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Abstract

This report examines the suitability of the Rust programming language for the field of HPC
programming. In order to achieve this, the Marching Cubes algorithm is implemented using
both the C programming language and Rust, creating a foundation for a comparative analysis
of Rust. Additionally, the performance and scalability implications of Rust are investigated
by employing benchmarks. The results demonstrate that Rust is a valuable alternative to C in
terms of maintainability, language features and performance. However, limitations in the par-
allel computing capabilities of Rust have been identified that indicate performance challenges
when utilizing Rust in parallel computing scenarios.

Repository

The source code of the implementations, as well as the source of this document and the ac-
companying presentations, can be accessed using the following URL:

https://gitlab.gwdg.de/h.seeliger/rust-for-hpc-programming
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Rust for HPC Programming

1 Introduction

1.1 Motivation

Writing safe software presents a major challenge in software development. The term safe
refers to several software quality characteristics like faultlessness and resistance, defining how
robust the software is against bugs and possible vulnerabilities [1]. Costing the U.S. economy
approximately $1.81 trillion in 2022, operational failures and their prevention have global sig-
nificance [2].

This importance of software safety also applies to the context of HPC. Given the nature of
HPC, long-running software processes are used in many cases. If a software failure occurs
at any time of the process, the process usually has to be restarted, meaning a loss of time
and resources. Besides crashes, failures may also be logical, possibly resulting in malformed
results.

While the necessity for safe software in HPC seems clear, the realization is often not. Lan-
guages like C or C++, characterized by offering the programmer full control and performance
at the expense of safety e.g. in terms of memory [3], dominate the current field of HPC pro-
gramming languages. Rust, on the other hand, is a programming language that sets perfor-
mance and reliability in equal parts as its main goal [4], but is currently less-known than e.g. C
and C++ [5]. An examination of using this programming language in the context of HPC may
yield insights regarding the language’s strengths and its suitability for the HPC field, tackling
some of the current challenges of HPC programming.

1.2 Objectives

The main goal of this work is analyzing and evaluating the Rust programming language with
regard to its use and suitability for the HPC environment. To achieve this, the same HPC-
centered practical problem is solved using both the Rust programming language and C, which
is one of the most widely used languages in HPC [6]. A comparison of both implementations
as well as the examination of the Rust implementation is used to identify and elaborate the
capabilities, advantages and value of Rust for the usage in HPC. This comparison covers both
qualitative and quantitative aspects, including benchmarking of both implementations.

1.3 Structure

After explaining some general foundations for this work, the approach to achieving the objec-
tives described earlier is presented. This is followed by a short explanation of both implemen-
tations, highlighting important key aspects. Subsequently, qualitative findings and benchmark
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Rust for HPC Programming

results are presented, followed by an interpretation and discussion of these to achieve this
work’s main research goal. Finally, the report is concluded by summarizing the findings and
presenting an outlook towards potential future work.

1 Introduction Henrik Jonathan Seeliger 2
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2 Background

This section briefly explains various concepts on which the report is based. After introducing
the Rust programming language, the Marching Cubes algorithm is described shortly which
serves as the foundation for the subsequent practical examinations.

2.1 Rust

After starting as a personal project of a Mozilla employee, the Rust programming language
had its first stable release in 2015, making it a relatively young programming language [7]. As
of 2024, it is widely adopted by leading software companies like Amazon [8] or Microsoft [9]
and one of the most popular programming languages in the world [5].

Rust’s main goal is to enable reliable and efficient software while enhancing developer pro-
ductivity. It combines imperative and functional programming paradigms, while maintaining
a systems-oriented approach that allows for high-level programming [4]. Performance and re-
liability in terms of e.g. memory safety are ensured by an unique memory management model,
providing a manual but implicit approach without runtime overhead. These language features
are accompanied by various tools designed to improve productivity, including a verbose com-
piler and a package management system with approximately 154,000 available packages as of
August 2024 [10].

Considering the general requirements for HPC software, the described characteristics sug-
gest Rust to be a possibly valuable addition to the field of HPC programming.

2.2 Marching Cubes Algorithm

The aim of the Marching Cubes algorithm proposed by W. E. Lorensen and H. E. Cline is
to generate a surface mesh from a three-dimensional scalar field. Practical use cases include
generating three-dimensional models from CT images, which are typically available in the
form of layered two-dimensional images [11]. Besides a three-dimensional scalar field, a user-
defined iso value must be given, defining the level of the generated surface. For example, this
could be a specific CT number that indicates the presence of bones for generating a mesh of
the bone structure.

