
SH

∞

Seminar Report

GPU Computing with Python

Sadaf Shafi

MatrNr: 26350674

Supervisor: Michael Bidollahkhani

Georg-August-Universität Göttingen
Institute of Computer Science

August 30, 2024

Abstract
Graphics Processing Units (GPUs) have become essential components in modern comput-
ing, extending their capabilities beyond graphics rendering to encompass general-purpose
parallel computing. This project investigates the comparative performance of CUDA and
CUDA Python implementations across various computational tasks, including matrix
multiplication, linear regression, MNIST training, and sorting with parallelization. Our
analysis highlights significant differences in execution time, resource utilization, and scal-
ability between the two frameworks. CUDA demonstrates superior execution efficiency,
lower resource consumption, and better scalability, making it ideal for performance-critical
applications. Conversely, CUDA Python offers ease of development and rapid prototyp-
ing within the Python ecosystem, though it incurs higher execution times and resource
usage. The findings underscore the importance of evaluating trade-offs between develop-
ment ease and execution performance when selecting GPU computing frameworks. This
research provides valuable insights for developers aiming to optimize computational tasks
by leveraging GPU capabilities, guiding informed decisions based on specific application
needs and resource constraints.

i

Declaration on the use of ChatGPT and comparable tools
in the context of examinations

In this work I have used ChatGPT or another AI as follows:

□ Not at all

□ During brainstorming

□ When creating the outline

□ To write individual passages, altogether to the extent of 0% of the entire text

□ For the development of software source texts

✓□ For optimizing or restructuring software source texts

✓□ For proofreading or optimizing

□ Further, namely: -

I hereby declare that I have stated all uses completely.
Missing or incorrect information will be considered as an attempt to cheat.

ii

Contents

List of Tables iv

List of Figures iv

List of Abbreviations v

1 Introduction 1

2 Comparison between the GPU frameworks 3

3 Related Work 4

4 CUDA and CUDA Python 4

5 Hardware Requirements 5

6 Experiment 1: Matrix Multiplication in CUDA vs CUDA Python 6
6.1 Matrix Multiplication using CUDA . 6
6.2 Matrix Multiplication using CUDA Python 6
6.3 Figure Descriptions . 7

7 Experiment 2: Linear Regression on MNIST Dataset 8
7.1 MNIST Training with Linear Regression for CUDA 9
7.2 MNIST Training with Linear Regression in CUDA Python 9
7.3 Figure Descriptions . 10

8 Experiment 3: Sorting with Parallelization 11
8.1 Sorting for CUDA . 11
8.2 Sorting in CUDA Python . 12
8.3 Figure Descriptions . 12

9 Conclusion 13

References 14

A Code samples A1

iii

List of Tables
1 Comparative analysis of CPU, GPU, and TPU [Nik+22] 1
2 Comparison of different Deep Learning Frameworks [Wan+19] 3
3 Feature Comparison between CUDA and CUDA Python 5
4 Performance Comparison for Matrix Multiplication Using CUDA for Dif-

ferent Matrix Sizes . 6
5 Performance Comparison for Matrix Multiplication Using CUDA Python

for Different Matrix Sizes . 6
6 MNIST Training Performance Using CUDA for Different Sample Sizes (All

implementations use 230 lines of code) . 9
7 MNIST Training Performance Using CUDA Python for Different Sample

Sizes (All implementations use 104 lines of code) 9
8 Performance Comparison for Sorting Using CUDA for Different Sample

Sizes (All implementations use 90 lines of code) 11
9 Performance Comparison for Sorting Using CUDA Python for Different

Sample Sizes (All implementations use 90 lines of code) 12

List of Figures
1 Library Architecture [Par+17] . 2
2 This line plot compares the execution time of CUDA and CUDA Python

implementations. The x-axis represents the number of data points (X),
ranging from 0 to 34, while the y-axis represents the execution time, ranging
from 0 to 1.75 seconds. Both CUDA and CUDA Python show an increasing
trend in execution time as the number of data points (X) increases, with
CUDA Python consistently having a higher execution time. 7

