GEORG-AUGUST-UNIVERSITAT . . ey
< =7\ GOTTINGEN &7 =2 University of Gottingen

HPS
https://hpc.gwdg.de

Lars Quentin

MPI-based Creation and Benchmarking of
a Dynamic Elasticsearch Cluster

11.07.2024 SCAP

https://hpc.gwdg.de

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
000000 0000 00000 00000 0000000 oo

Introduction
Spawner
Ingestor
Querier

Test Evaluation

A cConclusion

Lars Quentin SCAP 2/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
@®00000

Insights

B Why a custom spawner and new specialized benchmarker is required
B How the following works:

» distributed cluster spawner
» distributed ingestion benchmarker
» distributed query benchmarker

M How to create a new benchmark scenario from scratch

Lars Quentin SCAP 3/31

Introduction Spawner Ingestor Querier
Oe0000

Test Evaluation

Conclusion

References

Motivation: Data Lakes

Why are Data Lakes needed

B Research becomes evermore
data-driven and compute-intensive

» More Simulations
» Data Science, Machine Learning

B HPC becomes more data oriented
B Better data-management tooling
needed

B HPC operates on raw data
= Data Lakes

Lars Quentin SCAP

4/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
Oe0000

Motivation: Data Lakes

Why are Data Lakes needed
Metadata management
B Research becomes evermore

data-driven and compute-intensive B Providing storage is easy

» More Simulations Managing storage is hard

» Data Science, Machine Learning Keep data findable, manage data

HPC becomes more data oriented .
Fully indexed

B Better data-management tooling

Fully (fuzzy) searchable
needed

No-SQL data store / search engine
» Elasticsearch

B HPC operates on raw data
= Data Lakes

Lars Quentin SCAP 4/31

Introduction Spawner Ingestor Querier
00e000

Test Evaluation

Conclusion

References

Motivation: Elasticsearch and Rally

Elasticsearch for HPC
B Elasticsearch is designed for
cloud-use
» Always running
» Same host, same IP
» Only ethernet
B This is not given in HPC:
» Jobs spawned on demand
» Every job gets different nodes
» Changing IPs between runs
» ETH, IB, Intel OPA
B Thus, a custom stateful workflow
is required for HPC use!

Lars Quentin SCAP

5/31

Introduction Spawner Ingestor
00e000

Test Evaluation Conclusion References

Motivation: Elasticsearch and Rally

Elasticsearch for HPC
B Elasticsearch is designed for
cloud-use
» Always running
» Same host, same IP
» Only ethernet
B This is not given in HPC:
» Jobs spawned on demand
» Every job gets different nodes
» Changing IPs between runs
» ETH, IB, Intel OPA
B Thus, a custom stateful workflow
is required for HPC use!

Lars Quentin

Benchmarking Elasticsearch

B HPCis all about performance
B Elastic’s benchmarker: rally [1]

» Used for in-house performance
regression testing

» Written in Python

» Distributed using thespian agent
framework

» After previous unpublished
research at GWDG:

e Doesn’t work with over 60 nodes

B Not viable for HPC-scale
benchmarking

SCAP 5/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
000e00 0000 00000 00000 0000000 [e]e]

Contributions

The 4 main contributions of this work:

Lars Quentin SCAP 6/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion
000e00

References

Contributions

The 4 main contributions of this work:
On-demand Elasticsearch Cluster Spawner
» Zero-configuration
» Dynamic resolution, based on SLURM MPI envionment
» Arbitrary cluster size
» Stateful between runs

Lars Quentin SCAP

6/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion
000e00

References

Contributions

The 4 main contributions of this work:

On-demand Elasticsearch Cluster Spawner
» Zero-configuration
» Dynamic resolution, based on SLURM MPI envionment
» Arbitrary cluster size
» Stateful between runs

Ingestion Benchmarker
» Distributed, MPI-based
» Benchmarks easily portable from rally

Lars Quentin SCAP

6/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion
000e00

References

Contributions

The 4 main contributions of this work:

On-demand Elasticsearch Cluster Spawner
» Zero-configuration
» Dynamic resolution, based on SLURM MPI envionment
» Arbitrary cluster size
» Stateful between runs

Ingestion Benchmarker
» Distributed, MPI-based
» Benchmarks easily portable from rally

Query Benchmarker
» Distributed, MPI-based
» Mixed queries for realistic load
» Custom scenario support using own JSON-based DSL

Lars Quentin SCAP

6/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion
000e00

References

Contributions

The 4 main contributions of this work:

