
MPI-based Creation and Benchmarking of
a Dynamic Elasticsearch Cluster

Lars Quentin

University of Göttingen

11.07.2024 SCAP

SH

∞

https://hpc.gwdg.de

)

https://hpc.gwdg.de


Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

1 Introduction

2 Spawner

3 Ingestor

4 Querier

5 Test Evaluation

6 Conclusion

Lars Quentin SCAP 2 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Insights

■ Why a custom spawner and new specialized benchmarker is required

■ How the following works:

▶ distributed cluster spawner
▶ distributed ingestion benchmarker
▶ distributed query benchmarker

■ How to create a new benchmark scenario from scratch

Lars Quentin SCAP 3 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Motivation: Data Lakes

Why are Data Lakes needed

■ Research becomes evermore
data-driven and compute-intensive

▶ More Simulations
▶ Data Science, Machine Learning

■ HPC becomes more data oriented

■ Better data-management tooling
needed

■ HPC operates on raw data
⇒ Data Lakes

Metadata management

■ Providing storage is easy

■ Managing storage is hard

■ Keep data findable, manage data

■ Fully indexed

■ Fully (fuzzy) searchable

■ No-SQL data store / search engine

▶ Elasticsearch

Lars Quentin SCAP 4 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Motivation: Data Lakes

Why are Data Lakes needed

■ Research becomes evermore
data-driven and compute-intensive

▶ More Simulations
▶ Data Science, Machine Learning

■ HPC becomes more data oriented

■ Better data-management tooling
needed

■ HPC operates on raw data
⇒ Data Lakes

Metadata management

■ Providing storage is easy

■ Managing storage is hard

■ Keep data findable, manage data

■ Fully indexed

■ Fully (fuzzy) searchable

■ No-SQL data store / search engine

▶ Elasticsearch

Lars Quentin SCAP 4 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Motivation: Elasticsearch and Rally

Elasticsearch for HPC

■ Elasticsearch is designed for
cloud-use

▶ Always running
▶ Same host, same IP
▶ Only ethernet

■ This is not given in HPC:

▶ Jobs spawned on demand
▶ Every job gets different nodes
▶ Changing IPs between runs
▶ ETH, IB, Intel OPA

■ Thus, a custom stateful workflow
is required for HPC use!

Benchmarking Elasticsearch

■ HPC is all about performance

■ Elastic’s benchmarker: rally [1]

▶ Used for in-house performance
regression testing

▶ Written in Python
▶ Distributed using thespian agent

framework
▶ After previous unpublished

research at GWDG:

• Doesn’t work with over 60 nodes

■ Not viable for HPC-scale
benchmarking

Lars Quentin SCAP 5 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Motivation: Elasticsearch and Rally

Elasticsearch for HPC

■ Elasticsearch is designed for
cloud-use

▶ Always running
▶ Same host, same IP
▶ Only ethernet

■ This is not given in HPC:

▶ Jobs spawned on demand
▶ Every job gets different nodes
▶ Changing IPs between runs
▶ ETH, IB, Intel OPA

■ Thus, a custom stateful workflow
is required for HPC use!

Benchmarking Elasticsearch

■ HPC is all about performance

■ Elastic’s benchmarker: rally [1]

▶ Used for in-house performance
regression testing

▶ Written in Python
▶ Distributed using thespian agent

framework
▶ After previous unpublished

research at GWDG:

• Doesn’t work with over 60 nodes

■ Not viable for HPC-scale
benchmarking

Lars Quentin SCAP 5 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Contributions

The 4 main contributions of this work:

1 On-demand Elasticsearch Cluster Spawner
▶ Zero-configuration
▶ Dynamic resolution, based on SLURM MPI envionment
▶ Arbitrary cluster size
▶ Stateful between runs

2 Ingestion Benchmarker
▶ Distributed, MPI-based
▶ Benchmarks easily portable from rally

3 Query Benchmarker
▶ Distributed, MPI-based
▶ Mixed queries for realistic load
▶ Custom scenario support using own JSON-based DSL

4 Example workflow for canonical dataset

Lars Quentin SCAP 6 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Contributions

The 4 main contributions of this work:

1 On-demand Elasticsearch Cluster Spawner
▶ Zero-configuration
▶ Dynamic resolution, based on SLURM MPI envionment
▶ Arbitrary cluster size
▶ Stateful between runs

2 Ingestion Benchmarker
▶ Distributed, MPI-based
▶ Benchmarks easily portable from rally

3 Query Benchmarker
▶ Distributed, MPI-based
▶ Mixed queries for realistic load
▶ Custom scenario support using own JSON-based DSL

4 Example workflow for canonical dataset

Lars Quentin SCAP 6 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Contributions

The 4 main contributions of this work:

1 On-demand Elasticsearch Cluster Spawner
▶ Zero-configuration
▶ Dynamic resolution, based on SLURM MPI envionment
▶ Arbitrary cluster size
▶ Stateful between runs

2 Ingestion Benchmarker
▶ Distributed, MPI-based
▶ Benchmarks easily portable from rally

3 Query Benchmarker
▶ Distributed, MPI-based
▶ Mixed queries for realistic load
▶ Custom scenario support using own JSON-based DSL

4 Example workflow for canonical dataset

Lars Quentin SCAP 6 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Contributions

The 4 main contributions of this work:

1 On-demand Elasticsearch Cluster Spawner
▶ Zero-configuration
▶ Dynamic resolution, based on SLURM MPI envionment
▶ Arbitrary cluster size
▶ Stateful between runs

2 Ingestion Benchmarker
▶ Distributed, MPI-based
▶ Benchmarks easily portable from rally

3 Query Benchmarker
▶ Distributed, MPI-based
▶ Mixed queries for realistic load
▶ Custom scenario support using own JSON-based DSL