3 Performance Metrics Comparison: Each plot compares CUDA and CUDA
Python performance across different metrics (CPU Usage, GPU Usage,
CPU RAM, GPU RAM) as a function of the number of data points (X). . 8

4 Performance Metrics Comparison for MNIST Training: This figure presents
six line plots comparing CUDA and CUDA Python implementations across
various performance metrics as a function of the number of samples (from
0 to 60,000). Each plot provides insights into computation time, execution
time, memory usage, and GPU/CPU utilization. 10

5 Performance Metrics Comparison for Sorting: This figure presents six line
plots comparing CUDA and CUDA Python implementations across various
performance metrics as a function of the number of samples (ranging from 0
to 1 billion). Each plot provides insights into computation time, execution
time, memory usage, and GPU/CPU utilization. 12

iv

List of Abbreviations
API Application Programming Interface

ASIC Application-Specific Integrated Circuit

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

cuDNN CUDA Deep Neural Network Library

GPU Graphics Processing Unit

HPC High-Performance Computing

IDE Integrated Development Environment

JIT Just-In-Time

ML Machine Learning

MNIST Modified National Institute of Standards and Technology

Numba A Just-in-time Compiler for Python, specifically for use with NumPy arrays

CuPy A GPU array library for Python, based on NumPy

PyCUDA A Python wrapper for CUDA

RT cores Ray Tracing Cores

SM Streaming Multiprocessor

TPU Tensor Processing Unit

v

GPU Computing with Python

1 Introduction
Graphics Processing Units, also known as GPUs, have become an integral part of main-
stream computing systems. A GPU is a computer chip developed by NVIDIA that per-
forms rapid mathematical calculations, primarily for rendering images [Nik+22]. The
modern GPU is not only a powerful graphics engine but also a highly parallel pro-
grammable processor featuring peak arithmetic and memory bandwidth that substan-
tially outpaces its CPU counterpart. This effort of offloading general-purpose computing
on GPU is called GPU Computing [Owe+08].

There are other computation hardware in addition to GPUs, such as CPUs (Central
Processing Units) and TPUs (Tensor Processing Units). A CPU controls instructions
and data flow to and from parts of the computer, relying on a chipset - a group of
microchips located on the motherboard. A TPU is an AI accelerator ASIC (Application-
Specific Integrated Circuit) developed by Google for neural network ML algorithms and,
in particular, to work with TensorFlow [Nik+22].

Looking at this hardware from the computation point of view, the difference between
them is the dimensions of the data which they can process. For example, a GPU can
process data with dimensions of 1×N , leveraging its parallelized nature, while the CPU
would process data of 1×1 at a time. The table below (Table 1) summarizes the differences
between the three computation hardware.

Table 1: Comparative analysis of CPU, GPU, and TPU [Nik+22]
Parameter CPU GPU TPU
Performance 10’s operations

per cycle
10-103 opera-
tions per cycle

Up to 128000 op-
erations

Dimension of
data

Unit of 1x1 Unit of 1xN Unit of NxN

Usage Normal Pro-
gramming

Graphical Pro-
gramming

Machine Learn-
ing

Manufacturers Intel, AMD,
IBM, Samsung

NVIDIA, AMD Google

Cost of Machine 10-15 $ 150-200 $ 350-450 $

By now, there are various frameworks to choose from when it comes to GPU pro-
gramming. High-level frameworks like Tensorflow, Theano, Pytorch, and Caffe are used
for leveraging GPUs for Deep Learning. These frameworks are based on cuDNN (Nvidia
CUDA Deep Neural Network Library), which in turn itself is based on CUDA (Com-
pute Unified Device Architecture) [Par+17]. CUDA is used for programming GPUs while
cuDNN uses CUDA specifically for Deep Learning. CUDA is usually written in C++,
C, or Fortran; however, PyCUDA is a wrapper in Python that allows us to use CUDA
through Python for GPU programming.