On-demand Elasticsearch Cluster Spawner
» Zero-configuration
» Dynamic resolution, based on SLURM MPI envionment
» Arbitrary cluster size
» Stateful between runs

Ingestion Benchmarker
» Distributed, MPI-based
» Benchmarks easily portable from rally

Query Benchmarker
» Distributed, MPI-based
» Mixed queries for realistic load
» Custom scenario support using own JSON-based DSL

A Example workflow for canonical dataset

Lars Quentin SCAP

6/31

Introduction Spawner Ingestor Querier
0000e0 0000 00000 00000

Test Evaluation Conclusion
0000000

References

Background: Elasticsearch

B Distributed search engine

B Document-based NoSQL-Storage

B Internally based on Apache Lucene
B Provides JSON-based REST interface

B Apache 2.0 fork: Opensearch
B Advantages:

» Mature ecosystem
» \ery battle-tested
» A lot of tooling / library support

Lars Quentin SCAP

7/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion
O0000e

References

Background: Benchmarking

B For elasticsearch: All literature uses rally [2] [3] [4]
B Alternatives: Just use a HTTP benchmarker

» |Meter [5]
» wrk [6]
» Grafana k6 [7]

Bl Most NoSQL comparisons are done by database vendors [8]
» Bad financial incentives

Lars Quentin SCAP

8/31

Spawner
@000

Conclusion References

Contributions

[1 On-demand Elasticsearch Cluster Spawner
[1 Ingestion Benchmarker
[J Query Benchmarker

[1 Example workflow for canonical dataset

Lars Quentin SCAP 9/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
000000 lo] Jlele} 00000 00000 0000000 [e]e]

On-Demand, Dynamic Cluster Spawner

Features

Lars Quentin SCAP 10/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
000000 lo] Jlele} 00000 00000 0000000 [e]e]
On-Demand, Dynamic Cluster Spawner
Features
B Fully automated, uses MPI envionment provided by SLURM
Lars Quentin SCAP 10/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion
lo] Jlele}

References

On-Demand, Dynamic Cluster Spawner

Features

B Fully automated, uses MPI envionment provided by SLURM
B Dynamically fetches the hosts

» Not required to know them beforehand
» |IPs and hardware can be changed between runs

Lars Quentin SCAP

10/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion
lo] Jlele}

References

On-Demand, Dynamic Cluster Spawner

Features

B Fully automated, uses MPI envionment provided by SLURM
B Dynamically fetches the hosts

» Not required to know them beforehand
» |IPs and hardware can be changed between runs

B Very portable through containerization (Singularity)

Lars Quentin SCAP

10/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion
lo] Jlele}

References

On-Demand, Dynamic Cluster Spawner

Features

B Fully automated, uses MPI envionment provided by SLURM
B Dynamically fetches the hosts

» Not required to know them beforehand
» |IPs and hardware can be changed between runs

B Very portable through containerization (Singularity)
B Stateful: Same cluster can be respawned

» on different nodes
» without reingestion

Lars Quentin SCAP

10/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion
lo] Jlele}

References

On-Demand, Dynamic Cluster Spawner

Features

B Fully automated, uses MPI envionment provided by SLURM
B Dynamically fetches the hosts
» Not required to know them beforehand
» |Ps and hardware can be changed between runs
B Very portable through containerization (Singularity)
B Stateful: Same cluster can be respawned

» on different nodes
» without reingestion

B NIC-agnostic. Tested on:

» Ethernet
» Infiniband

Lars Quentin SCAP

10/31

Introduction Spaumer ingester Querter Test Evalustion Copelusion References
On-Demand, Dynamic Cluster Spawner (cont.)
High-Level Workflow:
Prerequisites:
M All hosts are known to each other via the MPI environment
M All nodes have at least one shared mount
Lars Quentin SCAP 11/31

Inroduction Seaumer ingester Querter Test Evalustion Copelusion References
On-Demand, Dynamic Cluster Spawner (cont.)
High-Level Workflow:
Prerequisites:
M All hosts are known to each other via the MPI environment
M All nodes have at least one shared mount
Workflow:
Each node creates a config
Lars Quentin SCAP 11/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion
ooeo

References

On-Demand, Dynamic Cluster Spawner (cont.)

High-Level Workflow:
Prerequisites:
B All hosts are known to each other via the MPI environment
B All nodes have at least one shared mount
Workflow:
Each node creates a config
MPI-Gather all hostnames to the root rank

Lars Quentin SCAP

11/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion
ooeo

References

On-Demand, Dynamic Cluster Spawner (cont.)

