
SH

∞

Seminar Report

MPI-based Creation and Benchmarking
of a Dynamic Elasticsearch Cluster

Lars Quentin

MatrNr: 21774184

Supervisor: Hendrik Nolte

Georg-August-Universität Göttingen
Institute of Computer Science

July 12, 2024

Abstract
Due to current developments in simulation, data science, and machine learning, research
has become ever more data-driven and compute-intensive. Especially, data lakes are
evermore important, due to the decreased prices in storage with less specialized and more
heterogeneous hardware support. To manage the sheer amount of raw, unprocessed data,
a both sufficient and performant metadata management solution is paramount.

After an internal performance evaluation of Elasticsearch for data lake metadata man-
agement at the GWDG, it was found out that rally [1], Elastic’s official benchmarker, does
not scale well enough to simulate a realistic High-Performance Computing (HPC) work-
load. This report developed an MPI-based, HPC-native benchmarking framework for eval-
uating Elasticsearchs performance. A distributed, I/O-optimized ingestion benchmarker
was designed and implemented, which measures both the latency and write throughput
when ingesting large corpora of documents. Furthermore, a distributed query bench-
marker was designed, which allows for custom scenarios using a newly developed, JSON-
based Domain Specific Language (DSL) embedding the Elastcisearch Search API query
language. All syntax is conceptually similar to rally, which makes porting those battle-
tested benchmarks trivial.

Additionally, an MPI-based, zero-configuration, stateful workflow to automatically
create and (re-)spawn an Elasticsearch cluster in a dynamic SLURM environment. By
dynamically patching the Elasticsearch configuration used in the Singularity containers
with the new hostnames assigned by SLURM, the cluster becomes hardware-independent
and can easily be reused in future jobs. Lastly, a full end-to-end benchmarking workflow
was designed.

The benchmarker was tested on the Emmy HPC cluster using 3 nodes. For this,
Elastic’s nyc_taxis benchmark track was successfully ported and extended with further
scenarios. It can be seen that the benchmark successfully records the expected scaling
behaviour when increasing the number of load generators per cluster node.

In conclusion, the benchmarker successfully provides a large-scale alternative to the
canonical rally benchmarker, allowing further research in HPC-native, high-throughput
use case benchmarking for data lake applications.

i

Statement on the usage of ChatGPT and similar tools
in the context of examinations

In this work I have used ChatGPT or a similar AI-system as follows:

□ Not at all

□ In brainstorming

□ In the creation of the outline

□ To create individual passages, altogether to the extent of 0% of the whole text

□ For proofreading

✓□ Other, namely: Github Copilot

I assure that I have stated all uses in full.
Missing or incorrect information will be considered as an attempt to cheat.

ii

Contents

List of Tables v

List of Figures v

List of Listings v

List of Abbreviations vi

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and Contributions . 1
1.3 Structure . 2

2 Background 2
2.1 Elasticsearch . 2

3 Related Work 2

4 Methodology and Design 3
4.1 Dynamic Cluster Creation Based on MPI Communicator 3
4.2 Distributed Ingestion Benchmarker . 5
4.3 Distributed Query Benchmarker . 7

4.3.1 Test Mode . 9
4.4 Benchmark Design . 9

4.4.1 High-Level Benchmark Workflow 9
4.4.2 Corpus and Query Design . 10

5 Test Run and Analysis 11
5.1 Setup . 11
5.2 Ingestion . 11
5.3 Queries . 12

6 Challenges 13

7 Conclusion 15
7.1 Future Work . 15

References 16

A Format Specifications A1
A.1 Ingest Benchmarker Static Index Specification A1
A.2 Ingest Benchmarker Cached Offsets . A2
A.3 Query Benchmarker Input Format . A3
A.4 Query Benchmarker Output Format . A4

iii

B CLI interfaces A5
B.1 Ingest Benchmarker . A5
B.2 Query Benchmarker . A6

C Example Generated Elasticsearch Config A7

D NYC taxis example document A8

iv

List of Tables

List of Figures
1 Results showing wall clock time (a) (maximum execution time) and CPU

time (b) (sum of all execution times) for different ppn. 12
2 Scaling range queries along the BULK request size (a) (number of docu-

ments) and along the sleep between requests (b) 12
3 An example of a fat tree. The leafs are nodes, and the intermediate nodes

are routers. The higher the router, the more throughput it gets to provide
to not limit the throughput by the higher degree nodes. 14

List of Listings
1 Static index specified for the NYC taxis benchmark (Truncated for readablity) A1
2 Cached offsets of a injestion run (25k docs, 3 MPI worker, unminified) . . . A2
3 Structure of the Query Benchmarker JSON based DSL A3
4 Structure of the Query Benchmarker results A4
5 CLI interaface of the Ingest Benchmarker A5
6 CLI interaface of the Query Benchmarker A6
7 Autogenerated example config for Elasticsearch cluster node (reformatted) A7
8 Example document of the NYC taxis corpus (unminified) A8

v

List of Abbreviations
API Application Programming Interface

CLI Command Line Interface

DSL Domain Specific Language

HPC High-Performance Computing

JSON JavaScript Object Notation

MPI Message Passing Interface

NDJSON Newline Delimited JSON

NIC Network Interface Card

SLURM Simple Linux Utility for Resource Management

vi

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

1 Introduction
1.1 Motivation

In the space of HPC, a significant trend from more compute-intensive tasks to more data-
intensive tasks is taking place. This change necessitates better data-management tooling
such as data lakes or data warehouses. Given that HPC computes on raw data, data lakes
are a more natural fit. Efficient metadata management requires a great metadata store
as well as support for full-text searches.

In this report, the viability of Elasticsearch1 for HPC load is being evaluated. Elastic-
search benefits from many years of tooling development, making it a more pragmatic
choice than building an own application around full-text search engines like Apache
Lucene2 or Tantivy3.

While elastic provides rally4, an in-house benchmark suite used for performance re-
gression testing [2], after rigorous internal testing it was found out that thespian5, its
internal actor framework, did not scale up to more than 60 nodes, which was not suf-
ficient for previous large-scale stress testing. Thus, for this report a new benchmarking
framework was designed, using reliable HPC native technologies such as Message Passing
Interface (MPI).

In addition, the data lake related use cases at the GWDG include spawning Elastic-
search instances on-demand. For this dynamic deployment, a containerized Elasticsearch
cluster based on the underlying Simple Linux Utility for Resource Management (SLURM)6

and MPI are needed. It should auto-configure itself, in order to be IP-agnostic.