4 Example workflow for canonical dataset

Lars Quentin SCAP 6 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Contributions

The 4 main contributions of this work:

1 On-demand Elasticsearch Cluster Spawner
▶ Zero-configuration
▶ Dynamic resolution, based on SLURM MPI envionment
▶ Arbitrary cluster size
▶ Stateful between runs

2 Ingestion Benchmarker
▶ Distributed, MPI-based
▶ Benchmarks easily portable from rally

3 Query Benchmarker
▶ Distributed, MPI-based
▶ Mixed queries for realistic load
▶ Custom scenario support using own JSON-based DSL

4 Example workflow for canonical dataset

Lars Quentin SCAP 6 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Background: Elasticsearch

■ Distributed search engine

■ Document-based NoSQL-Storage

■ Internally based on Apache Lucene

■ Provides JSON-based REST interface

■ Apache 2.0 fork: Opensearch

■ Advantages:

▶ Mature ecosystem
▶ Very battle-tested
▶ A lot of tooling / library support

Lars Quentin SCAP 7 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Background: Benchmarking

■ For elasticsearch: All literature uses rally [2] [3] [4]

■ Alternatives: Just use a HTTP benchmarker

▶ JMeter [5]
▶ wrk [6]
▶ Grafana k6 [7]

■ Most NoSQL comparisons are done by database vendors [8]

▶ Bad financial incentives

Lars Quentin SCAP 8 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Contributions

□ On-demand Elasticsearch Cluster Spawner

□ Ingestion Benchmarker

□ Query Benchmarker

□ Example workflow for canonical dataset

Lars Quentin SCAP 9 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

On-Demand, Dynamic Cluster Spawner

Features

■ Fully automated, uses MPI envionment provided by SLURM

■ Dynamically fetches the hosts

▶ Not required to know them beforehand
▶ IPs and hardware can be changed between runs

■ Very portable through containerization (Singularity)

■ Stateful: Same cluster can be respawned

▶ on different nodes
▶ without reingestion

■ NIC-agnostic. Tested on:

▶ Ethernet
▶ Infiniband

Lars Quentin SCAP 10 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

On-Demand, Dynamic Cluster Spawner

Features

■ Fully automated, uses MPI envionment provided by SLURM

■ Dynamically fetches the hosts

▶ Not required to know them beforehand
▶ IPs and hardware can be changed between runs

■ Very portable through containerization (Singularity)

■ Stateful: Same cluster can be respawned

▶ on different nodes
▶ without reingestion

■ NIC-agnostic. Tested on:

▶ Ethernet
▶ Infiniband

Lars Quentin SCAP 10 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

On-Demand, Dynamic Cluster Spawner

Features

■ Fully automated, uses MPI envionment provided by SLURM

■ Dynamically fetches the hosts

▶ Not required to know them beforehand
▶ IPs and hardware can be changed between runs

■ Very portable through containerization (Singularity)

■ Stateful: Same cluster can be respawned

▶ on different nodes
▶ without reingestion

■ NIC-agnostic. Tested on:

▶ Ethernet
▶ Infiniband

Lars Quentin SCAP 10 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

On-Demand, Dynamic Cluster Spawner

Features

■ Fully automated, uses MPI envionment provided by SLURM

■ Dynamically fetches the hosts

▶ Not required to know them beforehand
▶ IPs and hardware can be changed between runs

■ Very portable through containerization (Singularity)

■ Stateful: Same cluster can be respawned

▶ on different nodes
▶ without reingestion

■ NIC-agnostic. Tested on:

▶ Ethernet
▶ Infiniband

Lars Quentin SCAP 10 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

On-Demand, Dynamic Cluster Spawner

Features

■ Fully automated, uses MPI envionment provided by SLURM

■ Dynamically fetches the hosts

▶ Not required to know them beforehand
▶ IPs and hardware can be changed between runs

■ Very portable through containerization (Singularity)

■ Stateful: Same cluster can be respawned

▶ on different nodes
▶ without reingestion

■ NIC-agnostic. Tested on:

▶ Ethernet
▶ Infiniband

Lars Quentin SCAP 10 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

On-Demand, Dynamic Cluster Spawner

Features

■ Fully automated, uses MPI envionment provided by SLURM

■ Dynamically fetches the hosts

▶ Not required to know them beforehand
▶ IPs and hardware can be changed between runs

■ Very portable through containerization (Singularity)

■ Stateful: Same cluster can be respawned

▶ on different nodes
▶ without reingestion

■ NIC-agnostic. Tested on:

▶ Ethernet
▶ Infiniband

Lars Quentin SCAP 10 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

On-Demand, Dynamic Cluster Spawner (cont.)

High-Level Workflow:

Prerequisites:

■ All hosts are known to each other via the MPI environment

■ All nodes have at least one shared mount

Workflow:

1 Each node creates a config

2 MPI-Gather all hostnames to the root rank

3 The root node updates the configs for all nodes

4 Each rank stats its singularity container with the config bind-mounted in

See the accompanying report for a more low-level workflow.

Lars Quentin SCAP 11 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

On-Demand, Dynamic Cluster Spawner (cont.)

High-Level Workflow:

Prerequisites:

■ All hosts are known to each other via the MPI environment

■ All nodes have at least one shared mount

Workflow:

1 Each node creates a config

2 MPI-Gather all hostnames to the root rank

3 The root node updates the configs for all nodes

4 Each rank stats its singularity container with the config bind-mounted in

See the accompanying report for a more low-level workflow.

Lars Quentin SCAP 11 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

On-Demand, Dynamic Cluster Spawner (cont.)