High-Level Workflow:
Prerequisites:
B All hosts are known to each other via the MPI environment
B All nodes have at least one shared mount
Workflow:
Each node creates a config
MPI-Gather all hostnames to the root rank
The root node updates the configs for all nodes

Lars Quentin SCAP

11/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
ooeo

On-Demand, Dynamic Cluster Spawner (cont.)

High-Level Workflow:
Prerequisites:
B All hosts are known to each other via the MPI environment
B All nodes have at least one shared mount
Workflow:
Each node creates a config
MPI-Gather all hostnames to the root rank
The root node updates the configs for all nodes
B Each rank stats its singularity container with the config bind-mounted in

Lars Quentin SCAP 11/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion
ooeo

References

On-Demand, Dynamic Cluster Spawner (cont.)

High-Level Workflow:
Prerequisites:
B All hosts are known to each other via the MPI environment
B All nodes have at least one shared mount
Workflow:
Each node creates a config
MPI-Gather all hostnames to the root rank
The root node updates the configs for all nodes

B Each rank stats its singularity container with the config bind-mounted in

See the accompanying report for a more low-level workflow.

Lars Quentin SCAP

11/31

Introduction
000000

Spawner Ingestor Querier Test Evaluation Conclusion
oooe 00000 00000 0000000 [e]e]

References

On-Demand, Dynamic Cluster Spawner (cont.)

© N U R W N e

=
[I SY

Lars Quentin

Example Generated Config

cluster.name: securemetadata

node.name: securemetadata4

node.roles: ["master", "data"]

network.host: 0.0.0.0

cluster.initial_master_nodes: [securemetadata0]

Expects hostnames to be DNS resolvable

discovery.seed_hosts: [
"hostname_of_rank_0",
"hostname_of_rank_1",
"hostname_of_rank_2"

]

xpack.security.enabled: false

SCAP

12/31

Ingestor
@®0000

Conclusion References

Contributions

1 On-demand Elasticsearch Cluster Spawner
[1 Ingestion Benchmarker
[J Query Benchmarker

[1 Example workflow for canonical dataset

Lars Quentin SCAP 13/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion
O®000

References

Ingestion Benchmarker

B Two purposes:
Ingest JSON corpus into Elasticsearch cluster for query benchmarks
Measure performance of write-performance and throughput
B Features:
» Distributed, MPI-based
I/0 optimized through offset caching

>
» Supports statically typed index definitions
» Supports Newline Delimited JSON (NDJSON)

e Thus compatible with rally!
» Configurable via CLI: bulk size, shards per node

Lars Quentin SCAP

14/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
000000 0000 [eJe] lele] 00000 0000000 [e]e]

Offset Caching

Problem
B Data has to be parititioned.

Lars Quentin SCAP 15/31

Ingestor
[eJe] lele]

Conclusion

References

Offset Caching

Problem
B Data has to be parititioned.

B This should be done fairly, i.e.
For N nodes and L lines, rank i gets

L5 L)

Lars Quentin SCAP

15/31

Introduction Spawner Ingestor Querier
[eJe] lele]

Test Evaluation

Conclusion

References

Offset Caching

Problem
B Data has to be parititioned.

B This should be done fairly, i.e.
For N nodes and L lines, rank i gets
] i+1
v L% L)
B For the computation the number of

lines need to be known. (1st read)

Lars Quentin SCAP

15/31

Introduction Spawner Ingestor Querier
[eJe] lele]

Test Evaluation

Conclusion

References

Offset Caching

Problem
B Data has to be parititioned.

B This should be done fairly, i.e.
For N nodes and L lines, rank i gets
[L L)

B For the computation the number of
lines need to be known. (1st read)

B Afterwards, the line has to be
found. (2nd read)

» Can'tjust seek, since J]SON
documents have variadic size!

Lars Quentin SCAP

15/31

Introduction Spawner Ingestor Querier
[eJe] lele]

Test Evaluation

Conclusion

References

Offset Caching

Problem
B Data has to be parititioned.

B This should be done fairly, i.e.
For N nodes and L lines, rank i gets
v L% L)
B For the computation the number of
lines need to be known. (1st read)
B Afterwards, the line has to be
found. (2nd read)
» Can'tjust seek, since J]SON
documents have variadic size!

B Alot of I/O, the corpus is 75GB.

Lars Quentin SCAP

15/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
[eJe] lele]

Offset Caching

Problem
B Data has to be parititioned. Solution
B This should be done fairly, i.e. B Just one node computes it, and
For N nodes and L lines, rank i gets caches itin a file!
(% L5 L)

B For the computation the number of
lines need to be known. (1st read)

B Afterwards, the line has to be
found. (2nd read)

» Can'tjust seek, since J]SON
documents have variadic size!