1.2 Goals and Contributions

The goals of this report are twofold: First, providing and implementing a stateful archi-
tecture to dynamically spawn and respawn an Elasticsearch cluster without any previous
manual configuration. Second, design a highly-scalable, HPC-native, distributed Elastic-
search benchmarking framework for both ingestion and querying performance.

To achieve these goals, the following contributions were made:

• Design and implementation of a zero-configuration workflow to spawn a rootless,
containerized Elasticsearch cluster of arbitrary size within a SLURM-allocated MPI
environment.

• Design and implementation of a highly scalable, distributed benchmarker for inges-
tion performance

• Design and implementation of a highly scalable, distributed benchmarker for query
performance with custom benchmark scenarios using a JavaScript Object Notation
(JSON)-based DSL.

1https://www.elastic.co/elasticsearch
2https://lucene.apache.org/
3https://github.com/quickwit-oss/tantivy
4https://github.com/elastic/rally
5https://thespianpy.com/doc/
6https://slurm.schedmd.com/documentation.html

Section 1 Lars Quentin 1

https://www.elastic.co/elasticsearch
https://lucene.apache.org/
https://github.com/quickwit-oss/tantivy
https://github.com/elastic/rally
https://thespianpy.com/doc/
https://slurm.schedmd.com/documentation.html

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

• Benchmark a dynamically spawned Elasticsearch cluster on HPC using a canonical
dataset common in existing literature.

1.3 Structure

This report is structured as follows: In section 2, Elasticsearch, the full-text search engine
and NoSQL database used, is introduced. After that, section 3 covers the related work
starting with classical load generation before focussing on the literature around Elastic-
search benchmarking. In section 4, the methodology and design of all components are
covered. First, it covers the design and internal workflow of the aforementioned clus-
ter spawning mechanism. Then, it covers both the ingestion and query benchmarkers.
Lastly, it focuses on the benchmark design by showing the steps required to perform the
benchmarks and the reasoning behind the corpus and query design used in this specific
benchmark. Lastly, in section 5 the results of the benchmark are shown, before describing
the open problems and challenges in Chapter 6. Concluding in Chapter 7, the results are
summarized and possible future work is shown.

2 Background
2.1 Elasticsearch

Elasticsearch is a distributed search engine initially developed in 2010. Since it stores its
data in a document model, it can also be seen as a NoSQL database. The full-text search
internally relies on the Apache Lucene library. It is mainly used for its full-text fuzzy
search capabilities and its JSON-based REST interface. It is used by many large websites
such as Wikipedia7, Netflix, Stackoverflow, and LinkedIn.

In Elasticsearch, a collection of documents are stored in an index. Documents are
equivalent to, and can be sent in the form of, JSON objects. They can be nested. Each
index has a schema, which is a type mapping for each of the key-value pairs contained in
the index8. This mapping can either be statically preconfigured or dynamically guessed
at ingestion time. The index data can be queried using Elasticsearchs own DSL, again
relying on JSON and REST as the foundational technology.

In 2021, due to a license change from Apache 2.0 to a more permissive license,
OpenSearch was created as an Elasticsearch fork, which is maintained by several compa-
nies such as AWS.

3 Related Work
While the topic of Elasticsearch benchmarking is more sparsely covered, a lot of previous
work around general HTTP API benchmarking exists. The most used load generator is
Apache JMeter [3], a sophisticated graphical load tester that supports many protocols
such as HTTP(S), SOAP, or LDAP. Only relying on the Command Line Interface (CLI)

7Wikipedia also used Lucene beforehand.
8Akin to a SQL database definition.

Section 3 Lars Quentin 2

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

interface, wrk [4] provides a simpler popular alternative. For a more scriptable alterna-
tive, the Javascript-based Grafana k6 [5] gained a lot of popularity over recent years.

For benchmarking Elasticsearch, the main tool is the aforementioned rally [1], a mi-
crobenchmarking framework developed by Elastic. While it can be run on a single node,
it also supports distributed benchmarking through the Thespian actor system.

Different benchmarking scenarios are defined as so-called tracks. Every track contains
one or more corpora, containing Newline Delimited JSON (NDJSON) objects as docu-
ments. All tracks are available on GitHub [6]. Each track contains many operations such
as ingestion or specific queries, which are then structured into a challenge’s schedule in a
fork-join model. This means that Rally can be extended without editing the source code.

The rally framework is actively used in literature for benchmarking Elasticsearch clus-
ters [7] [8] [9]. As mentioned in the introduction, it was not a viable choice for this paper
due to the underlying actor framework not scaling into more than 128 nodes in previous
experiments.

Furthermore, most of the benchmark comparisons between NoSQL databases such
as tsbs [10] are done by database vendors themselves, resulting in conflicting financial
interests.

4 Methodology and Design
The Methodology and Design section is split into four parts: First, the autoconfigured
Elasticsearch cluster spawner is presented. After that, the next two subsections cover the
distributed ingestion and query benchmarker respectively, including underlying reasoning
as well as some technical details. Lastly, the overall benchmark design used for this report
is discussed, focusing mainly on the high-level benchmark workflow as well as the corpus
and query design.

4.1 Dynamic Cluster Creation Based on MPI Communicator

This section presents an automated approach to configuring and spawning a multi-node
Elasticsearch cluster based solely on the MPI environment set up by SLURM. It dynam-
ically fetches the different hosts, i.e. it is not required to know the hostnames or IPs
beforehand, making it easily embeddable in any kind of job system. The cluster is very
portable since it is using Singularity [11] containers as an Elasticsearch host. Any cluster
size larger or equal to two nodes is supported. The code can be found on GitHub [12].

Furthermore, it supports statefulness, which means that the same cluster can be re-
spawned on other nodes9 without requiring a re-ingest, i.e. keeping the complete cluster
state and configuration. Due to the aforementioned containerization, this also works while
changing both the hardware and IP addresses. The only limitation is that it only supports
one Elasticsearch node per host OS. This is by design, as we use hostname-based resolution
instead of IP-based resolution to be agnostic to the Network Interface Card (NIC) used10.

This automatic containerization has the big advantage that it can be embedded into
any kind of job pipeline. While most web services require a continuously running search
engine, it is common in HPC that applications are spawned on demand only when needed

9With the same cluster size.
10Being NIC agnostic implies that it supports both ethernet and InfiniBand.

Section 4 Lars Quentin 3

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

and torn down once the computation is performed. More importantly, it allows for Elastic-
search to be implicitly spawned as a dependency for other, more cloud-native applications
running in HPC.

