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Introduction

■ Many GPU programming frameworks exist, especially for Deep Learning,
and most of them still evolving.

■ One chooses a framework based on ease of use and implementation versus
the efficiency of the frameworks.

■ A thorough comparison of these frameworks is needed, which highlights the
strengths and weaknesses of these frameworks.

■ In this presentation we explore the performance comparison of CUDA and
CUDA Python
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Hardware and Software

CPU (Central Processing Unit)

■ Architecture: x86_64

■ CPU op-mode(s): 32-bit, 64-bit

■ CPU(s): 2

■ Model name: Intel(R) Xeon(R) CPU
@ 2.20GHz

GPU (Graphics Processing Unit)

■ Name: Tesla T4

■ Driver Version: 535.104.05

■ CUDA Version: 12.2

■ Memory: 15360 MiB
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Hardware and Software (contd)

Memory

■ Total Memory: 12 GiB

■ Used Memory: 1.1 GiB

■ Free Memory: 6.7 GiB

■ Shared Memory: 1.0 MiB

■ Buffer/Cache: 4.9 GiB

■ Available Memory: 11 GiB

Software and Versions

■ NVIDIA CUDA Compiler Driver
(nvcc)

▶ Version: 12.2.140
▶ Build Date: August 15, 2023
▶ Release: 12.2

■ Numba

▶ Version: 0.58.1
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CPU vs GPU: Comparison

■ Core Count

▶ CPU: Fewer, powerful cores (2 to 16)
▶ GPU: Many, simpler cores (hundreds to thousands)

■ Task Handling

▶ CPU: Best for tasks with low parallelism and high complexity
▶ GPU: Best for tasks with high parallelism and repetitive computations

■ Performance

▶ CPU: Optimized for single-threaded performance and latency-sensitive tasks
▶ GPU: Optimized for high-throughput, data-parallel tasks

■ Architecture

▶ CPU: Complex control logic, designed for a wide range of tasks
▶ GPU: Simple control logic, specialized for parallel processing
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CPU vs GPU: Comparison (Contd..)

■ Optimization

▶ CPU: Latency optimized (low latency in processing tasks)
▶ GPU: Throughput optimized (high throughput for large data sets)

■ Applications

▶ CPU: General computing (e.g., operating systems, word processing, web
browsing)

▶ GPU: Graphics rendering, machine learning, scientific simulations
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CPU Simulation Images

Figure: CPU Simulation Images
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GPU Simulation Image

Figure: GPU Simulation Images
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Challenges for these Experiments

Limited memory in Google Colab

■ After pushing certain limits of experiments, the system would crash, e.g.,
generating a billion numbers to sort, having a matrix of dimensions 20x20
to multiply

Got access to HPC at GWDG

■ Needed VPN or presence in the office

■ Had no GPU in them

■ Got new account created for me
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Challenges for these Experiments (continued)

Installation of CUDA

■ NVCC

■ Needed Sudo access for installation of required libraries

Went back to Colab and simplified the experiments

■ Multiplication of numbers are integers (1s) not floats anymore

■ Kept expanding the input until the system crashed
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Famous GPU Frameworks( Wang et al., )

Framework Core language CUDA support

Caffe/Caffe2 C++ Yes

TensorFlow C++ Yes

Theano Python Yes

Torch Lua Yes

CNTK C++ Yes

MXNet Small C++ core library Yes

MatConvNet C++ Yes

Deeplearning4j Java Yes

Neon Python Yes
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CUDA

■ A general-purpose parallel computing platform and programming model
that leverages the parallel compute engine in NVIDIA GPUs to solve many
complex computational problems in a more efficient way than on a CPU.
(NVIDIA, )

■ Developed and Introduced by NVIDIA in 2006.

■ CUDA comes with a software environment that allows developers to use
C++ as a high-level programming language
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CUDA Python

■ CUDA Python provides Cython/Python wrappers for CUDA driver and
runtime APIs. (NVIDIA, )

■ CUDA Python provides uniform APIs and bindings for inclusion into existing
toolkits and libraries to simplify GPU-based parallel processing for HPC, data
science, and AI.

■ The goal of CUDA Python is to unify the Python ecosystem with a single set
of interfaces that provide full coverage of and access to the CUDA host APIs
from Python. (NVIDIA, )
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Why is Performance Comparison needed ?

■ Performance Optimization:

▶ CUDA C/C++ offers superior performance through close-to-hardware
optimization.

■ Ease of Development:

▶ CUDA Python provides simpler and faster development with libraries like
Numba and CuPy.

■ Trade-off Evaluation:

▶ Balance development ease and execution efficiency based on application
needs.

■ Application Requirements:

▶ Determine if Python’s productivity gains justify potential performance losses.
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Why Performance Comparison is needed? [Contd..]

Rapid Prototyping:

■ Python’s simplicity accelerates the prototyping and testing phases.