B Alot of I/O, the corpus is 75GB.

Lars Quentin SCAP 15/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
[eJe] lele]

Offset Caching

Problem
B Data has to be parititioned. Solution
B This should be done fairly, i.e. B Just one node computes it, and
For N nodes and L lines, rank i gets caches itin a file!
[ﬁ L, % . 1_) B Steps:

Read 1: Count number of lines.
Compute starting and ending line
for each rank.

B For the computation the number of
lines need to be known. (1st read)

B Afterwards, the line has to be Read 2: Find the byte offsets for
found. (2nd read) each rank.
» Can'tjust seek, since JSON B Save everything into a
documents have variadic size! .offsets.json file.

B Alot of I/O, the corpus is 75GB.

Lars Quentin SCAP 15/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
000000 0000 [eJele] Jo] 00000 0000000 [e]e]

Offset Caching (cont.)

Example .offset.json file for 3 nodes

1 {

2 "number_of_workers":3,

3 "offsets":[

4 {

5 "rank":0,

6 "starting_line":0,

7 "starting_byte":0,

8 "number_of_lines":8333

9 },

10 { "rank":1, "starting_line":8333,

11 "starting_byte":4157901, "number_of_lines":8333 },
12 { "rank":2, "starting_ line":16666,

13 "starting_byte":8315734, "number_of_lines":null }
14 113

Lars Quentin SCAP 16/31

Spawner Ingestor
0000 O000e

Conclusion

References

Ingestion Benchmarker (cont.)

Workflow: Setup (root only)

B Create cache offsets if not already
existing
» Requires same number of load
generators

Lars Quentin SCAP

17/31

Introduction Spawner Ingestor Querier
O000e

Test Evaluation

Conclusion

References

Ingestion Benchmarker (cont.)

Workflow: Setup (root only)

B Create cache offsets if not already
existing
» Requires same number of load
generators

B Create empty Elasticsearch index
with following settings:

» Strict type mappings
(Elasticsearch syntax)

» One shard per Cluster node
(configurable)

» requests.cache.enable:
false

Lars Quentin SCAP

17/31

Introduction Spawner Ingestor Querier
O000e

Test Evaluation

References

Ingestion Benchmarker (cont.)

Workflow: Setup (root only)

B Create cache offsets if not already
existing
» Requires same number of load
generators

B Create empty Elasticsearch index
with following settings:

» Strict type mappings
(Elasticsearch syntax)

» One shard per Cluster node
(configurable)

» requests.cache.enable:
false

Lars Quentin SCAP

Workflow: Benchmark

B Each rank chooses one ES node to

send to

17/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
O000e

Ingestion Benchmarker (cont.)

Workflow: Setup (root only) Workflow: Benchmark
B Create cache offsets if not already B Each rank chooses one ES node to
existing send to
» Requires same number of load

B Seek to starting byte based on

enerators
9 offsets

B Create empty Elasticsearch index
with following settings:

» Strict type mappings
(Elasticsearch syntax)

» One shard per Cluster node
(configurable)

» requests.cache.enable:
false

Lars Quentin SCAP 17/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
O000e

Ingestion Benchmarker (cont.)

Workflow: Setup (root only) Workflow: Benchmark
B Create cache offsets if not already B Each rank chooses one ES node to
existing send to
> Requires same number of load B Seek to starting byte based on
generators offsets

B Create empty Elasticsearch index
with following settings:

» Strict type mappings
(Elasticsearch syntax)

» One shard per Cluster node
(configurable)

» requests.cache.enable:
false

B Send the requests blockingly, as
fast as possible

Lars Quentin SCAP 17/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
O000e

Ingestion Benchmarker (cont.)

Workflow: Setup (root only) Workflow: Benchmark
B Create cache offsets if not already B Each rank chooses one ES node to
existing send to
> Requires same number of load B Seek to starting byte based on
generators
offsets

B Create empty Elasticsearch index
with following settings:
» Strict type mappings
(Elasticsearch syntax) B Track response time directly after
» One shard per Cluster node
(configurable)
» requests.cache.enable:
false

B Send the requests blockingly, as
fast as possible

Lars Quentin SCAP 17/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
O000e

Ingestion Benchmarker (cont.)

Workflow: Setup (root only) Workflow: Benchmark
B Create cache offsets if not already B Each rank chooses one ES node to
existing send to
> Requires same number of load B Seek to starting byte based on
generators offsets

B Create empty Elasticsearch index
with following settings:
» Strict type mappings
(Elasticsearch syntax) Track response time directly after
» One shard per Cluster node B Wait at barrier
(configurable)
» requests.cache.enable:
false

B Send the requests blockingly, as
fast as possible

Lars Quentin SCAP 17/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
O000e

Ingestion Benchmarker (cont.)