The high-level idea is as follows: For discovery and information communication, MPI
is used. Furthermore, based on the world size, the number of master eligible nodes is de-
cided11. After that, each node creates a config and runtime environment for itself. Lastly,
each process spawns its container using its newly generated config.

For better portability and reproducibility, the cluster generator uses Singularity con-
tainers internally12. The container is based on the official Ubuntu 22.04 docker image13,
only adding packages for debugging and maintenance. Elasticsearch itself is not part of
the image and is completely bind-mounted in; there are multiple reasons for this: First,
unlike docker, Singularity containers are always immutable, so the program state itself has
to always be bind-mounted in. Furthermore, Elasticsearch expects to be the owner of its
folders. If Elasticsearch is not the folder owner, it disables multiple features such as inter-
nal auto-configuration. Since Singularity is rootless, the correct uid for the folders can’t
be enforced. Therefore, the most straightforward and stable solution is bind-mounting it
in.

The workflow has the following steps:

• First, check if the Elasticsearch index data from the last run can be reused. This is
the case if the number of nodes stayed the same. If not, create a new Elasticsearch
into a temporary directory.

• MPI_GATHER a list of tuples (rank, hostname) into the root rank 0.

• For each node, the root creates/updates the config; the other nodes are waiting.
Note that through updating the config instead of creating a new one the cluster
stays intact, which is how the statefulness is implemented. An example config can
be found in the appendix.

• Lastly, each rank starts the immutable singularity container with the new config
and previously created Elasticsearch mounted in.

11If N ≤ 3 then 1 master eligible node, otherwise 3 master eligible nodes. Note that only one master
is active at a time. An odd number was chosen to prevent a split brain.

12Note that, due to Elasticsearch JDK problems, Singularity has to be started with --cleanenv.
Therefore environment variables get ignored within the container.

13https://hub.docker.com/_/ubuntu

Section 4 Lars Quentin 4

https://hub.docker.com/_/ubuntu

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

4.2 Distributed Ingestion Benchmarker

This section introduces the distributed, MPI-based ingestion benchmarker [13]. It is used
both for providing a fast way to ingest a JSON-formatted corpus into an Elasticsearch
cluster as well as measuring the performance of write operations in throughput as well as
latency. The benchmarker itself is very I/O optimized, using so-called offset caching for
reducing redundant operations between workers. It supports statically typed index defi-
nitions, configurable bulk size as well as a configurable number of shards. It supports all
corpora designed for Elastic’s rally benchmarker by using NDJSON as an input format14.
The CLI interface with all its features can be found in the appendix.

The benchmark can be split into three phases:

Setup: Note that those steps are done by only the root/rank 0.

• Create the offset cache.

The offset cache is needed for the following reason: To do the ingestion in a dis-
tributed manner, the bulk ingest load has to be split evenly between all nodes. This
is done by giving each rank (approximately) the same number of documents in the
corpus file. Note that NDJSON implies one document per line. For N nodes and L
lines, each rank i gets the range [

i

N
· L, i+ 1

N
· L

)
But this requires that the number of lines have to be known, which implies reading
the whole file at least once. After the range has been computed, the file has to
be read a second time to find the starting byte to seek to. This is needed since
the JSON documents have a variadic size in bytes; one can’t just compute the i-th
document through doc_size · i.
The corpora are often huge; the nyc_taxis corpus used in this report is around
75GB in size with over 160,000,000 documents. This would create a lot of I/O load
if every node would do this every time the benchmark runs.

So instead, the root computes all offsets once and saves it into a .offsets.json
file, which can be reused in future benchmarks, removing all redundant work. This
optimization is possible whenever the number of load generators stays the same.

On a technical level, this is done as follows:

1. Iteration 1: Count the number of lines.

2. Compute the starting and ending line for each rank using the total number of
lines.

3. Iteration 2: Find the byte offsets for each rank.

4. Save everything into a .offsets.json file.

5. Validate that, starting at the current byte, the line of each rank has a complete
JSON document.

14Another big advantage of NDJSON is that downscaling the benchmark is trivial using
head -n <NEW_NUMBER> original.json > downscaled.json

Section 4 Lars Quentin 5

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

An example .offsets.json file can be found in the appendix.

• Create an (empty) Elasticsearch index. It is created using the following settings:

– Strict type mappings for reproducibility. Elasticsearch allows for dynamic
schemas, which means that the datatype is interpreted when the first data ar-
rives. When using a distributed benchmarker, it is not clear which rank sends
the first bulk ingest request. Thus, indeterministic or unexpected behaviour
could occur. So instead, using Elasticsearchs own type system15 and DSL16 the
type mapping can be defined statically and used by the benchmarker.

– The number of shards is explicitly set, defaulting to one shard per Elasticsearch
node. This means that every node gets data while still keeping the sharding
complexity as trivial as possible. This is configurable via the CLI interface.

– Explicitly disable caching through requests.cache.enable17

At the end of the setup phase, the offsets are sent to all workers using MPI_BROADCAST.

Benchmark: This work is done by each rank including the root.

• Each rank computes to which Elasticsearch node it should send the data.

It is assumed that the user understands that this distribution is a problem that
has to be solved. Thus, it is expected that the MPI world size is a multiple of
the number of Elasticsearch cluster nodes18. With that in mind, the distribution
is calculated by rank % N with % being the modulo operation and N the number of
Elasticsearch cluster nodes

• Next, seek to the starting byte based on the rank.

• Create and send the requests blockingly, as fast as possible. Track each response
time.

The requests are sent in bulk using Elasticsearches Bulk API19 with a default bulk
size of 1000 documents, configurable via CLI parameter.

The measurements are done with utmost care to be as precise as possible and min-
imize the overhead created by the benchmarker itself. Thus, the delta recorded
only measures the time directly before and after the HTTP request, removing the
query-building overhead.

• Once all data is sent, the workers wait at an MPI barrier for the other workers to
finish.

• In the end, all data is gathered at the root process.

Teardown: Once the data is gathered, the root dumps it into a JSON file.
15https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-types.html
16https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
17https://www.elastic.co/guide/en/elasticsearch/reference/current/

shard-request-cache.html
18It also works when this isn’t the case, although the distribution is less optimal.
19https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html

Section 4 Lars Quentin 6

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-types.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/shard-request-cache.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/shard-request-cache.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

4.3 Distributed Query Benchmarker

While the last section focused on the ingestion (write) performance, this section will
focus on benchmarking the query (read) performance of an Elasticsearch cluster [14]. The
benchmarker also generates its load in a distributed manner using the MPI environment
provided by SLURM. It measures the documents per second as well as the request latency
of a cluster when put under load. The benchmark is structured using a fork-join-like
model.

