
GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Container Vulnerability Scanning 

in GitLab CI/CD Pipeline

Automating Defect Detection with Trivy

1
Submitted by:

Pranay Bhatia (17935037)



Agenda

2 of 38

• Setting the ground

• Introduction to topic

• Comparison

• Experiment

• Conclusion

• Lessons learnt and Q/A

https://www.101qs.com/2518-a-lot-of-doors



Motivation
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• House anology

• House with many doors and windows

• Buglurs and thiefs with bad intentions always be outside. 

• What wont help much: 

• Assuming all buglur might look buglury. 

• Tracking each individual Buglur. 

• Challenge: 

• !!! House must be protected at any cost. !!!

https://www.101qs.com/2518-a-lot-of-doors
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Motivation
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• What will you do to protect the house? 

• First: Count all windows and doors you have. (Attack Surface)

• Second: Check security of each entrance. (vulnerability 

intelligence)

• Third: Check if there some defects in locks in doors. (threat 

intelligence)

• Fourth: Update to new and advanced protection time to time.

•  Observations: 

• Resources are limited.

• Time is limited. 

https://www.101qs.com/2518-a-lot-of-doors
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• Topic: 

Home Security Automation

https://www.linkedin.com/pulse/key-security-layers-docker-containers-mohit-vaish/

Introduction background ExperimentMotivation Result and conclusionObjective



Topic

6 of 38

• Topic: 

Home Security Automation

• Topic: 

 

Container Security Automation

https://www.linkedin.com/pulse/key-security-layers-docker-containers-mohit-vaish/
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Topic
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• Topic: 

Home Security Automation

• Topic: 

automatic static analysis workflows

Container Security Automation

https://www.linkedin.com/pulse/key-security-layers-docker-containers-mohit-vaish/
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https://www.cvedetails.com/
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Vulnerabilities
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buffer overflow attack

Memory Corruption attack

SQL Injection attack

Cross Site Scripting (XSS)

CSRF (Cross site reg. Forg)

External Entity Injection

Open redirect

Input Validation

Execute code

BypassGain privilege

Information leak

https://www.cvedetails.com/
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Number of attacks per year
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Problem statement
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• Increasing Complexity of Modern 

Applications

• Security Concerns with Containerization

• Need for Automated Security Measures

• Leveraging GitLab for Automated 

Validation

Vulnerabilities per 
year

Attacks per year

Attackers per year
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Deliverables
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• Technical

• Dockerfile for the container in which trivy runs on the gitlab runner

• Automated static analysis of yaml files for defect

• Implement admission control work flow, which rejects PR on critical errors

• Theoretical

• Existing meaningful additions to trivy implementation

• Addressing Alternative Scientific research on the topic
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YAML File Validation in GitLab CI/CD 
Pipeline
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• Yaml File

• human-readable data serialization language [1] 

• often used for writing configuration files

• Better readibility than json

• CI/CD 

• Automatically checks new code

• deploys code to target after passing tests

• Saves time by automating repetitive tasks. 

• Reduces human error in the deployment process.

database:
 user: admin
 password: supersecretpassword  
 host: localhost
 port: 3306

services:
 web:
  image: webapp:latest
  ports:
   - "80:80"
 db:
  image: mysql:latest
  environment:
   MYSQL_ROOT_PASSWORD: password123  
  ports:
   - "3306:3306"
logging:
 level: DEBUG  
 output: /var/log/app.log

[1] https://www.redhat.com/en/topics/automation/what-is-yaml
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YAML File Validation in GitLab CI/CD 
Pipeline
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database:
 user: admin
 password: supersecretpassword # Storing 
sensitive data in plain text
 host: localhost
 port: 3306

services:
 web:
  image: webapp:latest
  ports:
   - "80:80"
 db:
  image: mysql:latest
  environment:
   MYSQL_ROOT_PASSWORD: password123 
# Weak password  
  ports:
   - "3306:3306"
logging:
 level: DEBUG 
# Debug level logging in production 
 output: /var/log/app.log

[1] https://www.redhat.com/en/topics/automation/what-is-yaml

• Validation

• Storing sensitive data in plain text

• Weak password

• Debug level logging in production

• Problems: 