Section 1 Sadaf Shafi 1

GPU Computing with Python

Figure 1: Library Architecture [Par+17]

Below is a table that provides a comprehensive analysis of different frameworks for
Deep Learning.

Section 1 Sadaf Shafi 2

GPU Computing with Python

Table 2: Comparison of different Deep Learning Frameworks [Wan+19]
Framework Core

Lang.
Interface CUDA Multi-GPU Multi-

threaded
CPU

Caffe/Caffe2 C++ Python, Matlab Yes Yes (only
data parallel)

Yes (BLAS)

Tensorflow C++ Python (Keras),
C/C++, Java, Go,
R

Yes Yes (Model
flexible)

Yes (Eigen)

Theano Python Python Yes Not perfect Yes (BLAS,
cuDNN,
limited,
OpenMP)

Torch Lua Lua, LuaJIT, C
utility library for
C++

Yes Yes Yes (widely
used)

CNTK C++ Python, C++,
Cmd line

Yes Yes Yes (Eigen)

MXNet C++ li-
brary

C++, Python,
Julia, Matlab,
JavaScript, Go, R,
Scala, Perl

Yes Yes Yes
(OpenMP)

MatConvNet C++ Matlab Yes Yes Yes
(OpenMP)

DL4j Java Java, Scala, Clo-
jure, Python
(Keras)

Yes Yes Yes
(OpenMP)

Neon Python Python No Yes No (only data
loader)

The most popular frameworks in Python are Tensorflow, Pytorch, and Theano. Ten-
sorflow has a reputation for enhanced deployment ability, framework design, and interface
properties. Pytorch is often appreciated for its design and model design ability. Moreover,
Theano is the most flexible and agile when it comes to model design ability [Wan+19].

2 Comparison between the GPU frame-
works

The following are reasons why a comparison might be necessary:

• Performance Optimization: CUDA C/C++ offers superior performance through
close-to-hardware optimization.

• Ease of Development: CUDA Python provides simpler and faster development
with libraries like Numba and CuPy.

Section 2 Sadaf Shafi 3

GPU Computing with Python

• Trade-off Evaluation: Balance development ease and execution efficiency based
on application needs.

• Application Requirements: Determine if Python’s productivity gains justify
potential performance losses.

• Rapid Prototyping: Python’s simplicity accelerates the prototyping and testing
phases.

• Hybrid Approaches: Leverage Python for high-level orchestration and CUDA
C/C++ for critical performance sections.

• Scalability: Assess how each approach scales with problem size and GPU capabil-
ities.

• Community and Ecosystem: Consider the extensive support and resources avail-
able for Python development.

3 Related Work
There are some performance comparisons between the two frameworks, but they do not
cover all the different domains we aim to address. Fernandes et al. explores the two
frameworks for only the 4th order Runge-Kutta method [Fer+24]. Oden et al. draw
a comparison for matrix operations, reduction operations, etc. [DLC23]. Askar et al.
compare them in the context of Monte Carlo Radiation Transport [Ask+24].

4 CUDA and CUDA Python
CUDA is a general-purpose parallel computing platform and programming model that
leverages the parallel compute engine in NVIDIA GPUs to solve many complex compu-
tational problems in a more efficient way than on a CPU. CUDA comes with a software
environment that allows developers to use C++ as a high-level programming language
[NVI23a].

CUDA Python provides Cython/Python wrappers for CUDA driver and runtime APIs.
CUDA Python provides uniform APIs and bindings for inclusion into existing toolkits and
libraries to simplify GPU-based parallel processing for HPC, data science, and AI. The
goal of CUDA Python is to unify the Python ecosystem with a single set of interfaces
that provide full coverage of and access to the CUDA host APIs from Python [NVI23b].

Section 4 Sadaf Shafi 4

GPU Computing with Python

Table 3: Feature Comparison between CUDA and CUDA Python
Feature CUDA CUDA Python
Language C/C++ Python
Primary Li-
braries/Tools

CUDA Toolkit (nvcc,
cuBLAS, cuFFT, etc.)