The distributed query benchmarker has the following features:

• Fully configurable by a DSL-like JSON standard; no hard-coded scenarios.

The DSL embeds the Elasticsearch query language internally, making it very acces-
sible to all Elasticsearch users. Furthermore, this allows for extending the bench-
marking scenarios without the need to edit the source code. Since the language is a
simplification of rally’s DSL, elastics official benchmarks can be ported easily. An
example of a ported rally benchmark can be found in the accompanying repository.

Also, an example input file using the custom DSL can be found in the appendix.

• Measuring raw performance by bypassing the cache20.

• Supporting a test mode for verifying the correctness of custom benchmarks.

• Parsing the Elasticsearch response instead of just relying on the HTTP response
like a normal HTTP benchmarker. This is done to count the number of returned
documents.

• Supporting multiple, alternating queries in a single fork-join task for creating a more
realistic load.

On a technical level, each benchmark starts with the following preparation.

• First, all CLI arguments and the benchmark description are parsed. The benchmark
description is written in the aforementioned, JSON-based custom DSL with the
Elasticsearch Search API Syntax embedded into it. An example query benchmark
description as well as the CLI interface structure of both benchmarkers can be found
in the appendix.

• After that, every rank calculates which Elasticsearch server it sends its load to. See
the ingest benchmarker section for a more detailed description of how this selection
algorithm works.

Once all ranks are ready, the actual benchmark starts. For each of the fully disjunct
benchmark steps, the following actions are performed:

• First, the root node, i.e. MPI rank 0, waits for the Elasticsearch cluster health21 to
be green while the other nodes wait at an MPI barrier, ready to benchmark. This is
done in case the data was just ingested or the cluster was just started on-demand.

20https://www.elastic.co/guide/en/elasticsearch/reference/current/
shard-request-cache.html#_enabling_and_disabling_caching_per_request

21https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-health.html

Section 4 Lars Quentin 7

https://www.elastic.co/guide/en/elasticsearch/reference/current/shard-request-cache.html#_enabling_and_disabling_caching_per_request
https://www.elastic.co/guide/en/elasticsearch/reference/current/shard-request-cache.html#_enabling_and_disabling_caching_per_request
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-health.html

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

• As mentioned above, each benchmark step can contain multiple queries, which will
then be executed in an alternating manner to simulate a more varied load on the
server. Since all ranks start executing the queries at the same time, all ranks might
be in sync, sending the exact same query at the same time, which would not be
a realistic load. To prevent this, each rank creates a random permutation of all
queries for this step.

• If the warmup time is set:

– Send the next query, and throw away the result. This is needed to get the caches
filled before starting the measurements; therefore reducing the variance of the
result data. The index is configured to not do any caching on an Elasticsearch
level, however, the OS will still do caching, both on a CPU L1/L2/L3 level as
well as I/O caching through the page and buffer cache.

– Sleep between results if a waiting time is configured.

• Once the warmup is done, the following steps are done until the configured execution
time is reached:

– Select the next query.

– Track the current time right before sending the request.

– Do the request containing the query against the search API endpoint. Note
that the cache is explicitly disabled, both on an index level and on a request
level22.

– Track the time right after the response was received, before processing the
result. This is done for two reasons: First, it minimizes the measurement
overhead created by the benchmarker itself and isolates the time Elasticsearch
needed for creating and sending the response. Second, it increases the likeli-
hood of our operation being atomic, i.e. that the OS scheduler will not preempt
the process by giving the CPU time to another process before the measurement
is finished.

– Next, it will process and record the result based on the HTTP response code.
If it was successful23, it will count the number of received documents and will
save a tuple (latency, docs count) for the current query and rank. If the
request is unsuccessful, it saves the HTTP code for the current query and rank.
Note that this all happens in Memory, no slow I/O is done to minimize the
benchmarker overhead.

– Lastly, sleep between results if a waiting time is configured.

Once all measurements are created, the results of all ranks get merged at the root
using MPI gather as well as some data transformation. The resulting output format can
be seen in the appendix. To finish the execution, the root dumps the JSON-formatted
results at a path specified via a CLI parameter.

22https://www.elastic.co/guide/en/elasticsearch/reference/current/
shard-request-cache.html#_enabling_and_disabling_caching_per_request

23i.e. a 2xx HTTP response code

Section 4 Lars Quentin 8

https://www.elastic.co/guide/en/elasticsearch/reference/current/shard-request-cache.html#_enabling_and_disabling_caching_per_request
https://www.elastic.co/guide/en/elasticsearch/reference/current/shard-request-cache.html#_enabling_and_disabling_caching_per_request

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

4.3.1 Test Mode

Designing a database benchmark is complicated; it should be very clear both what the
expected result is and whether the query actually produces that result. To verify the
correctness of a given benchmark, a test mode was developed. This test mode can be run
with --test-mode.

The purpose of the test mode is to give a short overview to check whether the raw
Elasticsearch responses contain the results expected. Therefore it is sufficient that the test
mode only runs on the root rank. The test mode itself is pretty trivial: It goes through
each benchmark step, runs each query once, verifies that the response code is successful,
and then prints the request input as well as the response output as prettified JSON into
the terminal for further manual inspection.

While designing several benchmarks, it helped finding broken queries generating empty
responses.

4.4 Benchmark Design

4.4.1 High-Level Benchmark Workflow

To create and run a benchmark, the following steps have to be done:

1. Choose a dataset or create a synthetic one. The dataset has to be formatted in the
NDJSON format, which is defined as one JSON object per line. Datasets for many
common Elasticsearch use cases can be found in Elastic’s rally-tracks repository [6].

2. Define the data type mappings for each corpus attribute using the Elasticsearch
index mapping syntax24. An example can be found in the repository.

3. Design the query document. This basically consists of embedding the Elasticsearch
search API queries into a bigger JSON structure defining the benchmark steps.
Note that the queries themselves do not have to be altered, thus they can also easily
be constructed using cURL. Since Elastics rally also uses the search API syntax,
their benchmarks can easily be ported. For each benchmark step, the warmup time,
execution time, and sleep time between each request can be defined optionally. The
query document format can be found in the appendix, and a ported benchmark
from rally can be found in the repository.

4. Spawn up the automatically configured Elasticsearch cluster using the MPI-based
cluster creator in a given SLURM environment using mpirun.

Note that Elasticsearch requires a non-standard Kernel parameter to be set, a
vm.max_map_count of at least 262144. This setting defines the maximum number of
memory map areas per process. This is needed because Elasticsearch accesses the
index data by mapping the files into memory using their so-called mmapfs25, based
on Lucenes MMapDirectory26.

