
SH

∞

Seminar Report

Automated Vulnerability Scanning with
Trivy

Pranay Bhatia

MatrNr: 17935037

Supervisor: Jonathan Decker

Georg-August-Universität Göttingen
Institute of Computer Science

September 28, 2024

Abstract
In modern software development, Continuous Integration (CI) and Continuous Deploy-
ment (CD) pipelines play a critical role in automating the testing and deployment pro-
cesses. This experiment integrates a security scanning mechanism into a GitLab CI/CD
pipeline to ensure that applications remain secure throughout the development lifecycle.
A custom GitLab Runner is configured to run Trivy, a vulnerability scanner, which eval-
uates Yet Another Markup Language (YAML) files and container images submitted via
Pull Request (PR). An admission control system automatically accepts or rejects PRs
based on the severity of detected vulnerabilities. This pipeline ensures that only secure
code is merged, minimizing the risk of security flaws in the production environment. The
integration of security scanning into the CI/CD workflow streamlines the deployment
process and enhances the overall security posture of applications.

i

Contents

1 Introduction 1

2 Background 1
2.1 Docker and Docker Containers . 2
2.2 CI/CD . 2
2.3 Container Security . 2
2.4 Other Relevant Subtopics . 3

3 Literature Review 3
3.1 Different types of scans . 3
3.2 Mechanism of Trivy . 4

4 Motivation and Problem Statement 5
4.1 Motivation . 5
4.2 Problem Statement . 6

5 Comparison of different Tools 6
5.1 Vulnerability Scanning Approaches . 7
5.2 Compliance Management Features . 7
5.3 Integration Capabilities . 8
5.4 Usage Scenarios and Target Audiences . 8
5.5 Conclusion . 9

6 Architecture and Experiment 9
6.1 Diagram of Workflow . 9
6.2 GitLab CI/CD Pipeline Configuration . 10
6.3 GitLab Runner Dockerfile . 10
6.4 Reports Generated by Trivy . 11
6.5 Decision on PR Based on Scan Results . 12

7 Result: Trivy Scan Overview 12
7.1 Detected Configuration Files . 12
7.2 Detected Issues . 13
7.3 Recommendations . 13
7.4 References . 14

8 Conclusion 14

List of Figures A3

A Appendix 1: Gitlab-ci.yaml Code A4

B Appendix 2: Dockerfile A5

ii

Automated Vulnerability Scanning with Trivy

1 Introduction
In the rapidly evolving landscape of software development, the deployment and manage-
ment of applications have undergone significant transformations. Traditional deployment
models, which relied heavily on physical hardware and monolithic systems, often resulted
in inefficient resource utilization and prolonged deployment cycles. This paved the way
for virtualization, a groundbreaking technology introduced in the 1970s, which abstracted
physical hardware and allowed for more flexible and scalable computing

Building on the principles of virtualization, containerization emerged as a revolu-
tionary approach, providing a more lightweight and efficient method for application de-
ployment. Unlike traditional virtualization, which involves running complete operating
systems on virtual hardware, containers encapsulate applications with their dependencies
into a single, portable unit. This makes containers exceptionally lightweight and quick
to deploy, using shared operating system resources while maintaining isolated environ-
ments. [Doc20]: Docker, one of the leading containerization technologies, has become
integral to the deployment strategies of major organizations such as Google and Amazon,
particularly within their Platform as a Service (PaaS) models. [Bha23]

Despite the advantages of containerization, the rise in container usage has brought
security concerns to the forefront. Open-source Docker images, while convenient, can be
vulnerable to attacks if not properly secured. This was highlighted by incidents such as
the discovery of Alpine Docker images in 2019, which were shipped with no password,
creating a potential backdoor for attackers. [Cim19] Studies indicate that approximately
60% of organizations have encountered some form of attack due to insecure Docker im-
ages. Addressing these security vulnerabilities is crucial to maintaining the integrity and
reliability of containerized applications. [SAD19]

To mitigate these risks, this project focuses on integrating security checks into the de-
velopment pipeline through automated static analysis workflows. Specifically, leveraging
GitLab’s CI/CD capabilities to perform admission control for infrastructure and validate
user-submitted YAML files, through a GitLab pipeline triggered by PRs.

When a user submits a PR that includes new YAML files, our automated pipeline
initiates a validation process. This process scans the YAML files for potential defects and
vulnerabilities using tools like Trivy, which is renowned for its ability to identify Common
Vulnerabilities and Exposures (CVE)s in container images and configuration files. Based
on the reports generated by Trivy or other analysis tools, the PR is either accepted or
rejected, ensuring only secure and compliant configurations are deployed.

This project delivers a Git repository that contains an automated validation work-
flow. By incorporating Trivy into the pipeline, Report proposes a robust admission con-
trol mechanism that not only enhances the security posture but also streamlines the
development process. This integration facilitates proactive detection of vulnerabilities
and defects, thus reinforcing the security and reliability of containerized applications and
Infrastructure as Code (IaC) code.

2 Background
This section provides an overview of key foundational concepts relevant to the study. It
begins by examining Docker and Docker containers, which serve as the backbone of

Section 2 Pranay Bhatia 1

Automated Vulnerability Scanning with Trivy

modern containerization technology. This is followed by a discussion on CI/CD, outlining
the practices of continuous integration and continuous deployment, which streamline the
software development process. Container security is also explored, emphasizing the
importance of securing containerized environments. Finally, other relevant subtopics are
introduced to provide additional context and support for the research.