High-Level Workflow:

Prerequisites:

■ All hosts are known to each other via the MPI environment

■ All nodes have at least one shared mount

Workflow:

1 Each node creates a config

2 MPI-Gather all hostnames to the root rank

3 The root node updates the configs for all nodes

4 Each rank stats its singularity container with the config bind-mounted in

See the accompanying report for a more low-level workflow.

Lars Quentin SCAP 11 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

On-Demand, Dynamic Cluster Spawner (cont.)

High-Level Workflow:

Prerequisites:

■ All hosts are known to each other via the MPI environment

■ All nodes have at least one shared mount

Workflow:

1 Each node creates a config

2 MPI-Gather all hostnames to the root rank

3 The root node updates the configs for all nodes

4 Each rank stats its singularity container with the config bind-mounted in

See the accompanying report for a more low-level workflow.

Lars Quentin SCAP 11 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

On-Demand, Dynamic Cluster Spawner (cont.)

High-Level Workflow:

Prerequisites:

■ All hosts are known to each other via the MPI environment

■ All nodes have at least one shared mount

Workflow:

1 Each node creates a config

2 MPI-Gather all hostnames to the root rank

3 The root node updates the configs for all nodes

4 Each rank stats its singularity container with the config bind-mounted in

See the accompanying report for a more low-level workflow.

Lars Quentin SCAP 11 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

On-Demand, Dynamic Cluster Spawner (cont.)

High-Level Workflow:

Prerequisites:

■ All hosts are known to each other via the MPI environment

■ All nodes have at least one shared mount

Workflow:

1 Each node creates a config

2 MPI-Gather all hostnames to the root rank

3 The root node updates the configs for all nodes

4 Each rank stats its singularity container with the config bind-mounted in

See the accompanying report for a more low-level workflow.

Lars Quentin SCAP 11 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

On-Demand, Dynamic Cluster Spawner (cont.)

Example Generated Config

1 cluster.name: securemetadata
2 node.name: securemetadata4
3 node.roles: ["master", "data"]
4 network.host: 0.0.0.0
5 cluster.initial_master_nodes: [securemetadata0]
6 # Expects hostnames to be DNS resolvable
7 discovery.seed_hosts: [
8 "hostname_of_rank_0",
9 "hostname_of_rank_1",

10 "hostname_of_rank_2"
11 ]
12 xpack.security.enabled: false

Lars Quentin SCAP 12 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Contributions

✓□ On-demand Elasticsearch Cluster Spawner

□ Ingestion Benchmarker

□ Query Benchmarker

□ Example workflow for canonical dataset

Lars Quentin SCAP 13 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Ingestion Benchmarker

■ Two purposes:

1 Ingest JSON corpus into Elasticsearch cluster for query benchmarks
2 Measure performance of write-performance and throughput

■ Features:

▶ Distributed, MPI-based
▶ I/O optimized through offset caching
▶ Supports statically typed index definitions
▶ Supports Newline Delimited JSON (NDJSON)

• Thus compatible with rally!

▶ Configurable via CLI: bulk size, shards per node

Lars Quentin SCAP 14 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Offset Caching

Problem

■ Data has to be parititioned.

■ This should be done fairly, i.e.
For N nodes and L lines, rank i gets[
i
N · L, i+1

N · L
)

■ For the computation the number of
lines need to be known. (1st read)

■ Afterwards, the line has to be
found. (2nd read)

▶ Can’t just seek, since JSON
documents have variadic size!

■ A lot of I/O, the corpus is 75GB.

Solution

■ Just one node computes it, and
caches it in a file!

■ Steps:

1 Read 1: Count number of lines.
2 Compute starting and ending line

for each rank.
3 Read 2: Find the byte offsets for

each rank.
4 Save everything into a

.offsets.json file.

Lars Quentin SCAP 15 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Offset Caching

Problem

■ Data has to be parititioned.

■ This should be done fairly, i.e.
For N nodes and L lines, rank i gets[
i
N · L, i+1

N · L
)

■ For the computation the number of
lines need to be known. (1st read)

■ Afterwards, the line has to be
found. (2nd read)

▶ Can’t just seek, since JSON
documents have variadic size!

■ A lot of I/O, the corpus is 75GB.

Solution

■ Just one node computes it, and
caches it in a file!

■ Steps:

1 Read 1: Count number of lines.
2 Compute starting and ending line

for each rank.
3 Read 2: Find the byte offsets for

each rank.
4 Save everything into a

.offsets.json file.

Lars Quentin SCAP 15 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Offset Caching

Problem

■ Data has to be parititioned.

■ This should be done fairly, i.e.
For N nodes and L lines, rank i gets[
i
N · L, i+1

N · L
)

■ For the computation the number of
lines need to be known. (1st read)

■ Afterwards, the line has to be
found. (2nd read)

▶ Can’t just seek, since JSON
documents have variadic size!

■ A lot of I/O, the corpus is 75GB.

Solution

■ Just one node computes it, and
caches it in a file!

■ Steps:

1 Read 1: Count number of lines.
2 Compute starting and ending line

for each rank.
3 Read 2: Find the byte offsets for

each rank.
4 Save everything into a

.offsets.json file.

Lars Quentin SCAP 15 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Offset Caching

Problem

■ Data has to be parititioned.

■ This should be done fairly, i.e.
For N nodes and L lines, rank i gets[
i
N · L, i+1

N · L
)

■ For the computation the number of
lines need to be known. (1st read)

■ Afterwards, the line has to be
found. (2nd read)

▶ Can’t just seek, since JSON
documents have variadic size!

■ A lot of I/O, the corpus is 75GB.

Solution

■ Just one node computes it, and
caches it in a file!

■ Steps:

1 Read 1: Count number of lines.
2 Compute starting and ending line

for each rank.
3 Read 2: Find the byte offsets for

each rank.
4 Save everything into a

.offsets.json file.

