
GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Container Vulnerability Scanning

in GitLab CI/CD Pipeline

Automating Defect Detection with Trivy

1
Submitted by:

Pranay Bhatia (17935037)

Agenda

2 of 38

• Setting the ground

• Introduction to topic

• Comparison

• Experiment

• Conclusion

• Lessons learnt and Q/A

https://www.101qs.com/2518-a-lot-of-doors

Motivation

3 of 38

• House anology

• House with many doors and windows

• Buglurs and thiefs with bad intentions always be outside.

• What wont help much:

• Assuming all buglur might look buglury.

• Tracking each individual Buglur.

• Challenge:

• !!! House must be protected at any cost. !!!

https://www.101qs.com/2518-a-lot-of-doors

Introduction background ExperimentMotivation Result and conclusionObjective

Motivation

4 of 38

• What will you do to protect the house?

• First: Count all windows and doors you have. (Attack Surface)

• Second: Check security of each entrance. (vulnerability

intelligence)

• Third: Check if there some defects in locks in doors. (threat

intelligence)

• Fourth: Update to new and advanced protection time to time.

• Observations:

• Resources are limited.

• Time is limited.

https://www.101qs.com/2518-a-lot-of-doors

Introduction background ExperimentMotivation Result and conclusionObjective

Topic

5 of 38

• Topic:

Home Security Automation

https://www.linkedin.com/pulse/key-security-layers-docker-containers-mohit-vaish/

Introduction background ExperimentMotivation Result and conclusionObjective

Topic

6 of 38

• Topic:

Home Security Automation

• Topic:

Container Security Automation

https://www.linkedin.com/pulse/key-security-layers-docker-containers-mohit-vaish/

Introduction background ExperimentMotivation Result and conclusionObjective

Topic

7 of 38

• Topic:

Home Security Automation

• Topic:

automatic static analysis workflows

Container Security Automation

https://www.linkedin.com/pulse/key-security-layers-docker-containers-mohit-vaish/

Introduction background ExperimentMotivation Result and conclusionObjective

Introduction

8 of 38

Introduction

9 of 38

https://www.cvedetails.com/

Introduction background ExperimentMotivation Result and conclusionObjective

Vulnerabilities

10 of 38

buffer overflow attack

Memory Corruption attack

SQL Injection attack

Cross Site Scripting (XSS)

CSRF (Cross site reg. Forg)

External Entity Injection

Open redirect

Input Validation

Execute code

BypassGain privilege

Information leak

https://www.cvedetails.com/

Introduction background ExperimentMotivation Result and conclusionObjective

Vulnerabilities

11 of 38

buffer overflow attack

Memory Corruption attack

SQL Injection attack

Cross Site Scripting (XSS)

CSRF (Cross site reg. Forg)

External Entity Injection

Open redirect

Input Validation

Execute code

BypassGain privilege

Information leak

https://www.cvedetails.com/

Introduction background ExperimentMotivation Result and conclusionObjective

Number of attacks per year

12 of 38https://www.cvedetails.com/

Introduction background ExperimentMotivation Result and conclusionObjective

Problem Statement

13 of 38

Problem statement

14 of 38

• Increasing Complexity of Modern

Applications

• Security Concerns with Containerization

• Need for Automated Security Measures

• Leveraging GitLab for Automated

Validation

Vulnerabilities per
year

Attacks per year

Attackers per year

Introduction background ExperimentMotivation Result and conclusionObjective

Objective

15 of 38

Deliverables

16 of 38

• Technical

• Dockerfile for the container in which trivy runs on the gitlab runner

• Automated static analysis of yaml files for defect

• Implement admission control work flow, which rejects PR on critical errors

• Theoretical

• Existing meaningful additions to trivy implementation

• Addressing Alternative Scientific research on the topic

Introduction background ExperimentMotivation Result and conclusionObjective

Background

17 of 38

YAML File Validation in GitLab CI/CD
Pipeline

18 of 38

• Yaml File

• human-readable data serialization language [1]

• often used for writing configuration files

• Better readibility than json

• CI/CD

• Automatically checks new code

• deploys code to target after passing tests

• Saves time by automating repetitive tasks.

