łukasz Herok,
H. Horii, Shaohan Hu, T. Imamichi, Toshinari Itoko,
A. Javadi-Abhari, N. Kanazawa, A. Karazeev,
K. Krsulich, P. Liu, Y. Luh, Yunho Maeng, M. Mar-
ques, F. J. Martín-Fernández, D. T. McClure,
D. McKay, Srujan Meesala, A. Mezzacapo, N. Moll,
D. M. Rodríguez, G. Nannicini, P. Nation, P. Ol-
litrault, L. J. O’Riordan, Hanhee Paik, J. Pérez,
A. Phan, M. Pistoia, V. Prutyanov, M. Reuter,
J. Rice, Abdón Rodríguez Davila, R. H. P. Rudy,
Mingi Ryu, Ninad Sathaye, C. Schnabel, E. Schoute,
Kanav Setia, Yunong Shi, Adenilton Silva, Y. Sir-
aichi, Seyon Sivarajah, J. A. Smolin, M. Soeken,
H. Takahashi, I. Tavernelli, C. Taylor, P. Taylour,
Kenso Trabing, M. Treinish, W. Turner, D. Vogt-
Lee, C. Vuillot, J. A. Wildstrom, J. Wilson, E. Win-
ston, C. Wood, S. Wood, S. Wörner, I. Y. Akhal-
waya, and C. Zoufal, “Qiskit: An open-source frame-
work for quantum computing,” 2019.

[6] S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto,
A. Pérez-Salinas, D. García-Martín, A. Garcia-Saez,
J. I. Latorre, and S. Carrazza, “Qibo: a frame-
work for quantum simulation with hardware accel-
eration,” Quantum Science and Technology, vol. 7,
p. 015018, Dec. 2021.

[7] Y. Suzuki, Y. Kawase, Y. Masumura, Y. Hiraga,
M. Nakadai, J. Chen, K. M. Nakanishi, K. Mi-
tarai, R. Imai, S. Tamiya, T. Yamamoto, T. Yan,
T. Kawakubo, Y. O. Nakagawa, Y. Ibe, Y. Zhang,
H. Yamashita, H. Yoshimura, A. Hayashi, and
K. Fujii, “Qulacs: a fast and versatile quantum cir-
cuit simulator for research purpose,” 2020.

[8] Cirq-Developers, “Cirq,” May 2024.
https://doi.org/10.5281/zenodo.11398048.

[9] J. Johansson, P. Nation, and F. Nori, “Qutip: An
open-source python framework for the dynamics of

12

open quantum systems,” Computer Physics Com-
munications, vol. 183, p. 1760–1772, Aug. 2012.

[10] J. Johansson, P. Nation, and F. Nori, “Qutip 2: A
python framework for the dynamics of open quan-
tum systems,” Computer Physics Communications,
vol. 184, p. 1234–1240, Apr. 2013.

[11] Wikipedia contributors, “Lindbladian —
Wikipedia, the free encyclopedia.” https:
//en.wikipedia.org/w/index.php?title=
Lindbladian&oldid=1243066598, 2024. [On-
line; accessed 24-September-2024].

[12] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin,
S. Ahmed, V. Ajith, M. S. Alam, G. Alonso-Linaje,
B. AkashNarayanan, A. Asadi, J. M. Arrazola,
U. Azad, S. Banning, C. Blank, T. R. Bromley,
B. A. Cordier, J. Ceroni, A. Delgado, O. Di Matteo,
A. Dusko, T. Garg, D. Guala, A. Hayes, R. Hill,
A. Ijaz, T. Isacsson, D. Ittah, S. Jahangiri, P. Jain,
E. Jiang, A. Khandelwal, K. Kottmann, R. A.
Lang, C. Lee, T. Loke, A. Lowe, K. McKiernan,
J. J. Meyer, J. A. Montañez-Barrera, R. Moyard,
Z. Niu, L. J. O’Riordan, S. Oud, A. Panigrahi, C.-Y.
Park, D. Polatajko, N. Quesada, C. Roberts, N. Sá,
I. Schoch, B. Shi, S. Shu, S. Sim, A. Singh, I. Strand-
berg, J. Soni, A. Száva, S. Thabet, R. A. Vargas-
Hernández, T. Vincent, N. Vitucci, M. Weber,
D. Wierichs, R. Wiersema, M. Willmann, V. Wong,
S. Zhang, and N. Killoran, “Pennylane: Automatic
differentiation of hybrid quantum-classical compu-
tations,” 2018.

[13] D. S. Steiger, T. Häner, and M. Troyer, “Projectq:
An open source software framework for quantum
computing,” 2016.

[14] Wikipedia contributors, “Green-
berger–horne–zeilinger state — Wikipedia, the free
encyclopedia.” https://en.wikipedia.org/w/
index.php?title=Greenberger%E2%80%93Horne%
E2%80%93Zeilinger_state&oldid=1237283321,
2024. [Online; accessed 27-September-2024].

[15] Gesellschaft für wissenschaftliche Datenverar-
beitung mbH Göttingen, “Grete hpc cluster.”
https://gwdg.de/en/hpc/systems/grete/, 2024.

[16] Gesellschaft für wissenschaftliche Datenverar-
beitung mbH Göttingen, “Gpu partitions docu-
mentation.” https://docs.hpc.gwdg.de/how_
to_use/compute_partitions/gpu_partitions/
index.html, 2024.

[17] Rocky Enterprise Software Foundation, “Rocky
linux 8.” https://rockylinux.org/, 2024.

13