Workflow: Setup (root only) Workflow: Benchmark
B Create cache offsets if not already B Each rank chooses one ES node to
existing send to
» Requires same number of load B Seek to starting byte based on

generators
B Create empty Elasticsearch index
with following settings:
» Strict type mappings
(Elasticsearch syntax)

» One shard per Cluster node Wait at barrier
(configurable)

» requests.cache.enable: B MPI Gather all data at root, dump
false |nt0JSON file

offsets

B Send the requests blockingly, as
fast as possible

Track response time directly after

Lars Quentin SCAP 17/31

Querier
@®0000

Conclusion References

Contributions

1 On-demand Elasticsearch Cluster Spawner
V1 Ingestion Benchmarker
[J Query Benchmarker

[1 Example workflow for canonical dataset

Lars Quentin SCAP 18/31

Querier

Conclusion References
O@000 (o]e]

Query Benchmarker

B Measures query-/read-performance against previously ingested data.

Lars Quentin SCAP 19/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion
O@000

References

Query Benchmarker

B Measures query-/read-performance against previously ingested data.

B Works through scenarios in a fork-join model.
» Supports mixing queries in same scenario

Lars Quentin SCAP

19/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion
O@000

References

Query Benchmarker

B Measures query-/read-performance against previously ingested data.

B Works through scenarios in a fork-join model.
» Supports mixing queries in same scenario
B Features:
» Distributed, MPI-based

Lars Quentin SCAP

19/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
O@000

Query Benchmarker

B Measures query-/read-performance against previously ingested data.
B Works through scenarios in a fork-join model.

» Supports mixing queries in same scenario
B Features:

» Distributed, MPI-based
» Fully configurable by JSON-DSL; no hard-coded scenarios

* No need to edit the source code
* Embeds Elasticsearch syntax internally = accessible for ES-users
« Simplification of Rally syntax = easy to port

Lars Quentin SCAP 19/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
O@000

Query Benchmarker

B Measures query-/read-performance against previously ingested data.
B Works through scenarios in a fork-join model.

» Supports mixing queries in same scenario
B Features:

» Distributed, MPI-based
» Fully configurable by JSON-DSL; no hard-coded scenarios

* No need to edit the source code
* Embeds Elasticsearch syntax internally = accessible for ES-users
« Simplification of Rally syntax = easy to port

» Bypasses the cache

Lars Quentin SCAP 19/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
O@000

Query Benchmarker

B Measures query-/read-performance against previously ingested data.
B Works through scenarios in a fork-join model.

» Supports mixing queries in same scenario
B Features:

» Distributed, MPI-based
» Fully configurable by JSON-DSL; no hard-coded scenarios

* No need to edit the source code
* Embeds Elasticsearch syntax internally = accessible for ES-users
« Simplification of Rally syntax = easy to port
» Bypasses the cache
» Parses the responses for more data; not only based on HTTP response code

Lars Quentin SCAP 19/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
O@000

Query Benchmarker

B Measures query-/read-performance against previously ingested data.
B Works through scenarios in a fork-join model.

» Supports mixing queries in same scenario
B Features:

» Distributed, MPI-based
» Fully configurable by JSON-DSL; no hard-coded scenarios
* No need to edit the source code
* Embeds Elasticsearch syntax internally = accessible for ES-users
« Simplification of Rally syntax = easy to port
» Bypasses the cache
» Parses the responses for more data; not only based on HTTP response code
» Test mode for easier debugging

Lars Quentin SCAP 19/31

Introduction

Spawner Ingestor Querier Test Evaluation Conclusion
[ele] le]e]

References

-

© © N o Uk W N

Lars Quentin

Input Format for Query Benchmarker (part 1)

{
"search_queries": [
{
/* everything in here just gets sent to ES x/
"body": {
/* The raw ES query sent to the server x/
}
}
1,
"warmup_time_secs": 30, /* optional */
"execution_time_secs": 120, /x optional x/
I

SCAP

20/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
[elefe] le]

Input Format for Query Benchmarker (part 2)