• Reduces human error in the deployment process.

database:
 user: admin
 password: supersecretpassword
 host: localhost
 port: 3306

services:
 web:
 image: webapp:latest
 ports:
 - "80:80"
 db:
 image: mysql:latest
 environment:
 MYSQL_ROOT_PASSWORD: password123
 ports:
 - "3306:3306"
logging:
 level: DEBUG
 output: /var/log/app.log

[1] https://www.redhat.com/en/topics/automation/what-is-yaml

Introduction background ExperimentMotivation Result and conclusionObjective

YAML File Validation in GitLab CI/CD
Pipeline

19 of 38

database:
 user: admin
 password: supersecretpassword # Storing
sensitive data in plain text
 host: localhost
 port: 3306

services:
 web:
 image: webapp:latest
 ports:
 - "80:80"
 db:
 image: mysql:latest
 environment:
 MYSQL_ROOT_PASSWORD: password123
Weak password
 ports:
 - "3306:3306"
logging:
 level: DEBUG
Debug level logging in production
 output: /var/log/app.log

[1] https://www.redhat.com/en/topics/automation/what-is-yaml

• Validation

• Storing sensitive data in plain text

• Weak password

• Debug level logging in production

• Problems:

• Access Controls

• Storing Secrets

• Logging Levels

• Environment-Specific Configurations

Introduction background ExperimentMotivation Result and conclusionObjective

Dev Sec Ops workflow

20 of 38

https://blog.sparkfabrik.com/en/container-security-how-to

• Container image scanning
• Scanning project
• Scanning docker images
• Scanning vulnerabilitis

• Policy-based deployment control
• RBAC
• Admissoin control workflow
• Report generation

Introduction background ExperimentMotivation Result and conclusionObjective

Container Image
scanning

21 of 38

Security Tools

22 of 38

www.okyaytechald.comhttps://hub.docker.com/r/aquasec/trivy

Anchore Engine:
https://catalog.redhat.com/software/container-
stacks/detail/5e9872c4d4ae96b7493f08e1

Twistlock: https://www.eweek.com/security/twistlock-2.0-
improves-container-security-and-compliance/

https://www.projectquay.io/

https://www.linkedin.com/pulse/semi-
automating-blackduck-brit-glazer/

Introduction background ExperimentMotivation Result and conclusionObjective

Security Tools Analysis

23 of 38

Tool Type CI/CD Compliance Features

Anchor-Engine Open-source Yes Yes vulnerability scanning
security and compliance

Black Duck Commercial No Extensive detailed open-source manage-
ment and compliance capabilities

Clair Open-source Yes Limited vulnerability scanning

Quay Security scan Open-source No No basic vulnerability scan-
ning with own container registery

Trivy Open-source Yes No (Yes, in Trivy
2.0)

Scans container images, file systems, and Git
repositories for vulnerabil-
ities. Works in Kubernetes environment.

Twistlock Commercial Yes Extensive extensive compliance

Introduction background ExperimentMotivation Result and conclusionObjective

Security Tools Analysis (Trivy)

24 of 38

https://aquasecurity.github.io/trivy/v0.17.2/comparison/

Introduction background ExperimentMotivation Result and conclusionObjective

Policy based
deployments controls

25 of 38

CI/CD Pipeline

26 of 38

Img. Source. https://www.spiceworks.com/tech/devops/articles/what-is-ci-cd/

Introduction background ExperimentMotivation Result and conclusionObjective

Admission control workflow in CI/CD

27 of 38

• Validation: Validate Automatically checks new YAML files for errors and security issues

before they are merged.

• Decision: Accepts or rejects changes based on the validation results to ensure only

secure, error-free configurations are deployed.

• Feedback: Provides immediate feedback to developers, helping them fix issues quickly

and maintain high-quality code.

Introduction background ExperimentMotivation Result and conclusionObjective

User story

When A user creates a PR which includes new YAML files.

Then A GitLab validation pipeline is triggered.

And Scans new YAML Files for defects using Trivy.

Then PR is either accepted or rejected based on reports generated.

28 of 38

Introduction background ExperimentMotivation Result and conclusionObjective

Workflow

29 of 38

of 38

Gitlab configurations

31 of 38

Introduction background ExperimentMotivation Result and conclusionObjective

• Make main protected branch. (To make sure no direct commits are allowed to
main).

• Enable Merge checks in Gitlab. Settings > Merge Requests.