Hybrid Approaches:

■ Leverage Python for high-level orchestration and CUDA C/C++ for critical
performance sections.

Scalability:

■ Assess how each approach scales with problem size and GPU capabilities.

Community and Ecosystem:

■ Consider the extensive support and resources available for Python
development.
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Related Work

■ There are some performance comparisons between the two frameworks but
they don’t cover all the different domains we aim to cover.

■ Fernandes et al. Explores the two frameworks for only 4th order
Runge-Kutta method (Fernandes et al., “Comparative study of CUDA-based
parallel programming in C and Python for GPU acceleration of the 4th order
Runge-Kutta method”)

■ Oden et al. draw a comparison for matrix operations, reduction operations
etc. (Di Domenico, Lima, and Cavalheiro, “NAS Parallel Benchmarks with
Python: a performance and programming effort analysis focusing on GPUs”)

■ Askar et al. compare them in the context of Monte Carlo Radiation Transport
(Askar et al., “Exploring Numba and CuPy for GPU-Accelerated Monte Carlo
Radiation Transport”)
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Performance Comparison

■ In this project we will do a more comprehensive comparison of the two
frameworks, especially over the Artificial Intelligence domain

■ Program Selection for Comparison (performance comparison between CUDA
Python and CUDA):

▶ Matrix Multiplication
▶ Sorting Algorithms
▶ Machine Learning Model Training
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Experiment Design

Training an ML Model on MNIST Dataset

■ Logistic Regression Algorithm

■ Data points used: 60, 600, 6000, 60000

Sorting Numbers

■ Merge Sort

■ Numbers used: 10, 100, 1000, 10000 and so on
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Experiment Design (continued)

Multiplying Matrices

■ Dimensions: 21, 22, 23, 24, 25 and so on

Metrics Calculated (in percentage)

■ CPU Utilization

■ GPU Utilization

■ Memory Utilization

■ GPU Memory Utilization

■ Time taken to run the code (and/or compilation)
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Experiment Design (continued)

Execution Frequency

■ We run the algorithm for each step 3 to 5 times and then get the average of
the values

Note: All the inputs in both algorithms were exactly the same, an attempt to
keep all the variables constant except for the one which needs to be compared
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Results : Sorting for CUDA

Framework Comp time Exec time GPU Usage CPU Usage CPU Ram GPU RAM Lines of Code No of samples

CUDA 2.51 0.1 0 46 5.7 0 90 10
CUDA 2.61 0.11 0 63.3 5.65 0 90 100
CUDA 2.61 0.12 0 96.7 6.1 0 90 1000
CUDA 2.61 0.10 7 67.9 6.16 0 90 10000
CUDA 2.61 0.29 35 73.3 6.88 0 90 100000
CUDA 3.42 0.22 45 97.5 6.9 0 90 1000000
CUDA 2.61 0.28 74 63 7.2 1.0 90 10000000
CUDA 2.61 0.67 100 53.3 7.28 0 90 100000000
CUDA 2.5 1.3 100 73.3 36 50 90 1000000000

Since we have so many such tables, we therefore focus on few plots worth
attention in this presentation
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Results: Matrix Multiplication

Observations

■ Execution time for CUDA Python is higher

■ CUDA Python uses way more memory as compared to CUDA right from the
beginning

■ CPU usage drops in CUDA when GPU comes to work

■ GPU utilization is more in case of CUDA Python
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Results: Matrix Multiplication (Images)

-> see how CUDA Python is consuming more resources than CUDA right from the
beginning
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Results: Matrix Multiplication (Images Continued)

-> See how the results here are comparable and close in both of the frameworks
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Results: ML Training

Observations

■ CPU usage is more in case of CUDA Python

■ GPU usage is quite comparable

■ Memory Consumption is more in case of CUDA Python
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Results: ML Training (Images)

-> Again how CUDA Python is way higher right from the beginning in its usage in
resources
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Results: ML Training (Images Continued)

-> Again the results are comparable
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Results: Sorting

Observations

■ Execution time ramps up as data increases and eventually crashes for CUDA
Python

■ Memory consumption abruptly increases and the system crashes in case of
CUDA Python

■ CUDA goes a step further and then eventually terminates instead of
crashing

■ CUDA is also memory efficient as compared to CUDA Python
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Results: Sorting (Images)

-> Again CUDA Python goes higher in resource consumption
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Results: Sorting (Images Continued)

-> Dosen’t last long in the experiment
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Summary

■ In this project we experiment and compare the performance of the two most
important Frameworks for GPUs

■ CUDA forms the bedrock for all the major deep-learning frameworks while
as CUDA Python is gaining an overwhelming popularity among the Python
Community

■ We compare some of the most common types of algorithms’ performance
with these frameworks, i.e. Matrix Multiplication, Sorting and Deep Learning
Models training.

■ we also see the utilisation of different resources by these frameworks.
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