2.1 Docker and Docker Containers

Docker is a widely used platform for developing, shipping, and running applications.
By utilizing containerization technology, Docker ensures that software runs consistently
across different computing environments, whether it is a developer’s local machine or a
production server. The platform provides a set of tools that automate the deployment
of applications inside lightweight, portable containers. This allows developers to create,
test, and deploy their applications faster and more efficiently without worrying about
environmental discrepancies.

Docker containers encapsulate an application and its dependencies into a single, iso-
lated unit. Unlike traditional virtual machines, containers share the host operating sys-
tem’s kernel but run in isolated processes, which enhances efficiency and performance.
This architecture enables containers to consume fewer system resources while providing a
consistent execution environment for applications, regardless of the underlying infrastruc-
ture. [Esc+16] As a result, Docker containers are highly scalable and ideal for modern
cloud-native applications.

2.2 CI/CD

CI is a fundamental development practice where developers frequently integrate their
code into a shared repository. Each integration is followed by an automated build and
test process, allowing teams to identify and address issues early in the development cycle.
By promoting early detection of bugs and inconsistencies, CI helps maintain the stability
of the project and reduces the complexity of later stages of development. [Zam+21]

CD takes CI one step further by automating the process of deploying code changes
to production environments once they pass integration and testing phases. With CD,
new features, bug fixes, and updates can be delivered quickly and reliably to end users,
enhancing agility in software delivery. Together, CI and CD form a pipeline where code
changes flow seamlessly from development to production with minimal manual interven-
tion, ensuring high-quality releases. [Zam+21]

2.3 Container Security

While containers offer numerous benefits in terms of efficiency and portability, they also
present specific security challenges. Since containers share the host operating system (OS)
kernel, improper isolation can pose security risks, especially if vulnerabilities are present
in the underlying system. Additionally, the use of insecure or untrusted container images
and configurations can expose applications to potential exploits. [Sax23]

To mitigate these risks, it is essential to follow container security best practices. Regu-
larly scanning container images for vulnerabilities helps ensure that known security flaws
are addressed before deployment. Using trusted and official images from reputable sources
reduces the likelihood of incorporating malicious or vulnerable software components.

Section 2 Pranay Bhatia 2

Automated Vulnerability Scanning with Trivy

2.4 Other Relevant Subtopics

IaC is a pivotal concept in modern infrastructure management, where computing infras-
tructure is managed and provisioned through machine-readable configuration files rather
than manual processes. IaC allows for greater consistency and repeatability in infrastruc-
ture changes, as configurations can be version-controlled and automated. This approach
reduces the potential for human error and ensures that infrastructure is always aligned
with the desired state.

Kubernetes, an open-source platform for managing containerized applications, has
become a cornerstone in container orchestration. It automates the deployment, scaling,
and management of containers across clusters of machines. Kubernetes offers a robust
ecosystem for ensuring that containerized applications are highly available, scalable, and
resilient. [Kub19]

Lastly, GitLab CI/CD provides a powerful tool for automating the software delivery
lifecycle. Through pipelines defined in the .gitlab-ci.yml file, GitLab facilitates auto-
mated testing, building, and deployment of applications. By integrating CI/CD practices
within GitLab, development teams can streamline the entire software delivery process,
ensuring that code changes are thoroughly tested and deployed with minimal manual
effort, reducing risks and accelerating the release of new features.

3 Literature Review
This section examines the mechanisms and capabilities of Trivy, a comprehensive security
scanner frequently employed to identify vulnerabilities, secrets, and misconfigurations
within containerized environments. The review focuses on how Trivy utilizes its internal
database for efficient threat detection and its scanning behavior across various categories.
Particular emphasis is placed on Trivy’s approach to secret scanning, which is critical for
preventing sensitive data exposure. By understanding these components, Trivy’s role as
a vital tool in modern security practices is highlighted.

3.1 Different types of scans

This subsection provides an overview of the different types of scans that are essential
in maintaining the security and compliance of containerized environments. These scans,
including secret scanning, vulnerability scanning, license scanning, and misconfiguration
scanning, play a pivotal role in identifying potential risks and ensuring robust security
practices throughout the software development lifecycle.

Secret Scanning

Trivy’s secret scanning capabilities provide a robust solution for detecting exposed cre-
dentials, such as passwords, Application Programming Interface (API) keys, and tokens,
within container images, file systems, and git repositories. This feature is enabled by
default and is governed by a set of built-in rules, targeting common sensitive data types,
including Amazon Web Services (AWS) access keys, Google Cloud Platform (GCP) service
account credentials, and personal access tokens from GitHub and GitLab. By examining
plaintext files, Trivy ensures that sensitive information is identified and mitigated before
it can be exploited. [22c]

Section 3 Pranay Bhatia 3

Automated Vulnerability Scanning with Trivy

Vulnerability Scanning

Trivy is designed to detect known vulnerabilities in software components within various
scan targets, such as container images, OS packages, language-specific packages, and
Kubernetes components. Its approach involves consuming security advisories from reliable
data sources specific to each type of package, such as vendor databases for OS packages.[23]
This data source selection is essential to prevent false positives, as OS vendors often
backport security fixes. The severity of detected vulnerabilities is also determined based
on the source, providing more accurate risk assessments compared to general databases
like the NVD. [24b]

Misconfiguration Scanning

In addition to vulnerability detection, Trivy also includes misconfiguration scanning to
identify security and compliance issues within IaC files. It supports popular frameworks
such as Kubernetes, Docker, Terraform, and CloudFormation, automatically detecting
mixed types of IaC files within the specified directory and applying the relevant checks.
[22b] This flexibility allows Trivy to address potential configuration flaws across a wide
range of environments, enhancing security by identifying risks inherent in infrastructure
setup and deployment.