1 {

2 "search_queries": [

3 {

4 "body": {

5 /* The first of 2 queries sent iteratively (random order) x/
6 }

7 H

8 {

9 "body": {

10 /* The second of 2 queries sent iteratively (random order) x/
11 }

12 }

13 g

14 "warmup_time_secs": 30, /* optional */

15 "execution_time_secs": 180, /x optional x/

16 "sleep_between_requests_secs": 0.25 /x optional x/

17 1

Lars Quentin SCAP 21/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
000000 0000 00000 O000e 0000000 oo
Query Benchmarker (cont.)
High-Level Workflow
For each disjunct fork-join benchmark step:
Lars Quentin SCAP 22/31

Inroduction Spauer ingester Qerier Test Evaluation Coelusion References
Query Benchmarker (cont.)
High-Level Workflow
For each disjunct fork-join benchmark step:
B Wait for Elasticsearch cluster health to be green
Lars Quentin SCAP 22/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion
000000 0o000e

References

Query Benchmarker (cont.)

High-Level Workflow
For each disjunct fork-join benchmark step:
B Wait for Elasticsearch cluster health to be green

B Partition the hosts onto the load generators

Lars Quentin SCAP

22/31

Introduction Spawner Ingestor Querier Test Evaluation
O000e

Conclusion

References

Query Benchmarker (cont.)

High-Level Workflow
For each disjunct fork-join benchmark step:
B Wait for Elasticsearch cluster health to be green

B Partition the hosts onto the load generators

B If warmup time is set: Send queries, discard result (fill OS caches)

Lars Quentin SCAP

22/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion
O000e

References

Query Benchmarker (cont.)

High-Level Workflow

For each disjunct fork-join benchmark step:
B Wait for Elasticsearch cluster health to be green
B Partition the hosts onto the load generators

B If warmup time is set: Send queries, discard result (fill OS caches)
B After that, until execution time for current step is reached:
» Select next query in current step

Lars Quentin SCAP

22/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion
O000e

References

Query Benchmarker (cont.)

High-Level Workflow

For each disjunct fork-join benchmark step:
B Wait for Elasticsearch cluster health to be green
B Partition the hosts onto the load generators

B If warmup time is set: Send queries, discard result (fill OS caches)
B After that, until execution time for current step is reached:

» Select next query in current step
» Track before, send query, track after

Lars Quentin SCAP

22/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion
O000e

References

Query Benchmarker (cont.)

High-Level Workflow

For each disjunct fork-join benchmark step:
B Wait for Elasticsearch cluster health to be green
B Partition the hosts onto the load generators

B If warmup time is set: Send queries, discard result (fill OS caches)
B After that, until execution time for current step is reached:

» Select next query in current step
» Track before, send query, track after
» Parse ES response, save (latency, docs count)

Lars Quentin SCAP

22/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
O000e

Query Benchmarker (cont.)

High-Level Workflow
For each disjunct fork-join benchmark step:
B Wait for Elasticsearch cluster health to be green
B Partition the hosts onto the load generators
B If warmup time is set: Send queries, discard result (fill OS caches)

B After that, until execution time for current step is reached:

» Select next query in current step

» Track before, send query, track after

» Parse ES response, save (latency, docs count)
» Sleep if configured

Lars Quentin SCAP 22/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
O000e

Query Benchmarker (cont.)

High-Level Workflow

For each disjunct fork-join benchmark step:
B Wait for Elasticsearch cluster health to be green
B Partition the hosts onto the load generators

B If warmup time is set: Send queries, discard result (fill OS caches)
B After that, until execution time for current step is reached:

» Select next query in current step

» Track before, send query, track after

» Parse ES response, save (latency, docs count)
» Sleep if configured

B Wait at MPI barrier for next step

Lars Quentin SCAP 22/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
O000e

Query Benchmarker (cont.)

High-Level Workflow
For each disjunct fork-join benchmark step:
B Wait for Elasticsearch cluster health to be green
B Partition the hosts onto the load generators
B If warmup time is set: Send queries, discard result (fill OS caches)

B After that, until execution time for current step is reached:

» Select next query in current step

» Track before, send query, track after

» Parse ES response, save (latency, docs count)
» Sleep if configured

B Wait at MPI barrier for next step
See the accompanying report for a more low-level workflow.