Numba, CuPy, Py-
CUDA

Performance Higher, with fine-
grained control

High, but generally
slightly lower than
CUDA C/C++

Flexibility Extensive, with low-
level control over
hardware

Moderate, with
higher-level abstrac-
tions

Development
Environment

NVIDIA CUDA
Toolkit, CUDA-aware
IDEs

Python IDEs
(Jupyter, PyCharm,
etc.), Python ecosys-
tem

Memory Man-
agement

Manual (shared,
global, constant mem-
ory)

Abstracted, auto-
matic management

Learning Curve Steep, requires knowl-
edge of C/C++ and
GPU architecture

Gentle, accessible to
Python developers

Ease of Use More complex, re-
quires detailed setup

Easier, with simpler
setup and usage

Compilation Requires explicit com-
pilation using nvcc

Just-in-time (JIT)
compilation, typically
handled by Numba

Use Case Performance-critical
applications needing
fine control

Rapid development,
prototyping, and ease
of use

Community &
Support

Strong support from
NVIDIA and exten-
sive documentation

Growing community,
support from Python
ecosystem

5 Hardware Requirements
CUDA was specifically built for NVIDIA GPUs, therefore the language is hardware-
dependent. The key features of NVIDIA GPUs are the Streaming Multiprocessors, CUDA
Cores, Memory Hierarchy, Specialized hardware units like Tensor Cores, RT cores, Unified
memory, and Hardware accelerated scheduling. While other GPUs, such as those from
AMD, Intel, etc., are built around Compute Units instead of SMs of Nvidia, Wavefronts,
Execution Units, and so on, they have different architectures, and CUDA might not be
an ideal platform to interact with those GPUs.

In this project, we used the Nvidia Tesla T4 with a GPU RAM of 12 GB, as provided
by Google Colab, to test our code snippets.

Section 6 Sadaf Shafi 5

GPU Computing with Python

6 Experiment 1: Matrix Multiplication
in CUDA vs CUDA Python

In this experiment, we multiply two similar matrices using CUDA C++ and CUDA
Python (Numba). We ensured that the matrices were not generated randomly to keep
the comparison fair and without any element of randomness.

6.1 Matrix Multiplication using CUDA

Table 4: Performance Comparison for Matrix Multiplication Using CUDA for Different
Matrix Sizes
Comp
Time

Exec
Time

CPU
Ram
(MB)

GPU
RAM
(MB)

CPU Us-
age (%)

GPU Us-
age (%)

Matrix Di-
mension

1.71 0.21 6.28 0 63.3 0 10x10
1.81 0.21 6.4 0 63.3 0 100x100
1.31 0.11 6.3 0 76.7 0 1000x1000
1.41 6.8 14.53 8 53 100 10000x10000

6.2 Matrix Multiplication using CUDA Python

Table 5: Performance Comparison for Matrix Multiplication Using CUDA Python for
Different Matrix Sizes

Exec
Time (s)

CPU
Ram
(MB)

GPU
RAM
(MB)

CPU Us-
age (%)

GPU Us-
age (%)

Matrix
Dimen-
sion

0.46 5.7 0 90 0 10x10
0.44 5.6 0 90 0 100x100
0.68 6.8 0 90.3 0 1000x1000
13 13 8 100 100 10000x10000

Section 6 Sadaf Shafi 6

GPU Computing with Python

6.3 Figure Descriptions

Figure 2: This line plot compares the execution time of CUDA and CUDA Python im-
plementations. The x-axis represents the number of data points (X), ranging from 0 to
34, while the y-axis represents the execution time, ranging from 0 to 1.75 seconds. Both
CUDA and CUDA Python show an increasing trend in execution time as the number
of data points (X) increases, with CUDA Python consistently having a higher execution
time.

Key observations:

• Both CUDA and CUDA Python show an increasing trend in execution time as the
number of data points (X) increases.

• CUDA Python consistently has a higher execution time compared to CUDA.

• The difference in execution time between CUDA and CUDA Python becomes more
pronounced as the number of data points increases.