License Scanning

Trivy provides a license scanning feature that analyzes container images for license files
and assesses associated risks. By classifying licenses into categories such as “Forbidden,”
“Restricted,” and “Permissive” based on the Google License Classification, [22a] Trivy
offers a clear risk assessment for compliance purposes. It scans packages installed via
popular package managers like pip, npm, and apt-get by default, and extended scanning
can be enabled to inspect source code files and documents for further license violations.
This ensures that organizations remain compliant with licensing requirements, avoiding
legal risks associated with improper software usage.

3.2 Mechanism of Trivy

Now knowing all what Trivy do, it is important to know what is underlying mechanism,
focusing on how container scanning tools operates to identify security risks. It covers
key aspects such as open source database utilization, which enables efficient vulnerability
detection, its behavior in scanning and detecting issues, and its specialized approach to
secret scanning, which helps safeguard sensitive information

Database Utilization

Trivy operates by leveraging multiple specialized databases to provide comprehensive
vulnerability scanning across various types of software components. Upon initiating a
scan, Trivy automatically downloads the necessary vulnerability databases, which are
cached locally for future use. The main vulnerability database, which is updated every
six hours on GitHub, contains vulnerability information collected from a range of trusted
data sources, including OS vendor advisories and community-maintained repositories.[24b]
Trivy also uses a separate Java Index Database when scanning JAR files, allowing it to
accurately identify JAR file metadata such as groupId, artifactId, and version. These

Section 3 Pranay Bhatia 4

Automated Vulnerability Scanning with Trivy

databases are critical to Trivy’s ability to provide accurate and up-to-date vulnerability
assessments. [Tiw23]

Handling Unspecified Versions

Trivy also handles packages with unspecified versions cautiously by skipping vulnerability
detection for these packages to avoid false positives. However, users can opt for the
comprehensive detection priority to scan for vulnerabilities even in unspecified version
ranges, where the minimum version in the range is used for detection.[R+24] While this
may increase the likelihood of false positives, it serves as a proactive measure to detect
vulnerabilities that could otherwise be missed in ambiguous version scenario.

Secret Scanning

In addition to vulnerability detection, Trivy is capable of scanning for secrets within file
systems using predefined regular expressions (regex) to identify sensitive information such
as passwords, API keys, and tokens. This secret scanning feature is enabled by default
and works across container images, filesystems, and git repositories. Trivy applies built-in
rules to search for common types of credentials, such as AWS access keys, GCP service
account credentials, and GitHub and GitLab personal access tokens.[22c] By examining
plaintext files, Trivy helps organizations detect exposed secrets early, mitigating the risk
of accidental leakage of sensitive information before it is deployed or made publicly ac-
cessible. This regex-based approach ensures a wide coverage of potential security risks by
identifying credentials embedded in various locations across the filesystem. [Sax23]

4 Motivation and Problem Statement
4.1 Motivation

With the rise of containerization comes a new set of security concerns. Containers, while
offering a lightweight and flexible deployment model, introduce unique vulnerabilities,
particularly in container images and configuration files. Misconfigurations and insecure
container images are common entry points for security breaches, which can lead to sig-
nificant incidents. As a result, it becomes crucial to ensure that containers are deployed
securely in production environments.

Figure 1: Graph of vulnerabilities per year Source: [24a]

Section 4 Pranay Bhatia 5

Automated Vulnerability Scanning with Trivy

Figure 1 illustrates the trend of vulnerabilities by type and year from 2014 to 2023. The
graph shows a significant rise in the total number of vulnerabilities. The annual growth
rate of vulnerabilities from 2014 to 2023, based on the graph, is approximately 16.65%.
This indicates a substantial yearly increase in the number of reported vulnerabilities over
the period of 10 years.

As development cycles shorten and deployment frequencies increase, manually con-
ducting security checks is no longer a viable approach. To mitigate the risk of security
vulnerabilities while keeping up with the fast-paced development environment, there is
an increasing demand for automated security measures. Integrating automated vulnera-
bility scanning into the CI/CD pipeline is essential for continuous enforcement of security
policies. This approach allows for real-time detection and mitigation of vulnerabilities,
ensuring that security is maintained consistently throughout the development lifecycle.

4.2 Problem Statement

Maintaing secure Kubernetes deployments is a significant challenge due to the dynamic
and complex nature of containerized environments. The rapid proliferation of microser-
vices and the increasing use of containers have resulted in a heightened prevalence of
vulnerabilities within container images and YAML configuration files. These vulnerabili-
ties, if left unchecked, pose serious risks to the security of deployed applications and can
result in breaches, data loss, and system compromise.

This problem can be solved by an automated admission control mechanism that can
perform continuous scanning and validation of container images and configuration files
before they are deployed. Such a system would act as a gatekeeper, ensuring that only
secure and compliant images and configurations are allowed into production environments.
By preventing the deployment of vulnerable containers and configurations, organizations
can significantly enhance their overall security posture.