Lars Quentin SCAP 22/31

Test Evaluation Conclusion References
9000000 oo

Contributions

1 On-demand Elasticsearch Cluster Spawner
V1 Ingestion Benchmarker
1 Query Benchmarker

[1 Example workflow for canonical dataset

Lars Quentin SCAP 23/31

Intwqu’d‘q‘c’;lon §Pf’,,;W,I‘er nggs}gr Querler (‘jrsztog\éaoluation Conclu5|on References
How to Create and Run a Benchmark (User Perspective)
Choose a dataset or create a synthetic one
» format as NDJSON
Lars Quentin SCAP 24/31

Introduction Seawmer Ingeetor Querter Jest Evaluation Conclusion References
How to Create and Run a Benchmark (User Perspective)
Choose a dataset or create a synthetic one
» format as NDJSON
Define the Elasticsearch type mappings for each attribute
Lars Quentin SCAP 24/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
O®00000

How to Create and Run a Benchmark (User Perspective)

Choose a dataset or create a synthetic one
» format as NDJSON
Define the Elasticsearch type mappings for each attribute

Design the query document

» Basically just embedding the Elasticsearch API queries into more JSON
» Note: They can thus be easily tested using cURL/Postman/Insomnia/...

Lars Quentin SCAP 24/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
O®00000

How to Create and Run a Benchmark (User Perspective)

Choose a dataset or create a synthetic one

» format as NDJSON
Define the Elasticsearch type mappings for each attribute
Design the query document

» Basically just embedding the Elasticsearch API queries into more JSON
» Note: They can thus be easily tested using cURL/Postman/Insomnia/...

A Spawn up the cluster using SLURMs MPI environment

Lars Quentin SCAP 24/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
O®00000

How to Create and Run a Benchmark (User Perspective)

Choose a dataset or create a synthetic one
» format as NDJSON

Define the Elasticsearch type mappings for each attribute
Design the query document

» Basically just embedding the Elasticsearch API queries into more JSON
» Note: They can thus be easily tested using cURL/Postman/Insomnia/...

A Spawn up the cluster using SLURMs MPI environment
Run the distributed ingestor to ingest the NDJSON corpus

Lars Quentin SCAP 24/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
O®00000

How to Create and Run a Benchmark (User Perspective)

Choose a dataset or create a synthetic one
» format as NDJSON

Define the Elasticsearch type mappings for each attribute
Design the query document

» Basically just embedding the Elasticsearch API queries into more JSON
» Note: They can thus be easily tested using cURL/Postman/Insomnia/...

A Spawn up the cluster using SLURMs MPI environment
Run the distributed ingestor to ingest the NDJSON corpus
B Run the distributed query benchmarker using the query document

Lars Quentin SCAP 24/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
O®00000

How to Create and Run a Benchmark (User Perspective)

Choose a dataset or create a synthetic one
» format as NDJSON

Define the Elasticsearch type mappings for each attribute
Design the query document

» Basically just embedding the Elasticsearch API queries into more JSON
» Note: They can thus be easily tested using cURL/Postman/Insomnia/...

A Spawn up the cluster using SLURMs MPI environment
Run the distributed ingestor to ingest the NDJSON corpus
B Run the distributed query benchmarker using the query document

Analyze the output JSON using a language of your choice
Python example can be found in the Git repo.

Lars Quentin SCAP 24/31

Introduction Spawner Ingestor Querier Jgiég\éaoluation Conclusion References
Benchmark
Dataset: NYC Taxis [9] Setup
B All yellow taxi rides in NYC in 2015 B 3 standard96 nodes on Emmy
B Published by NYC Taxi and B Ethernet
Limousine Commision [10] B Ubuntu 22.04 dockerhub image in
B 165 million documents, over 75GB Singularity
B Also used by Rally (Elastic) B Elasticsearch 8.11.0 with Open)DK
B Most used for scaling testing 21.0.1
B Big documents, but mostly numeric B Python 3.9
data. B OpenMPI 4.1

Lars Quentin

SCAP

25/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References

000000 0000 00000 00000 000e000 oo
Results
Ingest: Total Wall Clock Time
3500
2000 4 B Wall clock time decreases when
increasing processes per node
25001
o B More ingestion parallelism
g 20007 increases performance
§ 1500 1 B But sublinear scaling

» Less efficient per extra ingestor
process

1000

1ppn 2ppn 4ppn 8ppn
different processes per node (ppn)

Lars Quentin SCAP 26/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
000000 0000 00000 00000 0000800 oo
Ingest: Total CPU Time
20000
B CPU time:

ingest time in s

1ppn 2ppn 4ppn 8ppn
different processes per node (ppn)

Lars Quentin SCAP

Wall clock - number of processes

B It becomes less CPU efficient with

more ingestion nodes

B If linear scaling in last plot = the

CPU ingestion time would stay the
same

27/31

Test Evaluation Conclusion References
00000e0 oo

Results

Query: Throughput per BULK size

105,
B Works as expected
B When sending more documents per

request, the HTTP overhead should
decrease

107 4

B This works for all ppn

108 4

total documents sent in 3min

M Increase becomes sublinear

105 4

10! 10? 103 10*
Docs sent per BULK request
Lars Quentin SCAP 28/31

Introduction

Spawner

Ingestor

Querier

Test Evaluation Conclusion References
O00000e

Results

Query: Throughput with increased sleeps (bulk size 1000)

le8

1.2 4

1.0

0.8 4

0.6

0.4 1

total documents sent in 3min

0.2 4

0.0 4§

P

—— 1ppn

2ppn
—=— 4ppn
—»— 8ppn

Lars Quentin

0.0

0.2

T T
0.4 0.6
sleep in s between request

0.8

1.0

SCAP

Sleeping 0.02s is more efficient
than not sleeping between
requests!