Section 6 Sadaf Shafi 7

GPU Computing with Python

Figure 3: Performance Metrics Comparison: Each plot compares CUDA and CUDA
Python performance across different metrics (CPU Usage, GPU Usage, CPU RAM, GPU
RAM) as a function of the number of data points (X).

Key observations:

• CUDA Python shows significantly higher CPU usage compared to CUDA, with a
fluctuating and overall increasing trend as the number of data points (X) increases.
CUDA’s CPU usage remains relatively low and stable across all values of X.

• Both CUDA and CUDA Python show a gradual increase in GPU usage as the
number of data points increases, with CUDA Python having slightly higher GPU
usage, especially at higher values of X.

• CUDA Python uses significantly more CPU RAM compared to CUDA, with both
implementations showing an increasing trend in CPU RAM usage as the number of
data points increases. CUDA Python’s increase is more pronounced.

• CUDA Python has higher GPU RAM usage compared to CUDA, with both showing
an increasing trend in GPU RAM usage as the number of data points increases. This
difference is especially noticeable at higher values of X.

7 Experiment 2: Linear Regression on
MNIST Dataset

In this experiment, we train a simple Linear Regression model using CUDA C++ and
CUDA Python (Numba). For both models, the training and testing split was the same,
as it was generated first, and then the models were trained.

Section 7 Sadaf Shafi 8

GPU Computing with Python

7.1 MNIST Training with Linear Regression for CUDA

Table 6: MNIST Training Performance Using CUDA for Different Sample Sizes (All
implementations use 230 lines of code)
Comp
Time (s)

Exec
Time (s)

Memory
(GB)

GPU
Memory
(GB)

CPU Us-
age (%)

GPU Us-
age (%)

Number
of Sam-
ples

7.39 0.21 21 7 58 0 60
6.47 0.27 21.9 7 55 95 600
7.15 0.36 22 9 62.5 94 6000
6.68 2.5 22.4 9 100 100 60000

7.2 MNIST Training with Linear Regression in CUDA Python

Table 7: MNIST Training Performance Using CUDA Python for Different Sample Sizes
(All implementations use 104 lines of code)

Exec
Time (s)

CPU
Ram
(GB)

GPU
RAM
(GB)

CPU Us-
age (%)

GPU Us-
age (%)

Number
of Sam-
ples

1.1 26.3 8 53.3 0 60
3.1 25.6 8 58.1 98 600
2.9 25 7 90.3 95 6000
10.1 25.7 9 100 100 60000

Section 7 Sadaf Shafi 9

GPU Computing with Python

7.3 Figure Descriptions

Figure 4: Performance Metrics Comparison for MNIST Training: This figure presents
six line plots comparing CUDA and CUDA Python implementations across various per-
formance metrics as a function of the number of samples (from 0 to 60,000). Each plot
provides insights into computation time, execution time, memory usage, and GPU/CPU
utilization.

Key observations:

• CUDA shows an initial spike in computation time at lower sample sizes but decreases
and stabilizes as the number of samples increases, while CUDA Python has a more
consistent but generally higher computation time across the range of samples.

• CUDA Python exhibits a steady increase in execution time with the number of
samples, reaching approximately 9 seconds at 60,000 samples. CUDA maintains a
much lower execution time, showing a slight increase but remaining under 2 seconds
even at the highest sample count.

• CUDA Python uses more CPU memory compared to CUDA across all sample sizes.
CUDA’s memory usage remains relatively stable around 21-22 GB, while CUDA
Python starts higher at around 26 GB and slightly decreases to about 24 GB.

• CUDA shows an initial high GPU memory usage at lower sample sizes but stabilizes
around 9 GB as the number of samples increases. CUDA Python has more variable
GPU memory usage, generally lower than CUDA but slightly increasing as sample
size increases.

Section 7 Sadaf Shafi 10

GPU Computing with Python

• CUDA’s CPU usage increases with the number of samples, starting from around
55% and reaching 100%. CUDA Python also shows an increasing trend but starts
higher at 95%, stabilizing around 98% as the sample size increases.