The objective of this project is to design and implement an automated CI/CD pipeline
within GitLab that incorporates vulnerability scanning tools such as Trivy. This pipeline
will serve as an admission control system, automatically scanning YAML files and con-
tainer images during the CI/CD process. Based on the results of these security scans, the
pipeline will either approve or reject pull requests, thereby enforcing security validation
before deployment.

By automating the security validation process, this project addresses the critical
need for continuous and proactive security enforcement within Kubernetes environments.
The proposed solution will reduce the likelihood of deploying vulnerable configurations,
thereby improving the security of the application deployment process.

5 Comparison of different Tools
Based on the problem statements and motivation discussed in previous sections, there
is a pressing need for a robust container security scanner to ensure a secure deployment
lifecycle. Numerous tools are available for this purpose; thus, this section provides a
comprehensive analysis and comparison of several popular container security solutions. 2
It examines their key features, scope of usage, and compliance capabilities, highlighting
both open-source and commercial options. Each tool presents a unique approach to

Section 5 Pranay Bhatia 6

Automated Vulnerability Scanning with Trivy

container security, enabling organizations to choose the most suitable solution to address
their specific security challenges effectively.

Figure 2: Container security tools for comparison

5.1 Vulnerability Scanning Approaches

A common threat among the examined tools is their focus on vulnerability scanning.
Trivy, Clair, and Quay Security Scanner represent the open-source spectrum of vulnerabil-
ity scanners. These tools primarily focus on identifying known vulnerabilities in container
images, with Trivy extending its capabilities to file systems and Git repositories.[Red19]
While effective for basic security needs, they generally lack advanced compliance features.

In contrast, commercial solutions like Twistlock (now part of Prisma Cloud by Palo
Alto Networks) and Black Duck by Synopsys offer more comprehensive vulnerability man-
agement. These tools not only scan for vulnerabilities but also provide broader security
features and compliance management capabilities. Twistlock, for instance, includes run-
time protection alongside vulnerability scanning, offering a more holistic approach to
container security. [Whi24]

5.2 Compliance Management Features

The tools exhibit significant differences in their approach to compliance management.
Open-source tools like Trivy and Clair focus primarily on vulnerability detection, which
indirectly supports compliance by ensuring images are free from known security flaws.
However, they lack built-in compliance enforcement features.

Anchore Engine bridges the gap between open-source and commercial solutions by
offering both vulnerability scanning and compliance policy enforcement. It supports cus-
tomizable compliance policies and detailed reporting, making it a versatile option for
organizations with specific compliance needs. [Gup21]

At the commercial end of the spectrum, Twistlock and Black Duck offer extensive
compliance features. Twistlock provides support for various industry standards such as
PCI DSS and HIPAA, while Black Duck focuses on open-source license compliance and
security standards. [Whi24] These tools are particularly suited for large enterprises with
complex compliance requirements.

Section 5 Pranay Bhatia 7

Automated Vulnerability Scanning with Trivy

5.3 Integration Capabilities

Integration with existing development and deployment pipelines is a crucial factor in the
adoption of container security tools. Most of the examined tools offer integration capa-
bilities with CI/CD pipelines, allowing for automated scanning and policy enforcement.
Trivy and Clair are noted for their ease of integration, making them popular choices in
DevSecOps environments [Tiw23]. Trivy downloads Database into pipeline container be-
fore the scan start from Trivy’s hosted database. Which is further used to scan git project
3

Figure 3: Gitlab integration with trivy [blu21]

Quay Security Scanner takes a unique approach by integrating directly with the Quay
container registry, offering seamless vulnerability scanning for users of this specific plat-
form. Commercial solutions like Twistlock and Black Duck provide deeper integration
capabilities, extending beyond CI/CD pipelines to cover various aspects of cloud-native
environments.

5.4 Usage Scenarios and Target Audiences

The tools cater to different usage scenarios and target audiences. Open-source tools like
Trivy, Clair, and Anchore Engine are free and user-friendly, making them suitable for
organizations looking for cost-effective solutions or those just beginning to implement
container security practices.

Quay Security Scanner, while free, is specifically targeted at users of the Quay registry,
highlighting the importance of considering existing infrastructure when choosing security
tools.

Commercial solutions like Twistlock and Black Duck are geared towards larger enter-
prises with more complex security and compliance needs [Com24][Whi24]. These tools
offer comprehensive features but come with associated costs, making them more suitable
for organizations willing to invest significantly in their security infrastructure.

Section 5 Pranay Bhatia 8

Automated Vulnerability Scanning with Trivy

5.5 Conclusion

The landscape of container security tools offers a range of options to suit various organiza-
tional needs and budgets. While open-source tools provide effective vulnerability scanning
capabilities, commercial solutions offer more comprehensive security and compliance fea-
tures. The choice of tool depends on factors such as the organization’s size, compliance
requirements, existing infrastructure, and budget constraints.

Tool Type Compliance Cost Integration
Anchore Engine Open-source Yes Free CI/CD
Clair Open-source Limited Free CI/CD
Trivy Open-source No Free CI/CD
Quay Security Scanner Open-source Limited Free Quay registry
Black Duck by Synopsys Commercial Yes Paid APIs
Twistlock (Prisma Cloud) Commercial Extensive Paid -

Table 1: Comparison of Container Security Tools

Section 6 transitions into the architecture and experimental setup that underpins the
implementation of the chosen tools.