Lars Quentin SCAP 15 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Offset Caching

Problem

■ Data has to be parititioned.

■ This should be done fairly, i.e.
For N nodes and L lines, rank i gets[
i
N · L, i+1

N · L
)

■ For the computation the number of
lines need to be known. (1st read)

■ Afterwards, the line has to be
found. (2nd read)

▶ Can’t just seek, since JSON
documents have variadic size!

■ A lot of I/O, the corpus is 75GB.

Solution

■ Just one node computes it, and
caches it in a file!

■ Steps:

1 Read 1: Count number of lines.
2 Compute starting and ending line

for each rank.
3 Read 2: Find the byte offsets for

each rank.
4 Save everything into a

.offsets.json file.

Lars Quentin SCAP 15 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Offset Caching

Problem

■ Data has to be parititioned.

■ This should be done fairly, i.e.
For N nodes and L lines, rank i gets[
i
N · L, i+1

N · L
)

■ For the computation the number of
lines need to be known. (1st read)

■ Afterwards, the line has to be
found. (2nd read)

▶ Can’t just seek, since JSON
documents have variadic size!

■ A lot of I/O, the corpus is 75GB.

Solution

■ Just one node computes it, and
caches it in a file!

■ Steps:

1 Read 1: Count number of lines.
2 Compute starting and ending line

for each rank.
3 Read 2: Find the byte offsets for

each rank.
4 Save everything into a

.offsets.json file.

Lars Quentin SCAP 15 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Offset Caching

Problem

■ Data has to be parititioned.

■ This should be done fairly, i.e.
For N nodes and L lines, rank i gets[
i
N · L, i+1

N · L
)

■ For the computation the number of
lines need to be known. (1st read)

■ Afterwards, the line has to be
found. (2nd read)

▶ Can’t just seek, since JSON
documents have variadic size!

■ A lot of I/O, the corpus is 75GB.

Solution

■ Just one node computes it, and
caches it in a file!

■ Steps:

1 Read 1: Count number of lines.
2 Compute starting and ending line

for each rank.
3 Read 2: Find the byte offsets for

each rank.
4 Save everything into a

.offsets.json file.

Lars Quentin SCAP 15 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Offset Caching (cont.)

Example .offset.json file for 3 nodes

1 {
2 "number_of_workers":3,
3 "offsets":[
4 {
5 "rank":0,
6 "starting_line":0,
7 "starting_byte":0,
8 "number_of_lines":8333
9 },

10 { "rank":1, "starting_line":8333,
11 "starting_byte":4157901, "number_of_lines":8333 },
12 { "rank":2, "starting_line":16666,
13 "starting_byte":8315734, "number_of_lines":null }
14 ] }

Lars Quentin SCAP 16 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Ingestion Benchmarker (cont.)

Workflow: Setup (root only)

■ Create cache offsets if not already
existing

▶ Requires same number of load
generators

■ Create empty Elasticsearch index
with following settings:

▶ Strict type mappings
(Elasticsearch syntax)

▶ One shard per Cluster node
(configurable)

▶ requests.cache.enable:
false

Workflow: Benchmark

■ Each rank chooses one ES node to
send to

■ Seek to starting byte based on
offsets

■ Send the requests blockingly, as
fast as possible

■ Track response time directly after

■ Wait at barrier

■ MPI Gather all data at root, dump
into JSON file

Lars Quentin SCAP 17 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Ingestion Benchmarker (cont.)

Workflow: Setup (root only)

■ Create cache offsets if not already
existing

▶ Requires same number of load
generators

■ Create empty Elasticsearch index
with following settings:

▶ Strict type mappings
(Elasticsearch syntax)

▶ One shard per Cluster node
(configurable)

▶ requests.cache.enable:
false

Workflow: Benchmark

■ Each rank chooses one ES node to
send to

■ Seek to starting byte based on
offsets

■ Send the requests blockingly, as
fast as possible

■ Track response time directly after

■ Wait at barrier

■ MPI Gather all data at root, dump
into JSON file

Lars Quentin SCAP 17 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Ingestion Benchmarker (cont.)

Workflow: Setup (root only)

■ Create cache offsets if not already
existing

▶ Requires same number of load
generators

■ Create empty Elasticsearch index
with following settings:

▶ Strict type mappings
(Elasticsearch syntax)

▶ One shard per Cluster node
(configurable)

▶ requests.cache.enable:
false

Workflow: Benchmark

■ Each rank chooses one ES node to
send to

■ Seek to starting byte based on
offsets

■ Send the requests blockingly, as
fast as possible

■ Track response time directly after

■ Wait at barrier

■ MPI Gather all data at root, dump
into JSON file

Lars Quentin SCAP 17 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Ingestion Benchmarker (cont.)

Workflow: Setup (root only)

■ Create cache offsets if not already
existing

▶ Requires same number of load
generators

■ Create empty Elasticsearch index
with following settings:

▶ Strict type mappings
(Elasticsearch syntax)

▶ One shard per Cluster node
(configurable)

▶ requests.cache.enable:
false

Workflow: Benchmark

■ Each rank chooses one ES node to
send to

■ Seek to starting byte based on
offsets

■ Send the requests blockingly, as
fast as possible

■ Track response time directly after

■ Wait at barrier

■ MPI Gather all data at root, dump
into JSON file

Lars Quentin SCAP 17 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Ingestion Benchmarker (cont.)

Workflow: Setup (root only)

■ Create cache offsets if not already
existing

▶ Requires same number of load
generators

■ Create empty Elasticsearch index
with following settings:

▶ Strict type mappings
(Elasticsearch syntax)

▶ One shard per Cluster node
(configurable)

▶ requests.cache.enable:
false

Workflow: Benchmark

■ Each rank chooses one ES node to
send to

■ Seek to starting byte based on
offsets

■ Send the requests blockingly, as
fast as possible

■ Track response time directly after

■ Wait at barrier

■ MPI Gather all data at root, dump
into JSON file

Lars Quentin SCAP 17 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Ingestion Benchmarker (cont.)