24https://www.elastic.co/guide/en/elasticsearch/reference/current/properties.html
25https://www.elastic.co/guide/en/elasticsearch/reference/current/vm-max-map-count.

html
26https://lucene.apache.org/core/6_3_0/core/org/apache/lucene/store/MMapDirectory.

html

Section 4 Lars Quentin 9

https://www.elastic.co/guide/en/elasticsearch/reference/current/properties.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/vm-max-map-count.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/vm-max-map-count.html
https://lucene.apache.org/core/6_3_0/core/org/apache/lucene/store/MMapDirectory.html
https://lucene.apache.org/core/6_3_0/core/org/apache/lucene/store/MMapDirectory.html

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

5. Run the distributed ingest benchmarker with the previously created corpus and type
mapping using mpirun.

6. Run the distributed query benchmarker with the previously created query document
using mpirun.

7. Analyze all results. A Jupyter notebook in the repository can be used as a starting
point.

4.4.2 Corpus and Query Design

The benchmark created for this report is a port of rallys nyc_taxis track [15]. Its corpus
contains New York taxi data, more specifically all rides that have been performed in yel-
low taxis in New York in 2015. This data gets published every year by the NYC Taxi and
Limousine Commission and can be freely downloaded [16]. An example corpus document
can be found in the appendix.

This benchmark was chosen as it is one of the two rally benchmarks most often used
in literature, geonames, and nyc_taxis. In the literature, both of these benchmarks have
a specific purpose.

nyc_taxis is mainly used as a scaling test because of its big corpus size with over
165 million documents and comparatively big document size. The documents are very
numeric, which makes the data set great for benchmarking range queries and aggrega-
tions such as histograms. It can’t be used for thorough benchmarking of string-matching
capabilities.

geonames is mostly used as a regression test for various features. It has a very balanced
document structure, containing text, keywords, numbers, as well as geolocations. The
main advantage of geonames is the number of queries designed for it, including text
and keyword matching, several aggregations, scroll API, Elasticsearch’s expression and
painless scripting languages, and many more niche features of Elasticsearch.

Since the internal use case at the GWDG is mainly around fuzzy matching and range
queries running on large corpora in an HPC environment, the nyc_taxis track is a better
fit.

For the measurements done in this report, a full query benchmark was designed, loosely
based on the one provided by Elastic. Note that the main purpose of this benchmark is
to provide a starting point on how to design Elasticsearch queries for this benchmarker.

It contains the following benchmark steps:

• Simple, non-filtering match_all27 requests, with response sizes of 10, 100, 1000,
or 10000 documents. This is done to benchmark the base I/O performance and
response size scaling.

27https://www.elastic.co/guide/en/elasticsearch/reference/current/
query-dsl-match-all-query.html

Section 4 Lars Quentin 10

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-all-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-all-query.html

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

• Next a range query28, again scaling up the number of documents between each step.
The range query is the exact same one also used by Rally.

• After that, it alternates the range and match_all query in the same benchmark
step. This is done to simulate a more varied and realistic load.

• In order to measure the latency change given less load, the match_all query gets
executed with 0.02, 0.05, 0.1, 0.2, 0.5, and 1-second sleep between each request.

• Lastly, multiple histogram aggregations, either with automatic or manual bucketing,
are being executed, all designed by Elastic. This allows us to measure aggregation
performance while also being comparable to other benchmarks made with Rally.

5 Test Run and Analysis
In this section, an example benchmark is shown in order to confirm that works as ex-
pected as well as show how this benchmarker could possibly be used in a real scientific
benchmarking scenario. This section will be split into three parts: The setup, ingestion
results, and query results. Note that all raw data as well as the analysis scripts can be
found in the accompanying GitHub repository.

5.1 Setup

The aforementioned ported nyc_taxis benchmark was run on the Emmy29 supercomputer
using 3 dedicated standard96 partition compute nodes to create a 3 node Elasticsearch
cluster. The nodes communicated using an ethernet interconnect instead of Intel Omni-
Path, although both were tested to work properly. The Singularity container is based
on the Ubuntu 22.04 dockerhub image. It runs Elasticsearch 8.11.0, which shipps its
own OpenJDK 21.0.1. Elasticsearch indices were configured to not cache at all. The
benchmarker used Python 3.9 as well as OpenMPI 4.1.

Note that for these benchmarks a slightly modified version of this benchmarker was
used. The main difference was that the benchmarker provided in this report does not
support to run the cluster spawner and benchmarker on the same server since both expect
to use MPI_COMM_WORLD. But for the purposes of this example benchmark, in order to save
computing resources, it is okay to execute the load generators and to-be-benchmarked
process on the same machine.

5.2 Ingestion

For the ingestion benchmarks, the 3 node cluster was ingested with different processes per
node (ppn); A ppn of 4 means that for 3 Elasticsearch nodes 3 · 4 = 12 load generators
were spawned. Note that the load generators choose a random Elasticsearch instance
to send the data to. This is good, because it imitates the network overhead of a real
benchmark.

Here are the results:
28https://www.elastic.co/guide/en/elasticsearch/reference/current/

query-dsl-range-query.html
29https://gwdg.de/hpc/systems/emmy/

Section 5 Lars Quentin 11

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-range-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-range-query.html
https://gwdg.de/hpc/systems/emmy/

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

(a) (b)

Figure 1: Results showing wall clock time (a) (maximum execution time) and CPU time
(b) (sum of all execution times) for different ppn.

One can see that, as expected, by increasing the amount of load generators the wall
clock time to ingest a given set of data decreases, although it unfortunately scales sub-
linear. But when looking at the CPU time, which is the sum of all wall clock times, the
ingestion becomes more inefficient with more load generators. Note that they logically
would have stayed the same if the efficiency in (a) increased linarly with regard to the ppn.
This is most likely due to the increased load on Elasticsearch, since the load generators
themselves do not communicate between each other while ingesting, thus no additional
MPI overhead should be measured.

5.3 Queries

The query benchmarks were also done for different ppn, here are some results based on
the aforementioned range queries:

(a) (b)

Figure 2: Scaling range queries along the BULK request size (a) (number of documents)
and along the sleep between requests (b)

The first plot shows scaling along the BULK request size. This means increasing the
number of documents sent per request. It was measured in powers of 10, i.e. 10, 100,

Section 5 Lars Quentin 12

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

1000, 10000 documents per request. The results are expected, since increasing the number
of documents per request decreases the percentage wise network overhead, thus resulting
in higher throughput. Furthermore it can be seen that it does not scale linearly30 which
shows that the Elasticsearch actually slows down from the increased overall load. More
processes per node increase the throughput, implying that the server can still handle the
number of processes well.