6 Architecture and Experiment
This chapter provides a detailed diagram of the workflow, along with the configuration
of the GitLab CI/CD pipeline and the utilization of Docker for the GitLab Runner. Fur-
thermore, it explores the reports generated by Trivy and the criteria for making decisions
on pull requests based on scan results.

The experiment involves the development of a comprehensive GitLab CI/CD pipeline
that integrates security scanning as a core component. The pipeline is designed to detecti
vulnerabilities in YAML files and container images submitted in PRs. The security scans
are facilitated through the integration of Trivy within the pipeline. The process begins
with the setup of a GitLab Runner, which is configured to execute the jobs defined in the
pipeline. The pipeline itself is configured using the ‘.gitlab-ci.yml‘ file, where the stages
and jobs that trigger the security scans are outlined. The code to the experiment can be
found at: https://github.com/pranay-bh/trivy

The primary focus of the workflow is to implement an admission control mechanism
that determines the acceptance or rejection of PRs based on the results of the security
scans. This process assesses the severity and number of vulnerabilities detected, enforcing
predefined criteria for accepting or rejecting PRs. If critical vulnerabilities are found, the
PR is rejected, otherwise, it can be accepted and merged.

6.1 Diagram of Workflow

The CI/CD pipeline workflow can be visualized in a diagram that illustrates the entire
process, from the submission of a pull request to the final decision.

Firgure 4 highlights the key stages of the pipeline: scanning, report generation, and
decision-making. The integration points for Trivy are clearly marked, showing how se-
curity scans influence the acceptance or rejection of a PR. Additionally, a PR lifecycle

Section 6 Pranay Bhatia 9

Automated Vulnerability Scanning with Trivy

Figure 4: Merge Request Workflow

diagram is included, which depicts the flow of actions when a PR is submitted. This
includes an initial scan of the submitted YAML files, generation of security reports, and
automated decision-making based on the scan results. The flowchart provides possible
outcomes for the PR, demonstrating the conditions under which it is accepted or rejected.

6.2 GitLab CI/CD Pipeline Configuration

The configuration of the pipeline is defined in the ‘.gitlab-ci.yml‘ file, which outlines the
structure and content required to implement the security scanning process. The pipeline is
divided into multiple stages, such as build, scan, report, and deploy. Each stage is executed
sequentially, with the Trivy scan integrated within the pipeline to assess vulnerabilities
in YAML files and container images.

The implementation of pipeline merge checks introduces a critical security control
mechanism. By mandating the successful completion of all pipeline jobs as showin in Fig-
ure 5, including Trivy container security scans, prior to code merging, this system effec-
tively prevents the integration of code with high-severity security vulnerabilities, thereby
maintaining the integrity of the codebase.

6.3 GitLab Runner Dockerfile

A custom GitLab Runner is necessary to support the specific requirements of the security
scanning pipeline. The GitLab Runner is responsible for executing the jobs defined in the
pipeline, and a custom Dockerfile is used to configure the environment in which the runner

Section 6 Pranay Bhatia 10

Automated Vulnerability Scanning with Trivy

Figure 5: Gitlab Merge Request Confiuration

operates. The Dockerfile includes the base image, dependencies, and tools required to run
the Trivy scanner and handle security reports. After building the custom runner image,
it is deployed to the GitLab environment, where it is registered and configured to work
with the GitLab instance. This ensures that the runner can execute the security scans
and report generation jobs efficiently. For detailed code and configuration refer Appendix
Figure 2.

6.4 Reports Generated by Trivy

Trivy generates multiple types of reports during the security scanning process, including
vulnerability and misconfiguration reports. These reports are formatted to provide de-
tailed information on the findings, such as the severity level of detected vulnerabilities as
seen in figure 6. The pipeline analyzes these reports and uses the information to make de-
cisions regarding the PR. For instance, the severity of vulnerabilities, classified as critical,
high, medium, or low, plays a key role in determining whether a PR should be accepted
or rejected.

Figure 6: Report showing failures

Example reports (Figure 6) are provided to demonstrate the typical output generated
by Trivy, highlighting significant findings that influence the automated decision-making

Section 6 Pranay Bhatia 11

Automated Vulnerability Scanning with Trivy

process within the CI/CD pipeline.

6.5 Decision on PR Based on Scan Results

The criteria for accepting or rejecting a PR are clearly defined based on the severity and
number of vulnerabilities found during the Trivy scans. Critical vulnerabilities result in
the automatic rejection of the PR, while less severe findings may still allow the PR to be
accepted. The automated decision-making process is integral to the pipeline, providing
immediate feedback to developers by posting the scan results as comments on the PR.

(a) Merge Request Trivy Scan Failure

(b) IaC & Misconfiguration Scan Failure

Figure 7: Trivy and IaC scan failures.

In the case of rejected PRs 7, actionable feedback is provided to guide the submitter
in resolving the identified vulnerabilities. Continuous improvement is encouraged by reg-
ularly updating the vulnerability databases and refining the acceptance criteria, ensuring
that the system remains effective in handling evolving security threats.

7 Result: Trivy Scan Overview
Result section will discuss a summary of security and misconfiguration issues detected in
the project directory during a Trivy scan. The scan focused on high and critical severity
issues.