Workflow: Setup (root only)

■ Create cache offsets if not already
existing

▶ Requires same number of load
generators

■ Create empty Elasticsearch index
with following settings:

▶ Strict type mappings
(Elasticsearch syntax)

▶ One shard per Cluster node
(configurable)

▶ requests.cache.enable:
false

Workflow: Benchmark

■ Each rank chooses one ES node to
send to

■ Seek to starting byte based on
offsets

■ Send the requests blockingly, as
fast as possible

■ Track response time directly after

■ Wait at barrier

■ MPI Gather all data at root, dump
into JSON file

Lars Quentin SCAP 17 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Ingestion Benchmarker (cont.)

Workflow: Setup (root only)

■ Create cache offsets if not already
existing

▶ Requires same number of load
generators

■ Create empty Elasticsearch index
with following settings:

▶ Strict type mappings
(Elasticsearch syntax)

▶ One shard per Cluster node
(configurable)

▶ requests.cache.enable:
false

Workflow: Benchmark

■ Each rank chooses one ES node to
send to

■ Seek to starting byte based on
offsets

■ Send the requests blockingly, as
fast as possible

■ Track response time directly after

■ Wait at barrier

■ MPI Gather all data at root, dump
into JSON file

Lars Quentin SCAP 17 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Ingestion Benchmarker (cont.)

Workflow: Setup (root only)

■ Create cache offsets if not already
existing

▶ Requires same number of load
generators

■ Create empty Elasticsearch index
with following settings:

▶ Strict type mappings
(Elasticsearch syntax)

▶ One shard per Cluster node
(configurable)

▶ requests.cache.enable:
false

Workflow: Benchmark

■ Each rank chooses one ES node to
send to

■ Seek to starting byte based on
offsets

■ Send the requests blockingly, as
fast as possible

■ Track response time directly after

■ Wait at barrier

■ MPI Gather all data at root, dump
into JSON file

Lars Quentin SCAP 17 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Contributions

✓□ On-demand Elasticsearch Cluster Spawner

✓□ Ingestion Benchmarker

□ Query Benchmarker

□ Example workflow for canonical dataset

Lars Quentin SCAP 18 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Query Benchmarker

■ Measures query-/read-performance against previously ingested data.

■ Works through scenarios in a fork-join model.

▶ Supports mixing queries in same scenario

■ Features:

▶ Distributed, MPI-based
▶ Fully configurable by JSON-DSL; no hard-coded scenarios

• No need to edit the source code
• Embeds Elasticsearch syntax internally ⇒ accessible for ES-users
• Simplification of Rally syntax ⇒ easy to port

▶ Bypasses the cache
▶ Parses the responses for more data; not only based on HTTP response code
▶ Test mode for easier debugging

Lars Quentin SCAP 19 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Query Benchmarker

■ Measures query-/read-performance against previously ingested data.

■ Works through scenarios in a fork-join model.

▶ Supports mixing queries in same scenario

■ Features:

▶ Distributed, MPI-based
▶ Fully configurable by JSON-DSL; no hard-coded scenarios

• No need to edit the source code
• Embeds Elasticsearch syntax internally ⇒ accessible for ES-users
• Simplification of Rally syntax ⇒ easy to port

▶ Bypasses the cache
▶ Parses the responses for more data; not only based on HTTP response code
▶ Test mode for easier debugging

Lars Quentin SCAP 19 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Query Benchmarker

■ Measures query-/read-performance against previously ingested data.

■ Works through scenarios in a fork-join model.

▶ Supports mixing queries in same scenario

■ Features:

▶ Distributed, MPI-based

▶ Fully configurable by JSON-DSL; no hard-coded scenarios

• No need to edit the source code
• Embeds Elasticsearch syntax internally ⇒ accessible for ES-users
• Simplification of Rally syntax ⇒ easy to port

▶ Bypasses the cache
▶ Parses the responses for more data; not only based on HTTP response code
▶ Test mode for easier debugging

Lars Quentin SCAP 19 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Query Benchmarker

■ Measures query-/read-performance against previously ingested data.

■ Works through scenarios in a fork-join model.

▶ Supports mixing queries in same scenario

■ Features:

▶ Distributed, MPI-based
▶ Fully configurable by JSON-DSL; no hard-coded scenarios

• No need to edit the source code
• Embeds Elasticsearch syntax internally ⇒ accessible for ES-users
• Simplification of Rally syntax ⇒ easy to port

▶ Bypasses the cache
▶ Parses the responses for more data; not only based on HTTP response code
▶ Test mode for easier debugging

Lars Quentin SCAP 19 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Query Benchmarker

■ Measures query-/read-performance against previously ingested data.

■ Works through scenarios in a fork-join model.

▶ Supports mixing queries in same scenario

■ Features:

▶ Distributed, MPI-based
▶ Fully configurable by JSON-DSL; no hard-coded scenarios

• No need to edit the source code
• Embeds Elasticsearch syntax internally ⇒ accessible for ES-users
• Simplification of Rally syntax ⇒ easy to port

▶ Bypasses the cache

▶ Parses the responses for more data; not only based on HTTP response code
▶ Test mode for easier debugging

Lars Quentin SCAP 19 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Query Benchmarker

■ Measures query-/read-performance against previously ingested data.

■ Works through scenarios in a fork-join model.

