
GPU Computing with Python

Performance comparison of CUDA and CUDA Python

Sadaf Shafi

Institute for Computer Science

SH

∞

)

Table of Contents

1 Introduction

2 Hardware and software

3 CPU vs GPU

4 Challenges

5 Famous GPU Frameworks

6 CUDA

7 CUDA Python

8 Why is Performance Comparison needed?

9 Related work

10 Performance Comparison

11 Experiment Design

12 Results

13 Summary

14 References

Sadaf Shafi 2 / 12

Introduction

■ Many GPU programming frameworks exist, especially for Deep Learning,
and most of them still evolving.

■ One chooses a framework based on ease of use and implementation versus
the efficiency of the frameworks.

■ A thorough comparison of these frameworks is needed, which highlights the
strengths and weaknesses of these frameworks.

■ In this presentation we explore the performance comparison of CUDA and
CUDA Python

Sadaf Shafi 3 / 12

Hardware and Software

CPU (Central Processing Unit)

■ Architecture: x86_64

■ CPU op-mode(s): 32-bit, 64-bit

■ CPU(s): 2

■ Model name: Intel(R) Xeon(R) CPU
@ 2.20GHz

GPU (Graphics Processing Unit)

■ Name: Tesla T4

■ Driver Version: 535.104.05

■ CUDA Version: 12.2

■ Memory: 15360 MiB

Sadaf Shafi 4 / 12

Hardware and Software (contd)

Memory

■ Total Memory: 12 GiB

■ Used Memory: 1.1 GiB

■ Free Memory: 6.7 GiB

■ Shared Memory: 1.0 MiB

■ Buffer/Cache: 4.9 GiB

■ Available Memory: 11 GiB

Software and Versions

■ NVIDIA CUDA Compiler Driver
(nvcc)

▶ Version: 12.2.140
▶ Build Date: August 15, 2023
▶ Release: 12.2

■ Numba

▶ Version: 0.58.1

Sadaf Shafi 5 / 12

CPU vs GPU: Comparison

■ Core Count

▶ CPU: Fewer, powerful cores (2 to 16)
▶ GPU: Many, simpler cores (hundreds to thousands)

■ Task Handling

▶ CPU: Best for tasks with low parallelism and high complexity
▶ GPU: Best for tasks with high parallelism and repetitive computations

■ Performance

▶ CPU: Optimized for single-threaded performance and latency-sensitive tasks
▶ GPU: Optimized for high-throughput, data-parallel tasks

■ Architecture

▶ CPU: Complex control logic, designed for a wide range of tasks
▶ GPU: Simple control logic, specialized for parallel processing

Sadaf Shafi 6 / 12

CPU vs GPU: Comparison (Contd..)

■ Optimization

▶ CPU: Latency optimized (low latency in processing tasks)
▶ GPU: Throughput optimized (high throughput for large data sets)

■ Applications

▶ CPU: General computing (e.g., operating systems, word processing, web
browsing)

▶ GPU: Graphics rendering, machine learning, scientific simulations

Sadaf Shafi 7 / 12

CPU Simulation Images

Figure: CPU Simulation Images

Sadaf Shafi 8 / 12

GPU Simulation Image

Figure: GPU Simulation Images

Sadaf Shafi 9 / 12

Challenges for these Experiments

Limited memory in Google Colab

■ After pushing certain limits of experiments, the system would crash, e.g.,
generating a billion numbers to sort, having a matrix of dimensions 20x20
to multiply

Got access to HPC at GWDG

■ Needed VPN or presence in the office

■ Had no GPU in them

■ Got new account created for me

Sadaf Shafi 10 / 12

Challenges for these Experiments (continued)

Installation of CUDA

■ NVCC

■ Needed Sudo access for installation of required libraries

Went back to Colab and simplified the experiments

■ Multiplication of numbers are integers (1s) not floats anymore

■ Kept expanding the input until the system crashed

Sadaf Shafi 11 / 12

Famous GPU Frameworks(Wang et al.,)

Framework Core language CUDA support

Caffe/Caffe2 C++ Yes

TensorFlow C++ Yes

Theano Python Yes

Torch Lua Yes

CNTK C++ Yes

MXNet Small C++ core library Yes

MatConvNet C++ Yes

Deeplearning4j Java Yes

Neon Python Yes

Sadaf Shafi 12 / 12

CUDA

■ A general-purpose parallel computing platform and programming model
that leverages the parallel compute engine in NVIDIA GPUs to solve many
complex computational problems in a more efficient way than on a CPU.
(NVIDIA,)

■ Developed and Introduced by NVIDIA in 2006.