.gitlab-ci.yaml

32 of 38

00 scan trivy license:
extends: .trivy-scan-template
script:

- trivy fs --scanners license .

00 scan trivy file system:
extends: .trivy-scan-template
script:

- trivy fs --scanners vuln .

00 scan trivy IAAC:
extends: .trivy-scan-template
script:

- trivy conf --severity HIGH,CRITICAL .

.gitlab-ci.yaml

Introduction background ExperimentMotivation Result and conclusionObjective

.trivy-scan-template:
image: aquasec/trivy:latest
stage: scan
allow_failure: true
rules:

- if: '$CI_PIPELINE_SOURCE == "merge_request_event"'

00 scan trivy misconfig:
extends: .trivy-scan-template
script:

- trivy fs --scanners misconfig .

00 scan trivy secret:
extends: .trivy-scan-template
script:

- trivy fs --scanners secret .

.gitlab-ci.yaml

Trivy based docker image for gitlab runner

33 of 38

FROM alpine:3.18
ENV TRIVY_VERSION=v0.18.3
RUN apk add --no-cache \
 curl \
 && curl -sfL https://raw.githubusercontent.com/aquasecurity
 /trivy/main/contrib/install.sh | sh -s -- -b /usr/local/bin
 ${TRIVY_VERSION} \
 && apk del curl
WORKDIR /app
COPY script.sh /app/

ENTRYPOINT ["trivy"]
CMD ["--help"]

Dockerfile

Introduction background ExperimentMotivation Result and conclusionObjective

Trivy Vulnurabity
Reports

34 of 38

35 of 38

Trivy Report

Introduction background ExperimentMotivation Result and conclusionObjective

36 of 38

Trivy Report

Introduction background ExperimentMotivation Result and conclusionObjective

Conclusion

37 of 38

Conclusion

• Enhanced Security:

• early detection of potential security risks.

• Hide sensitive data.

• Efficiency and Consistency:

• Automation saves time and reducing manual errors.

• Maintains consistency.

• Quality Assurance:

• Ensures high-quality, secure code.

• Admission control workflows prevent ensures only defect-free configurations are deployed.

.

38 of 38

Introduction background ExperimentMotivation Result and conclusionObjective

References
• Bhardwaj, P. (2023). Detecting Container vulnerabilities leveraging the CICD pipeline MSc Research Project Cybersecurity.

https://norma.ncirl.ie/6512/1/preetibhardwaj.pdf

• Sultan, S., Ahmad, I., & Dimitriou, T. (2019). Container Security: Issues, Challenges, and the Road Ahead. IEEE Access, 7, 52976–52996.

https://doi.org/10.1109/access.2019.2911732

• Tiwari, H. (2023, October 10). Enhancing Container Security Through Automated Vulnerability Scanning and Remediation with Trivy. Insights2Techinfo.

https://insights2techinfo.com/enhancing-container-security-through-automated-vulnerability-scanning-and-remediation-with-trivy/

40 of 38

	Slide 1
	Slide 2: Agenda
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Topic
	Slide 6: Topic
	Slide 7: Topic
	Slide 8: Introduction
	Slide 9: Introduction
	Slide 10: Vulnerabilities
	Slide 11: Vulnerabilities
	Slide 12: Number of attacks per year
	Slide 13: Problem Statement
	Slide 14: Problem statement
	Slide 15: Objective
	Slide 16: Deliverables
	Slide 17: Background
	Slide 18: YAML File Validation in GitLab CI/CD Pipeline
	Slide 19: YAML File Validation in GitLab CI/CD Pipeline
	Slide 20: Dev Sec Ops workflow
	Slide 21: Container Image scanning
	Slide 22: Security Tools
	Slide 23: Security Tools Analysis
	Slide 24: Security Tools Analysis (Trivy)
	Slide 25: Policy based deployments controls
	Slide 26: CI/CD Pipeline
	Slide 27: Admission control workflow in CI/CD
	Slide 28: User story
	Slide 29: Workflow
	Slide 30
	Slide 31: Gitlab configurations
	Slide 32: .gitlab-ci.yaml
	Slide 33: Trivy based docker image for gitlab runner
	Slide 34: Trivy Vulnurabity Reports
	Slide 35
	Slide 36
	Slide 37: Conclusion
	Slide 38: Conclusion
	Slide 40: References