▶ Supports mixing queries in same scenario

■ Features:

▶ Distributed, MPI-based
▶ Fully configurable by JSON-DSL; no hard-coded scenarios

• No need to edit the source code
• Embeds Elasticsearch syntax internally ⇒ accessible for ES-users
• Simplification of Rally syntax ⇒ easy to port

▶ Bypasses the cache
▶ Parses the responses for more data; not only based on HTTP response code

▶ Test mode for easier debugging

Lars Quentin SCAP 19 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Query Benchmarker

■ Measures query-/read-performance against previously ingested data.

■ Works through scenarios in a fork-join model.

▶ Supports mixing queries in same scenario

■ Features:

▶ Distributed, MPI-based
▶ Fully configurable by JSON-DSL; no hard-coded scenarios

• No need to edit the source code
• Embeds Elasticsearch syntax internally ⇒ accessible for ES-users
• Simplification of Rally syntax ⇒ easy to port

▶ Bypasses the cache
▶ Parses the responses for more data; not only based on HTTP response code
▶ Test mode for easier debugging

Lars Quentin SCAP 19 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Input Format for Query Benchmarker (part 1)

1 [
2 {
3 "search_queries": [
4 {
5 /* everything in here just gets sent to ES */
6 "body": {
7 /* The raw ES query sent to the server */
8 }
9 }

10 ],
11 "warmup_time_secs": 30, /* optional */
12 "execution_time_secs": 120, /* optional */
13 },
14 ...

Lars Quentin SCAP 20 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Input Format for Query Benchmarker (part 2)

1 {
2 "search_queries": [
3 {
4 "body": {
5 /* The first of 2 queries sent iteratively (random order) */
6 }
7 },
8 {
9 "body": {

10 /* The second of 2 queries sent iteratively (random order) */
11 }
12 }
13 ],
14 "warmup_time_secs": 30, /* optional */
15 "execution_time_secs": 180, /* optional */
16 "sleep_between_requests_secs": 0.25 /* optional */
17 }]

Lars Quentin SCAP 21 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Query Benchmarker (cont.)

High-Level Workflow

For each disjunct fork-join benchmark step:

■ Wait for Elasticsearch cluster health to be green

■ Partition the hosts onto the load generators

■ If warmup time is set: Send queries, discard result (fill OS caches)

■ After that, until execution time for current step is reached:

▶ Select next query in current step
▶ Track before, send query, track after
▶ Parse ES response, save (latency, docs count)
▶ Sleep if configured

■ Wait at MPI barrier for next step

See the accompanying report for a more low-level workflow.

Lars Quentin SCAP 22 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Query Benchmarker (cont.)

High-Level Workflow

For each disjunct fork-join benchmark step:

■ Wait for Elasticsearch cluster health to be green

■ Partition the hosts onto the load generators

■ If warmup time is set: Send queries, discard result (fill OS caches)

■ After that, until execution time for current step is reached:

▶ Select next query in current step
▶ Track before, send query, track after
▶ Parse ES response, save (latency, docs count)
▶ Sleep if configured

■ Wait at MPI barrier for next step

See the accompanying report for a more low-level workflow.

Lars Quentin SCAP 22 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Query Benchmarker (cont.)

High-Level Workflow

For each disjunct fork-join benchmark step:

■ Wait for Elasticsearch cluster health to be green

■ Partition the hosts onto the load generators

■ If warmup time is set: Send queries, discard result (fill OS caches)

■ After that, until execution time for current step is reached:

▶ Select next query in current step
▶ Track before, send query, track after
▶ Parse ES response, save (latency, docs count)
▶ Sleep if configured

■ Wait at MPI barrier for next step

See the accompanying report for a more low-level workflow.

Lars Quentin SCAP 22 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Query Benchmarker (cont.)

High-Level Workflow

For each disjunct fork-join benchmark step:

■ Wait for Elasticsearch cluster health to be green

■ Partition the hosts onto the load generators

■ If warmup time is set: Send queries, discard result (fill OS caches)

■ After that, until execution time for current step is reached:

▶ Select next query in current step
▶ Track before, send query, track after
▶ Parse ES response, save (latency, docs count)
▶ Sleep if configured

■ Wait at MPI barrier for next step

See the accompanying report for a more low-level workflow.

Lars Quentin SCAP 22 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Query Benchmarker (cont.)

High-Level Workflow

For each disjunct fork-join benchmark step:

■ Wait for Elasticsearch cluster health to be green

■ Partition the hosts onto the load generators

■ If warmup time is set: Send queries, discard result (fill OS caches)

■ After that, until execution time for current step is reached:

▶ Select next query in current step

▶ Track before, send query, track after
▶ Parse ES response, save (latency, docs count)
▶ Sleep if configured

■ Wait at MPI barrier for next step

See the accompanying report for a more low-level workflow.

Lars Quentin SCAP 22 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Query Benchmarker (cont.)

High-Level Workflow

For each disjunct fork-join benchmark step:

■ Wait for Elasticsearch cluster health to be green

■ Partition the hosts onto the load generators

■ If warmup time is set: Send queries, discard result (fill OS caches)

■ After that, until execution time for current step is reached:

▶ Select next query in current step
▶ Track before, send query, track after

▶ Parse ES response, save (latency, docs count)
▶ Sleep if configured

■ Wait at MPI barrier for next step

See the accompanying report for a more low-level workflow.

Lars Quentin SCAP 22 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Query Benchmarker (cont.)

High-Level Workflow

For each disjunct fork-join benchmark step:

■ Wait for Elasticsearch cluster health to be green

■ Partition the hosts onto the load generators

■ If warmup time is set: Send queries, discard result (fill OS caches)

■ After that, until execution time for current step is reached:

▶ Select next query in current step
▶ Track before, send query, track after
▶ Parse ES response, save (latency, docs count)

▶ Sleep if configured

■ Wait at MPI barrier for next step

See the accompanying report for a more low-level workflow.

Lars Quentin SCAP 22 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Query Benchmarker (cont.)