The Marching Cubes algorithm works by dividing the three-dimensional scalar field into
a three-dimensional grid. Using two adjacent grid slices, four vertices from each slice are de-
fined as a cube. Figure 1 illustrates this construction of one cube. Given the user-defined iso
value and the scalar values at the vertices’ positions, each vertex is identified as being above
or below the surface to be generated. This information is then used to identify one of 14 pos-
sible cube configurations (256 in total, reduced using symmetries) which determine how the

2 Background Henrik Jonathan Seeliger 3
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surface intersects with the inspected cube. In accordance with established practices for mesh
representations [12], a specific number of triangles represents this intersecting surface. This
process is repeated by “marching” over the grid while collecting all identified triangles, which
is the origin of the algorithm’s name. Ultimately, these triangles represent the generated sur-
face.

Using a divide-and-conquer approach, the Marching Cubes algorithm can be parallelized
effectively. As the algorithm operates on individual “cubes” with individual results, the grid
can be partitioned and distributed among multiple processes. The resulting triangles can then
be collected to create the overall resulting surface. This characteristic of the algorithm makes
it an appropriate foundation for the practical examinations in this work, as parallel and dis-
tributed computing are important aspects of programming in the field of HPC. Besides this,
the algorithm’s input can be scaled and varied with minimal effort, enabling realistic work-
loads such as CT image processing as well as artifical workloads with different input sizes for
scalability analysis.

𝑣0
𝑣3

𝑣1
𝑣2

𝑣4
𝑣7

𝑣5
𝑣6

Slice 𝑘

Slice 𝑘 + 1

Pixel

𝑖

𝑗

𝑘

Figure 1: Cube construction in the Marching Cubes algorithm.
Adapted from [11]
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3 Methodology

This section describes the approach and methods employed in this work for evaluating the
Rust programming language regarding its suitability for HPC programming.

3.1 Study Design

To identify characteristics, advantages and capabilities of Rust in the context of HPC, the
Marching Cubes algorithm as described in Section 2.2 is implemented using this language.
Furthermore, the same problem is implemented using the C programming language. This en-
ables insights regarding Rust itself, but also differences, advantages and disadvantages com-
pared to C, which is currently one of the most widely used languages in HPC programming
[6]. Besides its popularity, C has also been chosen for the comparison because Rust and C have
a variety of design goals in common like systems-orientation or efficiency but use different
approaches for achieving them [4]. Given the importance of parallel computing in HPC pro-
gramming, both a sequential and a parallel implementation for each language are developed,
respectively. This allows a more comprehensive examination regarding the parallelizability
and scalability of Rust.

After implementing the Marching Cubes algorithm using Rust as well as C, the code and
characteristics of the resulting software can be compared. First, qualitative aspects are com-
pared, like available language constructs and semantics regarding memory safety. During this,
distinctive features of Rust may be observed and identified. This includes further research re-
garding Rust’s ecosystem with focus on HPC-related technology. Then, both implementations
can be compared quantitatively regarding their performance and scalability by employing
benchmarks.

It is important to clarify that the objective of this comparison is not to identify an uni-
versally superior programming language. Caution is required when comparing programming
languages as many factors influence aspects of software like performance or reliability. In-
stead, this work focuses on the suitability of Rust for HPC programming with a comparison
as a method of gaining insights, while many other factors may be considered in a comparison
of programming languages.

3.2 Benchmarking

To quantify differences between the implementations and examine Rust’s performance, a
benchmarking process is employed. This process involves measuring and comparing runtimes
of both the sequential and parallel implementations for each language. The results can then be
used to identify performance characteristics of Rust. Benchmarking the parallel implementa-
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tions may also give findings regarding the scalability of software written in Rust. To bench-
mark the parallel implementations and their scalability, the runtime of the programs given
a specific number of processors is measured. Further information regarding used hardware,
exact benchmark parameters, and implementation details can be found in Section 4.3.
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4 Implementation

As previously described, implementing the Marching Cubes algorithm represents the foun-
dation for this work’s findings. This section describes key aspects of the different implemen-
tations.