The second plot does the same query, but with increased waiting/sleep times off each
load generator between the requests. Fascinatingly, it can be seen that a sleep time of
0.02s increases the throughput significantly over not sleeping at all. One can also see
that sleepint 0.2s does approximately create the same throughput as not sleeping at al! A
possible guess is that the server was overloaded, resulting in dropped TCP packages, which
then results in reduction of sending due to additive increase, multiplicative decrease. But
after that, can be seen that increasing the sleep time decreases the overhead, which is to
be expected since the nodes were not completely utilized while benchmarking.

6 Challenges
The design and implementation of the benchmarker still leaves two challenges open, both
of which are not trivial to solve optimally.

Response Size: If not specified otherwise, the Elasticsearch Search API will only return
the 10 elements, even if more matching documents exist in the index. This number can
be increased by the size parameter31.

Unfortunately, due to performance reasons, this number can not be increased indefi-
nitely. The maximum count of documents returnable by Elasticsearch is limited by the
index.max_result_window32 config setting, which defaults to 10000 documents. This
means that only the first 10000 elements can be benchmarked. Theoretically, one can off-
set the result using the from parameter, practically Elasticsearch enforces the condition
that from+size <= index.max_window.

There are at least three solutions to this problem:

1. Design the benchmarks around this constraint. For nyc_taxis, this is what was
done by Elastic; this is also the approach in most of the literature.

2. Use the search_after parameter for the search API33. This parameter takes the
sort offset from a previous query and computes the new result starting from that
offset.

This approach has several big disadvantages. First, it blows up the complexity of
both the benchmark design as well as the benchmarker logic by requiring statefulness

30Note that both axis are logarithmic.
31https://www.elastic.co/guide/en/elasticsearch/reference/current/

paginate-search-results.html
32https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules.html
33https://www.elastic.co/guide/en/elasticsearch/reference/current/

paginate-search-results.html#search-after

Section 6 Lars Quentin 13

https://www.elastic.co/guide/en/elasticsearch/reference/current/paginate-search-results.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/paginate-search-results.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/paginate-search-results.html#search-after
https://www.elastic.co/guide/en/elasticsearch/reference/current/paginate-search-results.html#search-after

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

between requests. The requests can’t be done in a random manner since they
always have to keep the offsets from previous responses. Additionally, it would
make the benchmarking results harder to understand, as it may not be obvious
how many requests were needed to get a specific amount of documents. Lastly, the
search_after parameter does not increase the complexity of each request, since it
performs the same amount of work, except that it first seeks to a specific byte offset.

3. Use this Scroll API34. This has the same problem as the search_after API as it
requires keeping the state of a previous search query. Furthermore, according to
Elastics documentation, its usage is discouraged for deep pagination of over 10000
elements.

Load Generator to Cluster Node Mapping As described in the methodology, each
load generator sends its request to the same Elasticsearch cluster node every time. To
provide roughly even load distribution, the node number is calculated by MPI_rank % N
with % being the modulo operation and N the number of Elasticsearch cluster nodes.

This node selection algorithm could result in a suboptimal usage of the network topol-
ogy, resulting in longer package round trip times, for example requiring many hops in a
fat tree structure.

Figure 3: An example of a fat tree. The leafs are nodes, and the intermediate nodes are
routers. The higher the router, the more throughput it gets to provide to not limit the
throughput by the higher degree nodes.

A possible solution would be to compute the optimal mapping every time before start-
ing the benchmark. This could be done by measuring the round trip time between any
pair of load generator and cluster node several times and using its mean or median av-
erage. Note that the lowest number can’t always be used since all load generators have
to be divided up onto the cluster nodes equally. Instead, this could be solved as a linear

34https://www.elastic.co/guide/en/elasticsearch/reference/current/scroll-api.html

Section 6 Lars Quentin 14

https://www.elastic.co/guide/en/elasticsearch/reference/current/scroll-api.html

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

program35.

Unfortunately, this solution would overall worsen the benchmark results since, based
on the current overall network usage, the routing could change between benchmarks,
making the configuration indeterministic and thus the results unreproducible.

7 Conclusion
For the completion of this report, a zero-configuration workflow for automatically spawn-
ing and re-spawning a stateful Elasticsearch cluster was developed, allowing for job-based
on-demand metadata processing as part of sophisticated job pipelines. Furthermore,
a complete distributed benchmarking workflow was developed, including an ingestion
benchmarker and a query benchmarker, allowing for large-scale benchmarks in HPC en-
vironments. An example benchmark commonly used in the literature was successfully
ported, executed, and analyzed. The code is fully accessible via GitHub, allowing it to be
used as a platform for future performance research.

7.1 Future Work

As part of the data lake work at the GWDG, this benchmarker will be used to evaluate
different encryption strategies based on their performance penalty. In general, most of
the future work will be in the usage of the benchmarker for doing large-scale benchmarks,
not in the extension of the benchmarker itself.

As described in the Challenges, the primary open problem is figuring out how to
handle response sizes larger than index.max_result_window through the methods above.
Furthermore, currently it is not supported to run both the spawner and load generators on
the same nodes, since the spawner is blocking the MPI environment. Lastly, a collection
of common benchmarks that can be used for this benchmarker has to still be created over
time.

35After some discussion with Johann Carl Meyer, who is a fellow student, I learned that this can be
solved even more efficiently if seen as an optimal transport problem.

Section 7 Lars Quentin 15

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

References
[1] elastic/rally: Macrobenchmarking framework for Elasticsearch. url: https://github.

com/elastic/rally (visited on 01/18/2024).

[2] Elasticsearch Benchmarks. url: https://elasticsearch-benchmarks.elastic.
co/# (visited on 01/17/2024).

[3] Apache JMeter - Apache JMeter™. url: https://jmeter.apache.org/ (visited
on 01/18/2024).

[4] Will Glozer. wg/wrk. original-date: 2012-03-20T11:12:28Z. Jan. 18, 2024. url: https:
//github.com/wg/wrk (visited on 01/18/2024).

[5] Load testing for engineering teams | Grafana k6. url: https://k6.io (visited on
01/18/2024).

[6] elastic/rally-tracks. original-date: 2016-06-06T13:16:40Z. Jan. 18, 2024. url: https:
//github.com/elastic/rally-tracks (visited on 01/18/2024).