High-Level Workflow

For each disjunct fork-join benchmark step:

■ Wait for Elasticsearch cluster health to be green

■ Partition the hosts onto the load generators

■ If warmup time is set: Send queries, discard result (fill OS caches)

■ After that, until execution time for current step is reached:

▶ Select next query in current step
▶ Track before, send query, track after
▶ Parse ES response, save (latency, docs count)
▶ Sleep if configured

■ Wait at MPI barrier for next step

See the accompanying report for a more low-level workflow.

Lars Quentin SCAP 22 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Query Benchmarker (cont.)

High-Level Workflow

For each disjunct fork-join benchmark step:

■ Wait for Elasticsearch cluster health to be green

■ Partition the hosts onto the load generators

■ If warmup time is set: Send queries, discard result (fill OS caches)

■ After that, until execution time for current step is reached:

▶ Select next query in current step
▶ Track before, send query, track after
▶ Parse ES response, save (latency, docs count)
▶ Sleep if configured

■ Wait at MPI barrier for next step

See the accompanying report for a more low-level workflow.

Lars Quentin SCAP 22 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Query Benchmarker (cont.)

High-Level Workflow

For each disjunct fork-join benchmark step:

■ Wait for Elasticsearch cluster health to be green

■ Partition the hosts onto the load generators

■ If warmup time is set: Send queries, discard result (fill OS caches)

■ After that, until execution time for current step is reached:

▶ Select next query in current step
▶ Track before, send query, track after
▶ Parse ES response, save (latency, docs count)
▶ Sleep if configured

■ Wait at MPI barrier for next step

See the accompanying report for a more low-level workflow.

Lars Quentin SCAP 22 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Contributions

✓□ On-demand Elasticsearch Cluster Spawner

✓□ Ingestion Benchmarker

✓□ Query Benchmarker

□ Example workflow for canonical dataset

Lars Quentin SCAP 23 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

How to Create and Run a Benchmark (User Perspective)

1 Choose a dataset or create a synthetic one

▶ format as NDJSON

2 Define the Elasticsearch type mappings for each attribute

3 Design the query document

▶ Basically just embedding the Elasticsearch API queries into more JSON
▶ Note: They can thus be easily tested using cURL/Postman/Insomnia/...

4 Spawn up the cluster using SLURMs MPI environment

5 Run the distributed ingestor to ingest the NDJSON corpus

6 Run the distributed query benchmarker using the query document

7 Analyze the output JSON using a language of your choice
Python example can be found in the Git repo.

Lars Quentin SCAP 24 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

How to Create and Run a Benchmark (User Perspective)

1 Choose a dataset or create a synthetic one

▶ format as NDJSON

2 Define the Elasticsearch type mappings for each attribute

3 Design the query document

▶ Basically just embedding the Elasticsearch API queries into more JSON
▶ Note: They can thus be easily tested using cURL/Postman/Insomnia/...

4 Spawn up the cluster using SLURMs MPI environment

5 Run the distributed ingestor to ingest the NDJSON corpus

6 Run the distributed query benchmarker using the query document

7 Analyze the output JSON using a language of your choice
Python example can be found in the Git repo.

Lars Quentin SCAP 24 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

How to Create and Run a Benchmark (User Perspective)

1 Choose a dataset or create a synthetic one

▶ format as NDJSON

2 Define the Elasticsearch type mappings for each attribute

3 Design the query document

▶ Basically just embedding the Elasticsearch API queries into more JSON
▶ Note: They can thus be easily tested using cURL/Postman/Insomnia/...

4 Spawn up the cluster using SLURMs MPI environment

5 Run the distributed ingestor to ingest the NDJSON corpus

6 Run the distributed query benchmarker using the query document

7 Analyze the output JSON using a language of your choice
Python example can be found in the Git repo.

Lars Quentin SCAP 24 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

How to Create and Run a Benchmark (User Perspective)

1 Choose a dataset or create a synthetic one

▶ format as NDJSON

2 Define the Elasticsearch type mappings for each attribute

3 Design the query document

▶ Basically just embedding the Elasticsearch API queries into more JSON
▶ Note: They can thus be easily tested using cURL/Postman/Insomnia/...

4 Spawn up the cluster using SLURMs MPI environment

5 Run the distributed ingestor to ingest the NDJSON corpus

6 Run the distributed query benchmarker using the query document

7 Analyze the output JSON using a language of your choice
Python example can be found in the Git repo.

Lars Quentin SCAP 24 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

How to Create and Run a Benchmark (User Perspective)

1 Choose a dataset or create a synthetic one

▶ format as NDJSON

2 Define the Elasticsearch type mappings for each attribute

3 Design the query document

▶ Basically just embedding the Elasticsearch API queries into more JSON
▶ Note: They can thus be easily tested using cURL/Postman/Insomnia/...

4 Spawn up the cluster using SLURMs MPI environment

5 Run the distributed ingestor to ingest the NDJSON corpus

6 Run the distributed query benchmarker using the query document

7 Analyze the output JSON using a language of your choice
Python example can be found in the Git repo.

Lars Quentin SCAP 24 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

How to Create and Run a Benchmark (User Perspective)

1 Choose a dataset or create a synthetic one

▶ format as NDJSON

2 Define the Elasticsearch type mappings for each attribute

3 Design the query document

▶ Basically just embedding the Elasticsearch API queries into more JSON
▶ Note: They can thus be easily tested using cURL/Postman/Insomnia/...