The scan was executed using the following command:

$ trivy fs ./project \
--severity HIGH,CRITICAL\
--exit-code 1\
--scanners misconfig

7.1 Detected Configuration Files

The following configuration files were scanned:

• templates/configmap-vault-integration.yaml

Section 7 Pranay Bhatia 12

Automated Vulnerability Scanning with Trivy

• templates/deployment-myapp.yaml

• templates/deployment-vault.yaml

7.2 Detected Issues

File Severity Description
templates/configmap-vault-
integration.yaml

HIGH Storing secrets in ConfigMap is unsafe.

Reference: AVD-KSV-0109
templates/deployment-
myapp.yaml

HIGH Container ‘myapp‘ should set ‘securi-
tyContext.readOnlyRootFilesystem‘ to
true.

Reference: KSV-014
templates/deployment-
myapp.yaml

HIGH Container ‘vault-init‘ should set ‘secu-
rityContext.readOnlyRootFilesystem‘
to true.

Reference: KSV-014
templates/deployment-
myapp.yaml

HIGH Deployment ‘myapp‘ should not set
ports lower than 1024.

Reference: KSV-117
templates/deployment-
vault.yaml

HIGH Container ‘vault‘ should set ‘securi-
tyContext.readOnlyRootFilesystem‘ to
true.

Reference: KSV-014
templates/deployment-
vault.yaml

HIGH Container ‘volume-mount-
hack‘ should set ‘securityCon-
text.readOnlyRootFilesystem‘ to
true.

Reference: KSV-014

Table 2: Issues detected by Trivy

Detected issues as shown in Table 2 can be found on the Databases of Trivy and CVE,
A link is provided in the reports for reference which highlights the potential issue and
suggester fix. Which is first help for developers to fix the issue.

7.3 Recommendations

Trivy scan results also provide recommendations in pipeline logs for quick fixtures. Based
on the scan results, the following actions are recommended to mitigate the detected risks:

• Avoid storing secrets in ConfigMaps.

• Set ‘securityContext.readOnlyRootFilesystem‘ to true for all containers.

• Avoid using ports lower than 1024 for container communication.

Section 7 Pranay Bhatia 13

https://avd.aquasec.com/misconfig/avd-ksv-0109
https://avd.aquasec.com/misconfig/ksv014
https://avd.aquasec.com/misconfig/ksv014
https://avd.aquasec.com/misconfig/ksv117
https://avd.aquasec.com/misconfig/ksv014
https://avd.aquasec.com/misconfig/ksv014

Automated Vulnerability Scanning with Trivy

7.4 References

For further details, refer to the Aqua Security documentation on misconfigurations:

• AVD-KSV-0109: ConfigMap storing secrets

• KSV-014: Immutable root file system

• KSV-117: Privileged ports

8 Conclusion
The experiment demonstrates the successful integration of security scanning into a Git-
Lab CI/CD pipeline using Trivy. By automating the vulnerability scanning process, the
pipeline effectively ensures that code submissions are thoroughly evaluated for security
risks before they are merged. The admission control mechanism, based on automated
decision-making, helps in maintaining a secure codebase by enforcing strict criteria for PR
acceptance. Additionally, the custom GitLab Runner enables flexible execution of security
scans, making the system scalable and adaptable to different development environments.
The approach provides a robust and efficient method for incorporating security into the
DevOps pipeline, minimizing manual intervention and reducing the risk of vulnerabilities
being introduced into production. Continuous improvements, including regular updates
to vulnerability databases and refinement of decision criteria, will further strengthen the
pipeline’s effectiveness over time.

Section Pranay Bhatia 14

https://avd.aquasec.com/misconfig/avd-ksv-0109
https://avd.aquasec.com/misconfig/ksv014
https://avd.aquasec.com/misconfig/ksv117

Automated Vulnerability Scanning with Trivy

References
[22a] License - Trivy. Github.io, 2022. url: https://aquasecurity.github.io/

trivy/v0.55/docs/scanner/license/ (visited on 09/26/2024).

[22b] Misconfiguration - Trivy. Github.io, 2022. url: https://aquasecurity.
github.io/trivy/v0.55/docs/scanner/misconfiguration/ (visited on
09/26/2024).

[22c] Secret - Trivy. Github.io, 2022. url: https://aquasecurity.github.io/
trivy/v0.55/docs/scanner/secret/ (visited on 09/26/2024).

[23] Vulnerability - Trivy. Github.io, 2023. url: https://aquasecurity.github.
io/trivy/v0.55/docs/scanner/vulnerability/ (visited on 09/26/2024).

[24a] CVE Details. https://www.cvedetails.com/. Accessed: 2024-09-28. 2024.

[24b] Vulnerability Database | Aqua Security. Aqua Vulnerability Database, 2024.
url: https://avd.aquasec.com/ (visited on 09/26/2024).

[Bha23] Preeti Bhardwaj. Detecting Container vulnerabilities leveraging the CICD
pipeline MSc Research Project Cybersecurity. Dec. 2023. url: https : / /
norma.ncirl.ie/6512/1/preetibhardwaj.pdf (visited on 07/05/2024).

[blu21] bluelight. How to Set up Trivy Scanner in GitLab CI: The Complete Guide.
https://bluelight.co/blog/how- to- set- up- trivy- scanner- in-
gitlab-ci-guide. Accessed: 2024-09-28. 2021.