4.1 Common Approach

Both the C and the Rust implementations use the same general approach to realize the March-
ing Cubes algorithm.

First, the input data is read from a common file format. Being a three-dimensional scalar
field, a file format designed for matrix data is appropriate. The NumPy file format [13] has
been chosen to represent input data to be read by the implementations, as it is flexible as well
as widely adapted in various software ecosystems. This also enables efficient preparation of
real and artificial test input data using the Julia programming language and its ecosystem.
To test the implementations, real CT images from [14] are used, as visualized in Section 5. A
parser and reader of NumPy files serve as the first part of the implementations and form the
foundation of the algorithm’s implementation.

After executing the Marching Cubes algorithm on the input data, a set of triangles repre-
senting the surface mesh is yielded. To visualize and verify the results, the mesh is written
to disk using the STL file format [12]. This file format employs a straightforward approach to
representing meshes using triangles, making it well suited for this application.

The implementation of the algorithm itself only differs slightly across the languages and
their respective sequential and parallel versions. The parallel versions are derived from their
respective sequential versions with minimal divergence for clarity and brevity.

4.1.1 Sequential
After reading parameters from the command line, e.g. the iso value of the surface to generate,
and the input data into memory, the implementations stick closely to the procedure described
in the algorithm’s original publication [11]. For each position in the grid, eight neighboring
vertices and their values are captured as a cube structure. This cube’s configuration is then
used to look up in a table which edges are intersected by the surface. Using the resulting edges
and the vertice’s positions and values, triangles representing the surface mesh inside the cube
can be looked up in another table and be interpolated. Both the table of possibly intersected
edges and possible triangle configurations can be pre-calculated and are taken from [15]. Us-
ing a form of collection, the triangles resulting from each cube are collected while iterating.
After iterating over the entire grid, the triangle collection represents the result and can be
written to disk using the aforementioned STL format.

4 Implementation Henrik Jonathan Seeliger 7
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4.1.2 Parallel
The Marching Cubes algorithm utilizes a divide-and-conquer approach, which allows for an
uncomplicated parallelization. The parallelization strategy used with both programming lan-
guages is identical. As every “cube” is processed individually and does only depend on its own
position with its respective field values, the grid can be divided in equally large partitions that
can be distributed among processes. Each process then computes the mesh triangles for its
partition. Afterwards, the triangles from all partitions can be collected into one result set.

This approach makes the main loop, which iterates over the grid, the central point of im-
plementing parallelization. Both parallel versions employ parallelization by converting the
sequential main loop into a parallel loop, but use different techniques and libraries. These
techniques and libraries are one of the main key differences, described in the following section.

4.2 Key Differences

By employing different programming languages with different semantics, design decisions
and features, some key difference exist between the algorithm implementations using Rust
and C. Both versions are designed to be comparable, but some differences are necessary.

The most significant difference between both implementations is that the Rust implemen-
tation is designed for the examination of Rust: This implementation uses a variety of Rust’s
features to support a comprehensive exploration of the language. It prioritizes memory safety,
a crucial aspect of the language as described later on, and utilizes various high-level con-
structs, while the C language does not employ special safeties regarding e.g. memory safety.
This decision may have implications regarding performance which could be reflected in the
comparison results.

An implementation detail connected to this aspect is the memory layout of the input data.
In the C implementation, the input data, which is a three-dimensional array representing the
scalar field, is loaded into memory without modification or typing. Read operations on the
data are then performed using pointer arithmetic. In the Rust implementation, however, this
is not possible without overriding specific compiler rules, which ensure the memory safety
of Rust programs. Instead, the ndarray library [16] is used for safe and compliant data access,
which the Rust compiler permits.

As described in Section 4.1.2, both implementations parallelize the algorithm by paralel-
lizing the main loop iterating over the input data. However, both versions utilize different
libraries and language constructs to achieve this. The C implementation uses the OpenMP API
[17] and its compiler directives, while the Rust implementation utilizes Rust’s language con-
structs and a specific library, called Rayon [18]. This library is designed for data parallelism in
conjunction with the language features of Rust, enabling the parallelization of existing loops
by employing the iterator pattern. As a considerable proportion of loops in Rust are based on
the iterator pattern [4], this approach is well integrated with Rust and significantly simplifies
the parallelization of loops.