4 Spawn up the cluster using SLURMs MPI environment

5 Run the distributed ingestor to ingest the NDJSON corpus

6 Run the distributed query benchmarker using the query document

7 Analyze the output JSON using a language of your choice
Python example can be found in the Git repo.

Lars Quentin SCAP 24 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

How to Create and Run a Benchmark (User Perspective)

1 Choose a dataset or create a synthetic one

▶ format as NDJSON

2 Define the Elasticsearch type mappings for each attribute

3 Design the query document

▶ Basically just embedding the Elasticsearch API queries into more JSON
▶ Note: They can thus be easily tested using cURL/Postman/Insomnia/...

4 Spawn up the cluster using SLURMs MPI environment

5 Run the distributed ingestor to ingest the NDJSON corpus

6 Run the distributed query benchmarker using the query document

7 Analyze the output JSON using a language of your choice
Python example can be found in the Git repo.

Lars Quentin SCAP 24 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Benchmark

Dataset: NYC Taxis [9]

■ All yellow taxi rides in NYC in 2015

■ Published by NYC Taxi and
Limousine Commision [10]

■ 165 million documents, over 75GB

■ Also used by Rally (Elastic)

■ Most used for scaling testing

■ Big documents, but mostly numeric
data.

Setup

■ 3 standard96 nodes on Emmy

■ Ethernet

■ Ubuntu 22.04 dockerhub image in
Singularity

■ Elasticsearch 8.11.0 with OpenJDK
21.0.1

■ Python 3.9

■ OpenMPI 4.1

Lars Quentin SCAP 25 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Results

■ Wall clock time decreases when
increasing processes per node

■ More ingestion parallelism
increases performance

■ But sublinear scaling

▶ Less efficient per extra ingestor
process

Lars Quentin SCAP 26 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Results

■ CPU time:
Wall clock · number of processes

■ It becomes less CPU efficient with
more ingestion nodes

■ If linear scaling in last plot ⇒ the
CPU ingestion time would stay the
same

Lars Quentin SCAP 27 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Results

■ Works as expected

■ When sending more documents per
request, the HTTP overhead should
decrease

■ This works for all ppn

■ Increase becomes sublinear

Lars Quentin SCAP 28 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Results

■ Sleeping 0.02s is more efficient
than not sleeping between
requests!

■ 0.2s is approximately as efficient as
0.0s.

■ After that, it becomes less efficient
since the Elasticsearch is idling.

■ Possible explaination: Additive
Increase, Multiplicative Decrease
(AIMD) in TCP, see report

Lars Quentin SCAP 29 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Challenges/Open Problems

■ Limited response size, hard limit by Elasticsearch’s architecture

■ Not possible to map load generator to cluster node according to optimal
network topology

■ Load generators and clusters cant share the same node

■ Elasticsearch requires a custom kernel setting

Lars Quentin SCAP 30 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

Summary

■ Project was a success, fully implemented both workflow and benchmarker

■ Zero configuration needed once the benchmark was initially designed

■ Fully integrated into SLURM

■ Contributions:

1 On-demand Elasticsearch Cluster Spawner
2 Ingestion Benchmarker
3 Query Benchmarker
4 Example workflow for canonical dataset

Lars Quentin SCAP 31 / 31



Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

References I

Elasticsearch Benchmarks. URL: https://elasticsearch-benchmarks.elastic.co/# (visited on
01/17/2024).

Hårek Haugerud, Mohamad Sobhie, and Anis Yazidi. “Tuning of Elasticsearch Configuration: Parameter
Optimization Through Simultaneous Perturbation Stochastic Approximation”. In: Frontiers in Big Data
5 (2022). ISSN: 2624-909X. URL:
https://www.frontiersin.org/articles/10.3389/fdata.2022.686416 (visited on 01/18/2024).

Wataru Takase et al. A solution for secure use of Kibana and Elasticsearch in multi-user environment.
June 30, 2017. arXiv: 1706.10040[cs]. URL: http://arxiv.org/abs/1706.10040 (visited on
01/18/2024).

Hui Dou, Pengfei Chen, and Zibin Zheng. “Hdconfigor: Automatically Tuning High Dimensional
Configuration Parameters for Log Search Engines”. In: IEEE Access 8 (2020), pp. 80638–80653. ISSN:
2169-3536. DOI: 10.1109/ACCESS.2020.2990735. URL:
https://ieeexplore.ieee.org/document/9079492/ (visited on 01/18/2024).

Apache JMeter - Apache JMeter™. URL: https://jmeter.apache.org/ (visited on 01/18/2024).

Will Glozer. wg/wrk. original-date: 2012-03-20T11:12:28Z. Jan. 18, 2024. URL:
https://github.com/wg/wrk (visited on 01/18/2024).

Lars Quentin SCAP 32 / 31

https://elasticsearch-benchmarks.elastic.co/#
https://www.frontiersin.org/articles/10.3389/fdata.2022.686416
https://arxiv.org/abs/1706.10040 [cs]
http://arxiv.org/abs/1706.10040
https://doi.org/10.1109/ACCESS.2020.2990735
https://ieeexplore.ieee.org/document/9079492/
https://jmeter.apache.org/
https://github.com/wg/wrk


Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

References II

Load testing for engineering teams | Grafana k6. URL: https://k6.io (visited on 01/18/2024).

timescale/tsbs. original-date: 2018-08-08T14:30:28Z. Jan. 17, 2024. URL:
https://github.com/timescale/tsbs (visited on 01/18/2024).

rally-tracks/nyc_taxis at master · elastic/rally-tracks. GitHub. URL:
https://github.com/elastic/rally-tracks/tree/master/nyc_taxis (visited on 02/15/2024).

TLC Trip Record Data - TLC. URL:
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page (visited on 02/15/2024).

Lars Quentin SCAP 33 / 31

https://k6.io
https://github.com/timescale/tsbs
https://github.com/elastic/rally-tracks/tree/master/nyc_taxis
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

	Introduction
	Spawner
	Ingestor
	Querier
	Test Evaluation
	Conclusion
	References