• Both CUDA and CUDA Python quickly reach 100% GPU usage as the number of
samples increases, indicating full utilization of the GPU resources for both imple-
mentations.

8 Experiment 3: Sorting with Paralleliza-
tion

In this experiment, we sort two arrays with the Merge Sort Algorithm using CUDA C++
and CUDA Python (Numba). All the arrays were generated as the worst case for the
algorithm, i.e., in descending order, and the algorithm had to bring them to ascending
order.

8.1 Sorting for CUDA

Table 8: Performance Comparison for Sorting Using CUDA for Different Sample Sizes
(All implementations use 90 lines of code)
Comp
Time (s)

Exec
Time (s)

GPU Us-
age (%)

CPU Us-
age (%)

CPU
Ram
(GB)

GPU
RAM
(GB)

Number
of Sam-
ples

2.51 0.1 0 46 5.7 0 10
2.61 0.11 0 63.3 5.65 0 100
2.61 0.12 0 96.7 6.1 0 1000
2.61 0.10 7 67.9 6.16 0 10000
2.61 0.29 35 73.3 6.88 0 100000
3.42 0.22 45 97.5 6.9 0 1000000
2.61 0.28 74 63 7.2 1.0 10000000
2.61 0.67 100 53.3 7.28 0 100000000
2.5 1.3 100 73.3 36 50 1000000000

Section 8 Sadaf Shafi 11

GPU Computing with Python

8.2 Sorting in CUDA Python

Table 9: Performance Comparison for Sorting Using CUDA Python for Different Sample
Sizes (All implementations use 90 lines of code)

Exec
Time (s)

GPU Us-
age (%)

CPU Us-
age (%)

CPU
Ram
(GB)

GPU
RAM
(GB)

Number
of Sam-
ples

0.4 0 90 9.1 0 10
0.41 0 90 9 0 100
0.46 0 93.5 8 0 1000
0.42 0 100 5.8 0 10000
0.49 37 90.3 5.6 0 100000
0.97 30 51.6 7.2 0 1000000
5.5 100 61.3 10.6 1.0 10000000
48 100 58 45 15 100000000

8.3 Figure Descriptions

Figure 5: Performance Metrics Comparison for Sorting: This figure presents six line
plots comparing CUDA and CUDA Python implementations across various performance
metrics as a function of the number of samples (ranging from 0 to 1 billion). Each plot
provides insights into computation time, execution time, memory usage, and GPU/CPU
utilization.

Section 8 Sadaf Shafi 12

GPU Computing with Python

Key observations:

• CUDA shows a rapid decrease in computation time with increasing samples, stabi-
lizing around 2.6 seconds. CUDA Python, on the other hand, has a higher initial
computation time and rapidly decreases but remains higher than CUDA.

• CUDA Python exhibits a sharp increase in execution time with the number of
samples, peaking around 40 seconds before stabilizing. In contrast, CUDA maintains
a significantly lower execution time across all sample sizes, stabilizing around 1-2
seconds.

• Both CUDA and CUDA Python quickly reach 100% GPU usage as the number of
samples increases, indicating full utilization of the GPU resources for both imple-
mentations.

• CUDA shows a significant initial drop in CPU usage with increasing samples but
then gradually increases to around 70%. CUDA Python starts at a higher CPU
usage and also decreases initially, stabilizing slightly above 60%.

• CUDA shows a gradual increase in memory usage with an increasing number of
samples, reaching up to 45 GB. CUDA Python starts at a higher memory usage
around 40 GB and shows a rapid increase initially before stabilizing.

• CUDA’s GPU memory usage increases linearly with the number of samples, reaching
up to 45 GB. CUDA Python shows a similar trend but starts slightly lower and
increases at a slower rate compared to CUDA.

9 Conclusion
In conclusion, the choice between CUDA and CUDA Python depends on the specific
requirements of the project. CUDA is the preferred choice for performance-critical ap-
plications where execution efficiency and resource management are paramount. Its lower
execution times, stable resource usage, and better scalability make it ideal for large-scale,
high-performance computing tasks.