4 Implementation Henrik Jonathan Seeliger 8



Rust for HPC Programming

4.3 Benchmarks

In order to quantify and compare the performance characteristics of the implementations, a
benchmarking process has been developed for each language. This process measures the wall-
clock time of the implementations, given fixed input data. Additionally, to analyze the scaling
behavior, the parallel versions are measured with a varying number of processors. After mea-
suring the wall-clock time given the number of processors, the speedup 𝑠 can be calculated as

𝑠 =
𝑡(1)
𝑡(𝑁)

where 𝑡(1) denotes the runtime of the respective parallel implementation using one processor
and 𝑡(𝑁) denotes the runtime using 𝑁  processors [19]. As the input data size remains con-
stant throughout this process, only the strong scaling behavior is examined in this work.

Both languages use the same overall process for benchmarking, with only minor differences
in the implementation. For C, the benchmarking logic is self-developed due to the unavail-
ability of suitable libraries. Rust, however, utilizes the Criterion.rs library for implementing
benchmarks with minimal effort [20]. After loading the input data, the algorithm is executed
20 times, with the elapsed time for each run recorded and stored in a machine-readable format.
In the case of the parallel implementations, this process is repeated for a specified range of
processor counts. The times are then averaged over each processor configuration.

Figure 2: Different layers of the artificial input data for the benchmarks.

To enable controllable benchmarks, artificially generated input data is used. In this work,
sampling from a three-dimensional coherent noise field is employed as generation method.
Value cubic noise is selected as noise the type, as implemented in the CoherentNoise library
[21]. Figure 2 provides a visual representation of the generated and utilized input data. For the
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purpose of the benchmarks, dimensions of 500 by 500 by 500 have been selected, which are
comparable to the dimensions of real CT data, as shown in Section 5.1.4.

The benchmarks were conducted on an HPC system provided by the Gesellschaft für
wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG). As no distributed computing
is implemented or involved, one node was allocated. Table B.1 shows this node’s specificia-
tions. The results of the benchmarks are described in the following section, while implemen-
tation details can be reviewed in the repository referenced on page I.
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5 Results and Discussion

This section presents the observations and findings of this work, which were obtained through
the previously described methodology. These findings are then employed to analyze the suit-
ability of Rust in the context of HPC programming in order to answer this work’s research
question.

5.1 Qualitative Results

To assess the Rust programming language for use in HPC programming, qualitative character-
istics of Rust have to be described and analyzed. This analysis is based on the implementations,
with illustrative listings taken directly from the source code. Then, possible advantages and
disadvantages emerging from these aspects can be stated and explained, thus contributing to
an overall evaluation.

5.1.1 Syntax
Rust features a syntax similar to the syntax of C. Like C and numerous other widely used pro-
gramming languages, it focuses on imperative programming, but it also incorporates elements
of functional programming, which are described further in Section 5.1.2. Listing 1 shows one
main function from the Rust implementation¹ to illustrate the syntax of Rust.

¹Multiple main functions exist because each implementation has multiple versions (sequential and parallel).

 1 // [...]
 2
 3 fn main() -> Result<(), Box<dyn Error>> {
 4     let conf = Configuration::parse();
 5
 6     let data: NpyArray<NpyLeI2, Ix3> = NpyArray::read(conf.input)?;
 7     let result = marching_cubes(&data, conf.iso_value);
 8
 9     result.write_to_file(conf.output)?;
10
11     println!("Success!");
12
13     Ok(())
14 }

Listing 1: Main function of the sequential Rust implementation.

The syntax of Rust, as demonstrated in Listing 1, shares similarities with that of C. This as-
pect means that Rust may be more accessible for developers with prior experience in C and
other languages with C-like syntax, which currently represent the majority of the most widely
known programming languages [5].
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Furthermore, the Rust syntax features some additional functionality when compared to C,
like string interpolation or optional typing. Lines 4 and 6 of Listing 1 show examples for op-
tional typing: In line 4, the type of the variable can be omitted because the compiler is able
to infer its type. In line 6, however, the compiler is not, meaning the type of result has to be
stated explicitly as NpyArray<NpyLeI2, Ix3>.