[Cim19] Catalin Cimpanu. “Alpine Linux Docker images ship a root account with
no password”. In: ZDNet (May 2019). Accessed: 2024-09-28. url: https:
//www.zdnet.com/article/alpine-linux-docker-images-ship-a-root-
account-with-no-password/.

[Com24] Synopsys Software Integrity Customer Community. Black Duck: Introduc-
tion to Scanning. Accessed: 2024-09-28. 2024. url: https://community.
synopsys.com/s/article/Black-Duck-Introduction-to-Scanning.

[Doc20] Inc Docker. “Docker”. In: lınea].[Junio de 2017]. Disponible en: https://www.
docker. com/what-docker (2020).

[Esc+16] Daniel Escobar et al. “Towards the understanding and evolution of monolithic
applications as microservices”. In: 2016 XLII Latin American Computing Con-
ference (CLEI). 2016, pp. 1–11. doi: 10.1109/CLEI.2016.7833410.

[Gup21] N. L. Gupta. Container (Docker) Image Vulnerability Scan Using Anchore.
https://medium.com/linux-shots/container-docker-image-vulnerability-
scan-using-anchore-b3a3a36bad9a. Accessed: 2024-09-28. Sept. 2021.

[Kub19] T Kubernetes. “Kubernetes”. In: Kubernetes. Retrieved May 24 (2019), p. 2019.

[R+24] Rajyashree R et al. “An Empirical Investigation of Docker Sockets for Priv-
ilege Escalation and Defensive Strategies”. In: Procedia Computer Science
233 (2024). 5th International Conference on Innovative Data Communication
Technologies and Application (ICIDCA 2024), pp. 660–669. issn: 1877-0509.
doi: https://doi.org/10.1016/j.procs.2024.03.255. url: https:
//www.sciencedirect.com/science/article/pii/S187705092400615X.

Section Pranay Bhatia A1

https://aquasecurity.github.io/trivy/v0.55/docs/scanner/license/
https://aquasecurity.github.io/trivy/v0.55/docs/scanner/license/
https://aquasecurity.github.io/trivy/v0.55/docs/scanner/misconfiguration/
https://aquasecurity.github.io/trivy/v0.55/docs/scanner/misconfiguration/
https://aquasecurity.github.io/trivy/v0.55/docs/scanner/secret/
https://aquasecurity.github.io/trivy/v0.55/docs/scanner/secret/
https://aquasecurity.github.io/trivy/v0.55/docs/scanner/vulnerability/
https://aquasecurity.github.io/trivy/v0.55/docs/scanner/vulnerability/
https://www.cvedetails.com/
https://avd.aquasec.com/
https://norma.ncirl.ie/6512/1/preetibhardwaj.pdf
https://norma.ncirl.ie/6512/1/preetibhardwaj.pdf
https://bluelight.co/blog/how-to-set-up-trivy-scanner-in-gitlab-ci-guide
https://bluelight.co/blog/how-to-set-up-trivy-scanner-in-gitlab-ci-guide
https://www.zdnet.com/article/alpine-linux-docker-images-ship-a-root-account-with-no-password/
https://www.zdnet.com/article/alpine-linux-docker-images-ship-a-root-account-with-no-password/
https://www.zdnet.com/article/alpine-linux-docker-images-ship-a-root-account-with-no-password/
https://community.synopsys.com/s/article/Black-Duck-Introduction-to-Scanning
https://community.synopsys.com/s/article/Black-Duck-Introduction-to-Scanning
https://doi.org/10.1109/CLEI.2016.7833410
https://medium.com/linux-shots/container-docker-image-vulnerability-scan-using-anchore-b3a3a36bad9a
https://medium.com/linux-shots/container-docker-image-vulnerability-scan-using-anchore-b3a3a36bad9a
https://doi.org/https://doi.org/10.1016/j.procs.2024.03.255
https://www.sciencedirect.com/science/article/pii/S187705092400615X
https://www.sciencedirect.com/science/article/pii/S187705092400615X

Automated Vulnerability Scanning with Trivy

[Red19] Redhat. What is Clair? https://www.redhat.com/en/topics/containers/
what-is-clair. Accessed: 2024-09-28. Jan. 2019.

[SAD19] Sari Sultan, Imtiaz Ahmad, and Tassos Dimitriou. “Container Security: Issues,
Challenges, and the Road Ahead”. In: IEEE Access 7 (2019), pp. 52976–52996.
doi: 10.1109/access.2019.2911732.

[Sax23] Prawal Saxena. “Container Image Security with Trivy and Istio Inter-Service
Secure Communication in Kubernetes - NORMA@NCI Library”. In: Ncirl.ie
(Jan. 2023). doi: https://norma.ncirl.ie/6491/1/prawalsaxena.pdf.
url: https://norma.ncirl.ie/6491/ (visited on 09/26/2024).

[Tiw23] Himanshu Tiwari. Enhancing Container Security Through Automated Vulner-
ability Scanning and Remediation with Trivy. Insights2Techinfo, Oct. 2023.
url: https://insights2techinfo.com/enhancing-container-security-
through-automated-vulnerability-scanning-and-remediation-with-
trivy/.

[Whi24] W. Whitmore. Unit 42 Incident Response Retainers Enhance Organizational
Resilience. https://www.paloaltonetworks.com/blog/2024/09/unit-42-
incident-response-retainers-enhance-organizational-resilience/.
Accessed: 2024-09-28. Sept. 2024.