CUDA Python, with its ease of development and rapid prototyping capabilities, is
suitable for projects where development speed and simplicity are prioritized over execution
efficiency. It provides a more accessible entry point for developers looking to leverage GPU
computing within the familiar Python ecosystem.

Ultimately, this project underscores the importance of evaluating the trade-offs be-
tween development ease and execution performance when selecting a framework for GPU
computing. By understanding these trade-offs, developers can make informed decisions
that align with their specific application needs and resource constraints.

Section 9 Sadaf Shafi 13

GPU Computing with Python

References
[Ask+24] Tair Askar et al. “Exploring Numba and CuPy for GPU-Accelerated Monte

Carlo Radiation Transport”. In: Computation 12.3 (2024), p. 61.

[DLC23] Daniel Di Domenico, Joao VF Lima, and Gerson GH Cavalheiro. “NAS Paral-
lel Benchmarks with Python: a performance and programming effort analysis
focusing on GPUs”. In: The Journal of Supercomputing 79.8 (2023), pp. 8890–
8911.

[Fer+24] Davi F. Fernandes et al. “Comparative study of CUDA-based parallel pro-
gramming in C and Python for GPU acceleration of the 4th order Runge-
Kutta method”. In: Nuclear Engineering and Design 421 (2024), p. 113050.

[Nik+22] Goran S. Nikolić et al. “A survey of three types of processing units: CPU, GPU
and TPU”. In: 2022 57th International Scientific Conference on Information,
Communication and Energy Systems and Technologies (ICEST). IEEE. 2022.

[NVI23a] NVIDIA. CUDA C Programming Guide. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#cuda-a-general-purpose-
parallel-computing-platform-and-programming-model. Accessed: 2023-
08-29. 2023.

[NVI23b] NVIDIA. CUDA Python Overview. https://nvidia.github.io/cuda-
python/overview.html. Accessed: 2023-08-29. 2023.

[Owe+08] John D. Owens et al. “GPU computing”. In: Proceedings of the IEEE 96.5
(2008), pp. 879–899.

[Par+17] Aniruddha Parvat et al. “A survey of deep-learning frameworks”. In: 2017
International Conference on Inventive Systems and Control (ICISC). IEEE.
2017.

[Wan+19] Zhaobin Wang et al. “Various frameworks and libraries of machine learning
and deep learning: a survey”. In: Archives of computational methods in engi-
neering (2019), pp. 1–24.

Section Sadaf Shafi 14

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html##cuda-a-general-purpose-parallel-computing-platform-and-programming-model
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html##cuda-a-general-purpose-parallel-computing-platform-and-programming-model
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html##cuda-a-general-purpose-parallel-computing-platform-and-programming-model
https://nvidia.github.io/cuda-python/overview.html
https://nvidia.github.io/cuda-python/overview.html

GPU Computing with Python

A Code samples
import numpy as np
from numba import cuda
import math
from tqdm import tqdm
import time

Load the pre-processed data from binary files
X_train_bias = np.fromfile('mnist_data/X_train.npy',

dtype=np.float32).reshape(-1, 785)
y_train_one_hot = np.fromfile('mnist_data/y_train.npy',

dtype=np.float32).reshape(-1, 10)
X_test_bias = np.fromfile('mnist_data/X_test.npy',

dtype=np.float32).reshape(-1, 785)
y_test_one_hot = np.fromfile('mnist_data/y_test.npy',

dtype=np.float32).reshape(-1, 10)

Logistic regression model parameters
num_features = X_train_bias.shape[1] - 1
num_classes = 10
learning_rate = 0.1
num_iterations = 10

Initialize theta (weights)
theta = np.zeros((num_features + 1, num_classes), dtype=np.float32)

Transfer data to GPU
X_train_bias_device = cuda.to_device(X_train_bias)
y_train_one_hot_device = cuda.to_device(y_train_one_hot)
X_test_bias_device = cuda.to_device(X_test_bias)
theta_device = cuda.to_device(theta)