0.2s is approximately as efficient as
0.0s.

After that, it becomes less efficient
since the Elasticsearch is idling.

Possible explaination: Additive
Increase, Multiplicative Decrease
(AIMD) in TCP, see report

29/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
[Je}

Challenges/Open Problems

B Limited response size, hard limit by Elasticsearch’s architecture

B Not possible to map load generator to cluster node according to optimal
network topology

B Load generators and clusters cant share the same node
B Elasticsearch requires a custom kernel setting

Lars Quentin SCAP 30/31

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
oe

Summary

B Project was a success, fully implemented both workflow and benchmarker
B Zero configuration needed once the benchmark was initially designed

B Fully integrated into SLURM

B Contributions:
On-demand Elasticsearch Cluster Spawner
Ingestion Benchmarker
Query Benchmarker
A Example workflow for canonical dataset

Lars Quentin SCAP 31/31

Introduction
000000

Spawner Ingestor Querier Test Evaluation Conclusion References

0000 00000 00000 0000000 oo

References |

Lars Quentin

Elasticsearch Benchmarks. URL: https://elasticsearch-benchmarks.elastic.co/# (visited on
01/17/2024).

Harek Haugerud, Mohamad Sobhie, and Anis Yazidi. “Tuning of Elasticsearch Configuration: Parameter
Optimization Through Simultaneous Perturbation Stochastic Approximation”. In: Frontiers in Big Data
5(2022). ISSN: 2624-909X. URL:
https://www.frontiersin.org/articles/10.3389/fdata.2022.686416 (visited on 01/18/2024).

Wataru Takase et al. A solution for secure use of Kibana and Elasticsearch in multi-user environment.
June 30, 2017. arXiv: 1706.10040[cs]. URL: http://arxiv.org/abs/1706.10040 (visited on
01/18/2024).

Hui Dou, Pengfei Chen, and Zibin Zheng. “Hdconfigor: Automatically Tuning High Dimensional
Configuration Parameters for Log Search Engines”. In: |EEE Access 8 (2020), pp. 80638-80653. ISSN:
2169-3536. DOI: 10.1109/ACCESS.2020.2990735. URL:
https://ieeexplore.ieee.org/document/9079492/ (visited on 01/18/2024).

Apache JMeter - Apache JMeter™ . URL: https://jmeter.apache.org/ (visited on 01/18/2024).
Will Glozer. wg/wrk. original-date: 2012-03-20T11:12:28Z. Jan. 18, 2024. URL:
https://github.com/wg/wrk (visited on 01/18/2024).

SCAP

32/31

https://elasticsearch-benchmarks.elastic.co/#
https://www.frontiersin.org/articles/10.3389/fdata.2022.686416
https://arxiv.org/abs/1706.10040 [cs]
http://arxiv.org/abs/1706.10040
https://doi.org/10.1109/ACCESS.2020.2990735
https://ieeexplore.ieee.org/document/9079492/
https://jmeter.apache.org/
https://github.com/wg/wrk

Introduction Spawner Ingestor Querier Test Evaluation Conclusion References
000000 0000 00000 00000 0000000 oo

References Il

Load testing for engineering teams | Grafana k6. URL: https://k6.1o (visited on 01/18/2024).

timescale/tsbs. original-date: 2018-08-08T14:30:28Z. Jan. 17, 2024. URL:
https://github.com/timescale/tsbs (visited on 01/18/2024).

rally-tracks/nyc_taxis at master - elastic/rally-tracks. GitHub. URL:
https://github.com/elastic/rally-tracks/tree/master/nyc_taxis (visited on 02/15/2024).

TLC Trip Record Data - TLC. URL:
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page (visited on 02/15/2024).

Lars Quentin SCAP 33/31

https://k6.io
https://github.com/timescale/tsbs
https://github.com/elastic/rally-tracks/tree/master/nyc_taxis
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

	Introduction
	Spawner
	Ingestor
	Querier
	Test Evaluation
	Conclusion
	References