■ CUDA comes with a software environment that allows developers to use
C++ as a high-level programming language

Sadaf Shafi 13 / 12

CUDA Python

■ CUDA Python provides Cython/Python wrappers for CUDA driver and
runtime APIs. (NVIDIA,)

■ CUDA Python provides uniform APIs and bindings for inclusion into existing
toolkits and libraries to simplify GPU-based parallel processing for HPC, data
science, and AI.

■ The goal of CUDA Python is to unify the Python ecosystem with a single set
of interfaces that provide full coverage of and access to the CUDA host APIs
from Python. (NVIDIA,)

Sadaf Shafi 14 / 12

Why is Performance Comparison needed ?

■ Performance Optimization:

▶ CUDA C/C++ offers superior performance through close-to-hardware
optimization.

■ Ease of Development:

▶ CUDA Python provides simpler and faster development with libraries like
Numba and CuPy.

■ Trade-off Evaluation:

▶ Balance development ease and execution efficiency based on application
needs.

■ Application Requirements:

▶ Determine if Python’s productivity gains justify potential performance losses.

Sadaf Shafi 15 / 12

Why Performance Comparison is needed? [Contd..]

Rapid Prototyping:

■ Python’s simplicity accelerates the prototyping and testing phases.

Hybrid Approaches:

■ Leverage Python for high-level orchestration and CUDA C/C++ for critical
performance sections.

Scalability:

■ Assess how each approach scales with problem size and GPU capabilities.

Community and Ecosystem:

■ Consider the extensive support and resources available for Python
development.

Sadaf Shafi 16 / 12

Related Work

■ There are some performance comparisons between the two frameworks but
they don’t cover all the different domains we aim to cover.

■ Fernandes et al. Explores the two frameworks for only 4th order
Runge-Kutta method (Fernandes et al., “Comparative study of CUDA-based
parallel programming in C and Python for GPU acceleration of the 4th order
Runge-Kutta method”)

■ Oden et al. draw a comparison for matrix operations, reduction operations
etc. (Di Domenico, Lima, and Cavalheiro, “NAS Parallel Benchmarks with
Python: a performance and programming effort analysis focusing on GPUs”)

■ Askar et al. compare them in the context of Monte Carlo Radiation Transport
(Askar et al., “Exploring Numba and CuPy for GPU-Accelerated Monte Carlo
Radiation Transport”)

Sadaf Shafi 17 / 12

Performance Comparison

■ In this project we will do a more comprehensive comparison of the two
frameworks, especially over the Artificial Intelligence domain

■ Program Selection for Comparison (performance comparison between CUDA
Python and CUDA):

▶ Matrix Multiplication
▶ Sorting Algorithms
▶ Machine Learning Model Training

Sadaf Shafi 18 / 12

Experiment Design

Training an ML Model on MNIST Dataset

■ Logistic Regression Algorithm

■ Data points used: 60, 600, 6000, 60000

Sorting Numbers

■ Merge Sort

■ Numbers used: 10, 100, 1000, 10000 and so on

Sadaf Shafi 19 / 12

Experiment Design (continued)

Multiplying Matrices

■ Dimensions: 21, 22, 23, 24, 25 and so on

Metrics Calculated (in percentage)

■ CPU Utilization

■ GPU Utilization

■ Memory Utilization

■ GPU Memory Utilization

■ Time taken to run the code (and/or compilation)

Sadaf Shafi 20 / 12

Experiment Design (continued)

Execution Frequency

■ We run the algorithm for each step 3 to 5 times and then get the average of
the values

Note: All the inputs in both algorithms were exactly the same, an attempt to
keep all the variables constant except for the one which needs to be compared

Sadaf Shafi 21 / 12

Results : Sorting for CUDA

Framework Comp time Exec time GPU Usage CPU Usage CPU Ram GPU RAM Lines of Code No of samples