[7] Hårek Haugerud, Mohamad Sobhie, and Anis Yazidi. “Tuning of Elasticsearch Con-
figuration: Parameter Optimization Through Simultaneous Perturbation Stochastic
Approximation”. In: Frontiers in Big Data 5 (2022). issn: 2624-909X. url: https:
//www.frontiersin.org/articles/10.3389/fdata.2022.686416 (visited on
01/18/2024).

[8] Wataru Takase et al. A solution for secure use of Kibana and Elasticsearch in multi-
user environment. June 30, 2017. arXiv: 1706.10040[cs]. url: http://arxiv.
org/abs/1706.10040 (visited on 01/18/2024).

[9] Hui Dou, Pengfei Chen, and Zibin Zheng. “Hdconfigor: Automatically Tuning High
Dimensional Configuration Parameters for Log Search Engines”. In: IEEE Access 8
(2020), pp. 80638–80653. issn: 2169-3536. doi: 10.1109/ACCESS.2020.2990735.
url: https://ieeexplore.ieee.org/document/9079492/ (visited on 01/18/2024).

[10] timescale/tsbs. original-date: 2018-08-08T14:30:28Z. Jan. 17, 2024. url: https :
//github.com/timescale/tsbs (visited on 01/18/2024).

[11] Gregory M. Kurtzer et al. sylabs/singularity: SingularityCE 4.1.0 Release Candidate
1. Version v4.1.0-rc.1. Jan. 12, 2024. doi: 10.5281/zenodo.10495969. url: https:
//zenodo.org/records/10495969 (visited on 01/18/2024).

[12] elasticsearch_benchmarker_mpi/containers/start_es_cluster.py at main · lquenti/elasticsearch_benchmarker_mpi.
url: https://github.com/lquenti/elasticsearch_benchmarker_mpi/blob/
main/containers/start_es_cluster.py (visited on 05/10/2024).

[13] elasticsearch_benchmarker_mpi/benchmarker/ingestor.py at main · lquenti/elasticsearch_benchmarker_mpi.
url: https://github.com/lquenti/elasticsearch_benchmarker_mpi/blob/
main/benchmarker/ingestor.py (visited on 05/10/2024).

[14] elasticsearch_benchmarker_mpi/benchmarker/queryer.py at main · lquenti/elasticsearch_benchmarker_mpi.
url: https://github.com/lquenti/elasticsearch_benchmarker_mpi/blob/
main/benchmarker/queryer.py (visited on 05/10/2024).

[15] rally-tracks/nyc_taxis at master · elastic/rally-tracks. GitHub. url: https : / /
github . com / elastic / rally - tracks / tree / master / nyc _ taxis (visited on
02/15/2024).

Section 7 Lars Quentin 16

https://github.com/elastic/rally
https://github.com/elastic/rally
https://elasticsearch-benchmarks.elastic.co/#
https://elasticsearch-benchmarks.elastic.co/#
https://jmeter.apache.org/
https://github.com/wg/wrk
https://github.com/wg/wrk
https://k6.io
https://github.com/elastic/rally-tracks
https://github.com/elastic/rally-tracks
https://www.frontiersin.org/articles/10.3389/fdata.2022.686416
https://www.frontiersin.org/articles/10.3389/fdata.2022.686416
https://arxiv.org/abs/1706.10040 [cs]
http://arxiv.org/abs/1706.10040
http://arxiv.org/abs/1706.10040
https://doi.org/10.1109/ACCESS.2020.2990735
https://ieeexplore.ieee.org/document/9079492/
https://github.com/timescale/tsbs
https://github.com/timescale/tsbs
https://doi.org/10.5281/zenodo.10495969
https://zenodo.org/records/10495969
https://zenodo.org/records/10495969
https://github.com/lquenti/elasticsearch_benchmarker_mpi/blob/main/containers/start_es_cluster.py
https://github.com/lquenti/elasticsearch_benchmarker_mpi/blob/main/containers/start_es_cluster.py
https://github.com/lquenti/elasticsearch_benchmarker_mpi/blob/main/benchmarker/ingestor.py
https://github.com/lquenti/elasticsearch_benchmarker_mpi/blob/main/benchmarker/ingestor.py
https://github.com/lquenti/elasticsearch_benchmarker_mpi/blob/main/benchmarker/queryer.py
https://github.com/lquenti/elasticsearch_benchmarker_mpi/blob/main/benchmarker/queryer.py
https://github.com/elastic/rally-tracks/tree/master/nyc_taxis
https://github.com/elastic/rally-tracks/tree/master/nyc_taxis

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

[16] TLC Trip Record Data - TLC. url: https://www.nyc.gov/site/tlc/about/tlc-
trip-record-data.page (visited on 02/15/2024).

Section Lars Quentin 17

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

A Format Specifications
A.1 Ingest Benchmarker Static Index Specification

1 {
2 "properties": {
3 "surcharge": {
4 "scaling_factor": 100,
5 "type": "scaled_float"
6 },
7 "dropoff_datetime": {
8 "type": "date",
9 "format": "yyyy-MM-dd HH:mm:ss"

10 },
11 "trip_type": {
12 "type": "keyword"
13 },
14 "mta_tax": {
15 "scaling_factor": 100,
16 "type": "scaled_float"
17 },
18 [...]
19 "trip_distance": {
20 "scaling_factor": 100,
21 "type": "scaled_float"
22 },
23 "pickup_location": {
24 "type": "geo_point"
25 }
26 }
27 }
28

Listing 1: Static index specified for the NYC taxis benchmark (Truncated for readablity)

Section A Lars Quentin A1

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

A.2 Ingest Benchmarker Cached Offsets

1 {
2 "number_of_workers":3,
3 "offsets":[
4 {
5 "rank":0,
6 "starting_line":0,
7 "starting_byte":0,
8 "number_of_lines":8333
9 },

10 {
11 "rank":1,
12 "starting_line":8333,
13 "starting_byte":4157901,
14 "number_of_lines":8333
15 },
16 {
17 "rank":2,
18 "starting_line":16666,
19 "starting_byte":8315734,
20 "number_of_lines":null
21 }
22]
23 }

Listing 2: Cached offsets of a injestion run (25k docs, 3 MPI worker, unminified)

Section A Lars Quentin A2

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

A.3 Query Benchmarker Input Format

1 [
2 {
3 "search_queries": [
4 {
5 /* everything in here just gets sent to ES */
6 "body": {
7 /* The raw ES query sent to the server */
8 }
9 }