[Zam+21] Fiorella Zampetti et al. “CI/CD Pipelines Evolution and Restructuring: A
Qualitative and Quantitative Study”. In: 2021 IEEE International Conference
on Software Maintenance and Evolution (ICSME). 2021, pp. 471–482. doi:
10.1109/ICSME52107.2021.00048.

Section Pranay Bhatia A2

https://www.redhat.com/en/topics/containers/what-is-clair
https://www.redhat.com/en/topics/containers/what-is-clair
https://doi.org/10.1109/access.2019.2911732
https://doi.org/https://norma.ncirl.ie/6491/1/prawalsaxena.pdf
https://norma.ncirl.ie/6491/
https://insights2techinfo.com/enhancing-container-security-through-automated-vulnerability-scanning-and-remediation-with-trivy/
https://insights2techinfo.com/enhancing-container-security-through-automated-vulnerability-scanning-and-remediation-with-trivy/
https://insights2techinfo.com/enhancing-container-security-through-automated-vulnerability-scanning-and-remediation-with-trivy/
https://www.paloaltonetworks.com/blog/2024/09/unit-42-incident-response-retainers-enhance-organizational-resilience/
https://www.paloaltonetworks.com/blog/2024/09/unit-42-incident-response-retainers-enhance-organizational-resilience/
https://doi.org/10.1109/ICSME52107.2021.00048

Automated Vulnerability Scanning with Trivy

Abbreviations and Acronyms
PaaS Platform as a Service

CI Continuous Integration

CD Continuous Deployment

K8s Kubernetes

PR Pull Request

CVE Common Vulnerabilities and Exposures

IaC Infrastructure as Code

DevSecOps Development, Security, and Operations

YAML Yet Another Markup Language

GCP Google Cloud Platform

API Application Programming Interface

AWS Amazon Web Services

devOps development operations

OS operating system

List of Figures
1 Graph of vulnerabilities per year Source: [24a] 5
2 Container security tools for comparison . 7
3 Gitlab integration with trivy [blu21] . 8
4 Merge Request Workflow . 10
5 Gitlab Merge Request Confiuration . 11
6 Report showing failures . 11
7 Trivy and IaC scan failures. 12

Listings
1 .gitlab-ci.yaml file . A4
2 Dockerfile . A5

Section Pranay Bhatia A3

Automated Vulnerability Scanning with Trivy

A Appendix 1: Gitlab-ci.yaml Code
1 stages:
2 - scan
3 - test
4 - build
5 - deploy
6

7 .trivy -scan -template:
8 image: aquasec/trivy:latest
9 stage: scan

10 allow_failure: false
11 rules:
12 - if: '$CI_PIPELINE_SOURCE == "merge_request_event"'
13

14 00 scan trivy misconfig:
15 extends: .trivy -scan -template
16 script:
17 - trivy fs --severity HIGH ,CRITICAL --exit -code 1 --scanners

↪→ misconfig ./ project
18

19 00 scan trivy license:
20 extends: .trivy -scan -template
21 script:
22 - trivy fs --severity HIGH ,CRITICAL --exit -code 1 --scanners

↪→ license ./ project
23

24 00 scan trivy file system:
25 extends: .trivy -scan -template
26 script:
27 - trivy fs --severity HIGH ,CRITICAL --exit -code 1 --scanners

↪→ vuln ./ project
28

29 00 scan trivy IAAC:
30 extends: .trivy -scan -template
31 script:
32 - trivy conf --severity HIGH ,CRITICAL --exit -code 1 ./ project
33

34

35 test:
36 stage: test
37 script:
38 - echo "Hello world!"
39

40 build:
41 stage: build
42 script:
43 - echo "Building project ..."
44

45 deploy:

Section A Pranay Bhatia A4

Automated Vulnerability Scanning with Trivy

46 stage: deploy
47 script:
48 - echo "Deploying project ..."

Listing 1: .gitlab-ci.yaml file

B Appendix 2: Dockerfile
1 FROM alpine:3.18
2 ENV TRIVY_VERSION=v0.18.3
3 RUN apk add --no-cache \
4 curl \
5 && curl -sfL https://raw.githubusercontent.com/aquasecurity
6 /trivy/main/contrib/install.sh | sh -s -- -b /usr/local/bin
7 ${TRIVY_VERSION} \
8 && apk del curl
9 WORKDIR /app

10 # Copy scripts if any
11 # COPY script.sh /app/
12

13 ENTRYPOINT ["trivy"]
14 CMD ["--help"]

Listing 2: Dockerfile

Section B Pranay Bhatia A5

	Contents
	Introduction
	Background
	Docker and Docker Containers
	CI/CD
	Container Security
	Other Relevant Subtopics

	Literature Review
	Different types of scans
	Mechanism of Trivy

	Motivation and Problem Statement
	Motivation
	Problem Statement

	Comparison of different Tools
	Vulnerability Scanning Approaches
	Compliance Management Features
	Integration Capabilities
	Usage Scenarios and Target Audiences
	Conclusion

	Architecture and Experiment
	Diagram of Workflow
	GitLab CI/CD Pipeline Configuration
	GitLab Runner Dockerfile
	Reports Generated by Trivy
	Decision on PR Based on Scan Results

	Result: Trivy Scan Overview
	Detected Configuration Files
	Detected Issues
	Recommendations
	References

	Conclusion
	List of Figures
	Appendix 1: Gitlab-ci.yaml Code
	Appendix 2: Dockerfile