• Access Controls

• Storing Secrets

• Logging Levels

• Environment-Specific Configurations
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Dev Sec Ops workflow
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https://blog.sparkfabrik.com/en/container-security-how-to

• Container image scanning
• Scanning project 
• Scanning docker images
• Scanning vulnerabilitis

• Policy-based deployment control
• RBAC
• Admissoin control workflow
• Report generation
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Container Image 
scanning
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Security Tools
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www.okyaytechald.comhttps://hub.docker.com/r/aquasec/trivy

Anchore Engine: 
https://catalog.redhat.com/software/container-
stacks/detail/5e9872c4d4ae96b7493f08e1

Twistlock: https://www.eweek.com/security/twistlock-2.0-
improves-container-security-and-compliance/

https://www.projectquay.io/

https://www.linkedin.com/pulse/semi-
automating-blackduck-brit-glazer/
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Security Tools Analysis
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Tool Type CI/CD Compliance Features

Anchor-Engine Open-source Yes Yes vulnerability scanning 
security and compliance

Black Duck Commercial No Extensive detailed open-source manage-
ment and compliance capabilities

Clair Open-source Yes Limited vulnerability scanning

Quay Security scan Open-source No No basic vulnerability scan-
ning with own container registery

Trivy Open-source Yes No (Yes, in Trivy 
2.0)

Scans container images, file systems, and Git 
repositories for vulnerabil-
ities. Works in Kubernetes environment. 

Twistlock Commercial Yes Extensive extensive compliance
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Security Tools Analysis (Trivy)
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https://aquasecurity.github.io/trivy/v0.17.2/comparison/
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CI/CD Pipeline
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Img. Source. https://www.spiceworks.com/tech/devops/articles/what-is-ci-cd/
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Admission control workflow in CI/CD
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• Validation: Validate Automatically checks new YAML files for errors and security issues 

before they are merged.

• Decision: Accepts or rejects changes based on the validation results to ensure only 

secure, error-free configurations are deployed.

• Feedback: Provides immediate feedback to developers, helping them fix issues quickly 

and maintain high-quality code.
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User story

When A user creates a PR which includes new YAML files. 

Then A GitLab validation pipeline is triggered.

And Scans new YAML Files for defects using Trivy. 

Then PR is either accepted or rejected based on reports generated. 

28 of 38
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Workflow
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Gitlab configurations 
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• Make main protected branch. (To make sure no direct commits are allowed to 
main).

• Enable Merge checks in Gitlab. Settings > Merge Requests.



.gitlab-ci.yaml 
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00 scan trivy license:
extends: .trivy-scan-template
script:

- trivy fs --scanners license .

00 scan trivy file system:
extends: .trivy-scan-template
script:

- trivy fs --scanners vuln .

00 scan trivy IAAC:
extends: .trivy-scan-template
script:

- trivy conf --severity HIGH,CRITICAL .

.gitlab-ci.yaml
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.trivy-scan-template:
image: aquasec/trivy:latest
stage: scan
allow_failure: true
rules:

- if: '$CI_PIPELINE_SOURCE == "merge_request_event"'

00 scan trivy misconfig:
extends: .trivy-scan-template
script:

- trivy fs --scanners misconfig .

00 scan trivy secret:
extends: .trivy-scan-template
script:

- trivy fs --scanners secret .

.gitlab-ci.yaml



Trivy based docker image for gitlab runner

33 of 38

FROM alpine:3.18
ENV TRIVY_VERSION=v0.18.3
RUN apk add --no-cache \
  curl \
  && curl -sfL https://raw.githubusercontent.com/aquasecurity
  /trivy/main/contrib/install.sh | sh -s -- -b /usr/local/bin
  ${TRIVY_VERSION} \
  && apk del curl
WORKDIR /app
# COPY script.sh /app/

ENTRYPOINT ["trivy"]
CMD ["--help"]

Dockerfile
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Trivy Vulnurabity 
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Trivy Report
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Trivy Report
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Conclusion

• Enhanced Security:

• early detection of potential security risks.

• Hide sensitive data. 

• Efficiency and Consistency:

• Automation saves time and reducing manual errors.

• Maintains consistency.

• Quality Assurance:

• Ensures high-quality, secure code.

• Admission control workflows prevent ensures only defect-free configurations are deployed.

.

38 of 38
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