CUDA 2.51 0.1 0 46 5.7 0 90 10
CUDA 2.61 0.11 0 63.3 5.65 0 90 100
CUDA 2.61 0.12 0 96.7 6.1 0 90 1000
CUDA 2.61 0.10 7 67.9 6.16 0 90 10000
CUDA 2.61 0.29 35 73.3 6.88 0 90 100000
CUDA 3.42 0.22 45 97.5 6.9 0 90 1000000
CUDA 2.61 0.28 74 63 7.2 1.0 90 10000000
CUDA 2.61 0.67 100 53.3 7.28 0 90 100000000
CUDA 2.5 1.3 100 73.3 36 50 90 1000000000

Since we have so many such tables, we therefore focus on few plots worth
attention in this presentation

Sadaf Shafi 22 / 12

Results: Matrix Multiplication

Observations

■ Execution time for CUDA Python is higher

■ CUDA Python uses way more memory as compared to CUDA right from the
beginning

■ CPU usage drops in CUDA when GPU comes to work

■ GPU utilization is more in case of CUDA Python

Sadaf Shafi 23 / 12

Results: Matrix Multiplication (Images)

-> see how CUDA Python is consuming more resources than CUDA right from the
beginning

Sadaf Shafi 24 / 12

Results: Matrix Multiplication (Images Continued)

-> See how the results here are comparable and close in both of the frameworks

Sadaf Shafi 25 / 12

Results: ML Training

Observations

■ CPU usage is more in case of CUDA Python

■ GPU usage is quite comparable

■ Memory Consumption is more in case of CUDA Python

Sadaf Shafi 26 / 12

Results: ML Training (Images)

-> Again how CUDA Python is way higher right from the beginning in its usage in
resources

Sadaf Shafi 27 / 12

Results: ML Training (Images Continued)

-> Again the results are comparable

Sadaf Shafi 28 / 12

Results: Sorting

Observations

■ Execution time ramps up as data increases and eventually crashes for CUDA
Python

■ Memory consumption abruptly increases and the system crashes in case of
CUDA Python

■ CUDA goes a step further and then eventually terminates instead of
crashing

■ CUDA is also memory efficient as compared to CUDA Python

Sadaf Shafi 29 / 12

Results: Sorting (Images)

-> Again CUDA Python goes higher in resource consumption

Sadaf Shafi 30 / 12

Results: Sorting (Images Continued)

-> Dosen’t last long in the experiment

Sadaf Shafi 31 / 12

Summary

■ In this project we experiment and compare the performance of the two most
important Frameworks for GPUs

■ CUDA forms the bedrock for all the major deep-learning frameworks while
as CUDA Python is gaining an overwhelming popularity among the Python
Community

■ We compare some of the most common types of algorithms’ performance
with these frameworks, i.e. Matrix Multiplication, Sorting and Deep Learning
Models training.

■ we also see the utilisation of different resources by these frameworks.

Sadaf Shafi 32 / 12

References

Askar, Tair et al. “Exploring Numba and CuPy for GPU-Accelerated Monte Carlo Radiation Transport”. In:
Computation 12.3 (2024), p. 61.

Di Domenico, Daniel, Joao VF Lima, and Gerson GH Cavalheiro. “NAS Parallel Benchmarks with Python: a
performance and programming effort analysis focusing on GPUs”. In: The Journal of Supercomputing 79.8
(2023), pp. 8890–8911.

Fernandes, Davi F. et al. “Comparative study of CUDA-based parallel programming in C and Python for GPU
acceleration of the 4th order Runge-Kutta method”. In: Nuclear Engineering and Design 421 (2024),
p. 113050.

NVIDIA. Accessed: 2024-05-25. 2023. URL: https://docs.nvidia.com/cuda/index.html.
— .Accessed: 2024-05-25. 2023. URL: https://nvidia.github.io/cuda-python/motivation.html.
— .Accessed: 2024-05-25. 2023. URL:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.
Wang, Zhaobin et al. In: Archives of Computational Methods in Engineering (2019), pp. 1–24.

Sadaf Shafi 33 / 12

https://docs.nvidia.com/cuda/index.html
https://nvidia.github.io/cuda-python/motivation.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

	Introduction
	Hardware and software
	CPU vs GPU
	Challenges
	Famous GPU Frameworks
	CUDA
	CUDA Python
	Why is Performance Comparison needed?
	Related work
	Performance Comparison
	Experiment Design
	Results
	Summary
	References