10],
11 "warmup_time_secs": 30, /* optional */
12 "execution_time_secs": 120, /* optional */
13 },
14 {
15 "search_queries": [
16 {
17 "body": {
18 /* The first of two queries sent iteratively
19 (random permutation) */
20 }
21 },
22 {
23 "body": {
24 /* The second of two queries sent iteratively
25 (random permutation) */
26 }
27 }
28],
29 "warmup_time_secs": 30, /* optional */
30 "execution_time_secs": 180, /* optional */
31 "sleep_between_requests_secs": 0.25 /* optional */
32 }
33]
34

Listing 3: Structure of the Query Benchmarker JSON based DSL

Section A Lars Quentin A3

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

A.4 Query Benchmarker Output Format

1 [
2 {
3 "query_result": [
4 {
5 "body": {
6 /* The inside of the first "query" in the input */
7 },
8 "responses": [
9 [

10 /* load generator 1 */
11 {"latency": 0.35, "docs": 2500},
12 {"latency": 0.32, "docs": 2500},
13 {"error_code": 501}
14 {"latency": 0.33, "docs": 2500},
15],
16 [
17 /* load generator 2 */
18 {"latency": 0.35, "docs": 2500},
19 {"latency": 0.32, "docs": 2500},
20 {"error_code": 501}
21 {"latency": 0.33, "docs": 2500},
22]
23]
24 },
25 {
26 "body": {
27 /* The inside of the second "query" in the input */
28 },
29 "responses": [
30 /* same as above */
31]
32 }
33]
34 /* same as input */
35 "warmup_time_secs": 30,
36 "execution_time_secs": 120,
37 "sleep_between_requests_secs": 0.25
38 },
39 {
40 /* ... */
41 }
42]

Listing 4: Structure of the Query Benchmarker results

Section B Lars Quentin A4

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

B CLI interfaces
B.1 Ingest Benchmarker

1 usage: ingestor.py [-h] --data DATA --index INDEX --hosts HOSTS
2 [--bulksize BULKSIZE] [--indexname INDEXNAME]
3 [--shards SHARDS]
4

5 Load ingestor for Elasticsearch.
6

7 options:
8 -h, --help show this help message and exit
9 --data DATA Path to the JSON data to be ingested

10 --index INDEX Path to the Metadata Description to be ingested
11 --hosts HOSTS Comma separated hosts. Example: "--hosts
12 host1:9200,10.0.0.2:9200,localhost:9200"
13 --bulksize BULKSIZE Number of documents sent per request (defaults to
14 1000) (Optional)
15 --indexname INDEXNAME
16 Name of the elasticsearch index created for the
17 specified data.
18 --shards SHARDS Number of shards, defaults to 1 shard per host
19

Listing 5: CLI interaface of the Ingest Benchmarker

Section B Lars Quentin A5

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

B.2 Query Benchmarker

1 usage: queryer.py [-h] --hosts HOSTS [--indexname INDEXNAME] --output OUTPUT
2 [--warmup WARMUP] [--execution EXECUTION] [--sleep SLEEP]
3 [--testmode] [--allowbad]
4 json_file
5

6 Elasticsearch Query Benchmarker.
7

8 positional arguments:
9 json_file Path to the JSON file containing the query

10 configurations.
11

12 options:
13 -h, --help show this help message and exit
14 --hosts HOSTS Comma separated hosts. Example: "--hosts
15 host1:9200,10.0.0.2:9200,localhost:9200"
16 --indexname INDEXNAME
17 Name of the Elasticsearch index to query.
18 --output OUTPUT Filepath for the output results.
19 --warmup WARMUP Default warmup time in seconds (defaults to 60).
20 --execution EXECUTION
21 Default execution time in seconds (defaults to 300).
22 --sleep SLEEP How long to wait until the next request (defaults to
23 0.0).
24 --testmode Run the script in test mode. Executes only on root,
25 once per query.
26 --allowbad Allow yellow and red clusters (useful for specific
27 debugging)
28

Listing 6: CLI interaface of the Query Benchmarker

Section C Lars Quentin A6

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

C Example Generated Elasticsearch Con-
fig

1 cluster.name: securemetadata
2 node.name: securemetadata4
3 node.roles: ["master", "data"]
4 network.host: 0.0.0.0
5 cluster.initial_master_nodes: [securemetadata0]
6 # Expects hostnames to be DNS resolvable
7 discovery.seed_hosts: [
8 "hostname_of_rank_0",
9 "hostname_of_rank_1",

10 "hostname_of_rank_2"
11]
12 xpack.security.enabled: false

Listing 7: Autogenerated example config for Elasticsearch cluster node (reformatted)

Section D Lars Quentin A7

MPI-based Creation and Benchmarking of a Dynamic Elasticsearch Cluster

D NYC taxis example document

1 {
2 "total_amount": 6.3,
3 "improvement_surcharge": 0.3,
4 "pickup_location": [
5 -73.92259216308594,
6 40.7545280456543
7],
8 "pickup_datetime": "2015-01-01 00:34:42",
9 "trip_type": "1",

10 "dropoff_datetime": "2015-01-01 00:38:34",
11 "rate_code_id": "1",
12 "tolls_amount": 0.0,
13 "dropoff_location": [
14 -73.91363525390625,
15 40.76552200317383
16],
17 "passenger_count": 1,
18 "fare_amount": 5.0,
19 "extra": 0.5,
20 "trip_distance": 0.88,
21 "tip_amount": 0.0,
22 "store_and_fwd_flag": "N",
23 "payment_type": "2",
24 "mta_tax": 0.5,
25 "vendor_id": "2"
26 }

Listing 8: Example document of the NYC taxis corpus (unminified)

Section D Lars Quentin A8

	Contents
	List of Tables
	List of Figures
	List of Listings
	List of Abbreviations
	Introduction
	Motivation
	Goals and Contributions
	Structure

	Background
	Elasticsearch

	Related Work
	Methodology and Design
	Dynamic Cluster Creation Based on MPI Communicator
	Distributed Ingestion Benchmarker
	Distributed Query Benchmarker
	Test Mode

	Benchmark Design
	High-Level Benchmark Workflow
	Corpus and Query Design

	Test Run and Analysis
	Setup
	Ingestion
	Queries

	Challenges
	Conclusion
	Future Work

	References
	Format Specifications
	Ingest Benchmarker Static Index Specification
	Ingest Benchmarker Cached Offsets
	Query Benchmarker Input Format
	Query Benchmarker Output Format

	CLI interfaces
	Ingest Benchmarker
	Query Benchmarker

	Example Generated Elasticsearch Config
	NYC taxis example document