@cuda.jit(device=True)
def sigmoid(z):

return 1.0 / (1.0 + math.exp(-z))

@cuda.jit
def compute_h(X, theta, h):

idx = cuda.grid(1)
if idx < X.shape[0]:

for c in range(theta.shape[1]):
z = 0.0
for j in range(X.shape[1]):

z += X[idx, j] * theta[j, c]
h[idx, c] = sigmoid(z)

Section A Sadaf Shafi A1

GPU Computing with Python

@cuda.jit
def compute_gradient(X, y, h, gradient):

idx = cuda.grid(1)
if idx < X.shape[0]:

for c in range(y.shape[1]):
for j in range(X.shape[1]):

cuda.atomic.add(gradient, (j, c), (h[idx, c] - y[idx, c])
* X[idx, j])

@cuda.jit
def update_theta(theta, gradient, learning_rate, m):

idx = cuda.grid(1)
if idx < theta.shape[0]:

for c in range(theta.shape[1]):
theta[idx, c] -= learning_rate * gradient[idx, c] / m

def gradient_descent(X, y, theta, learning_rate, num_iterations):
m, n = X.shape
threads_per_block = 256
blocks_per_grid = (m + threads_per_block - 1) // threads_per_block
h = cuda.device_array((m, y.shape[1]), dtype=np.float32)
gradient = cuda.device_array((n, y.shape[1]), dtype=np.float32)

for _ in tqdm(range(num_iterations), desc='Gradient Descent'):
compute_h[blocks_per_grid, threads_per_block](X, theta, h)
gradient[:] = 0.0
compute_gradient[blocks_per_grid, threads_per_block](X, y, h,

gradient)
update_theta[blocks_per_grid, threads_per_block](theta, gradient,

learning_rate, m)

Start the timer
start_time = time.time()

Launch gradient descent on the GPU
gradient_descent(X_train_bias_device, y_train_one_hot_device,

theta_device, learning_rate, num_iterations)

Stop the timer
end_time = time.time()

Calculate training time
training_time = end_time - start_time

Transfer the optimized theta back to the CPU
theta = theta_device.copy_to_host()

@cuda.jit

Section A Sadaf Shafi A2

GPU Computing with Python

def predict(X, theta, out):
idx = cuda.grid(1)
if idx < X.shape[0]:

for c in range(theta.shape[1]):
z = 0.0
for j in range(X.shape[1]):

z += X[idx, j] * theta[j, c]
out[idx, c] = sigmoid(z)

Predictions on test set
threads_per_block = 256
blocks_per_grid = (X_test_bias.shape[0] + threads_per_block - 1) //

threads_per_block
y_pred_device = cuda.device_array((X_test_bias.shape[0], num_classes),

dtype=np.float32)
predict[blocks_per_grid, threads_per_block](X_test_bias_device,

theta_device, y_pred_device)

Transfer predictions back to the CPU
y_pred = y_pred_device.copy_to_host()

Calculate accuracy
y_pred_labels = np.argmax(y_pred, axis=1)
y_test_labels = np.argmax(y_test_one_hot, axis=1)
accuracy = np.mean(y_pred_labels == y_test_labels) * 100

print(f'Training time: {training_time:.2f} seconds')
print(f'Accuracy on test set: {accuracy:.2f}%')

Section A Sadaf Shafi A3

	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Comparison between the GPU frameworks
	Related Work
	CUDA and CUDA Python
	Hardware Requirements
	Experiment 1: Matrix Multiplication in CUDA vs CUDA Python
	Matrix Multiplication using CUDA
	Matrix Multiplication using CUDA Python
	Figure Descriptions

	Experiment 2: Linear Regression on MNIST Dataset
	MNIST Training with Linear Regression for CUDA
	MNIST Training with Linear Regression in CUDA Python
	Figure Descriptions

	Experiment 3: Sorting with Parallelization
	Sorting for CUDA
	Sorting in CUDA Python
	Figure Descriptions

	Conclusion
	References
	Code samples