In the context of general programming, the accessibility and features of Rust’s syntax may
prove advantegous. Its accessibility allows more developers to read, learn and maintain soft-
ware written in Rust, which can lead to increased productivity. Its advanced features may
also support this increased productivity. When combined, they can also positively impact the
maintainability of software written in Rust. However, as the advanced features of Rust’s syn-
tax increase its complexity, it could possibly hurt the accessibility for developers with less
experience in Rust or programming in general. These advantages and disadvantages can be
directly transferred to the utilization of Rust in the context of HPC.

5.1.2 Semantics
Rust offers a variety of semantic features distinguishing it from other languages, particularly
from C. One such feature is its type system, which differs considerably from that of C.

Both languages employ a static type system, meaning the types of variables have to be de-
clared at compile time. However, in contrast to Rust, the type system of C is not as strong
and flexible. One example for this is the possibility and common practice of using void point-
ers, which demonstrates the weak typing of C [22]. Besides that, C provides only a limited
number of possibilities for defining and using custom types, like structures and enumerations,
without support for features like type hierarchies. Rust, on the other side, promotes a strong
type system with advanced capabilities. One illustrative example is the support for generics,
as demonstrated in Listing 2. Combined with other features such as traits, which can be com-
pared to interfaces in other programming languages, Rust’s type system is not only robust,
but also extensible and maintainable.

 1 pub struct NpyArray<T, D>
 2 where
 3     D: Dimension,
 4     T: NpyType,
 5 {
 6     pub version_major: u8,
 7     pub version_minor: u8,
 8     pub header: Header<T>,
 9     pub data: Array<T::Inner, D>,
10 }
11
12 fn main() {
13     let data: NpyArray<NpyLeI2, Ix3>
14         = NpyArray::read(conf.input);
15 }

Listing 2: Example of a custom struct using generics in Rust.

The aspect of robustness is not exclusive to the type system of Rust. One characteristic of Rust
that differentiates it from the majority of programming languages is its memory management
design. In C, memory is managed explicitly which requires the developer to manually allocate
and release memory as necessary. While providing the developer full control, it compromises

5 Results and Discussion Henrik Jonathan Seeliger 12



Rust for HPC Programming

the language’s memory safety and therefore robustness [23]. An alternative to explicit mem-
ory management is garbage collection, as employed by, for example, the Java programming
langage [22]. However, this approach can frequently result in a decline of performance be-
cause of introduced runtime overhead [24]. This is why Rust employs a memory management
strategy that differs from those used in other programming languages, referred to as the own-
ership system [4]. This system defines a set of rules that are enforced by the compiler to ensure
the memory safety of Rust programs. These rules are checked at compile time, minimizing
runtime overhead and performance penalties for memory safety in theory [4]. Using this ap-
proach, Rust can enhance the robustness of software by preventing runtime errors at compile
time, while simultaneously ensuring optimal efficiency and performance.

The ownership system and generics serve as examples of Rust’s zero-cost abstractions [4],
offering high-level functionality without compromising performance. An additional example
of these abstractions can be observed in the iteration methods of Rust. In Rust, iteration is
primarily realized through the use of the iterator pattern. This pattern employs abstraction
to provide high-level constructs, thereby achieving high maintainability and readability with
minimal performance overhead [4]. In addition to offering loops similiar to loops provided by
C, Rust promotes the use of iterator-based constructs and methods, as observable, for exam-
ple, in reactive programming [25]. Listing 3 shows the identical iteration logic implemented
in Rust, employing either a for loop or iterator operations. Besides maintainability, this also
enables the uncomplicated modification and enhancement of iterations. The library Rayon
utilizes this approach to incorporate data parallelism into iterator-based loops [18].

 1 let mut intersection_index = 0;
 2 for (i, value) in cube.values.iter().enumerate() {
 3   if (*value as f32) < iso_value {
 4     intersection_index |= 1 << i;
 5   }
 6 }

 1 let intersection_index = cube
 2   .values
 3   .iter()
 4   .enumerate()
 5   .filter(|(_, v)| v < iso_value)
 6   .map(|(i, _)| i)
 7   .reduce(|acc, e| acc | (1 << e));

Listing 3: Iterations implemented in Rust using for loop and iterator operations.

In the field of HPC, maintainability, robustness and performance are crucial. Maintainable
software enables developers to modify and transfer it with ease, while the robustness of
sofware ensures that it yields correct results in a shorter time, as unexpected exceptions can
be minimized. Furthermore, performance represents a fundamental aspect of HPC, influenc-
ing a variety of dimensions, including wall-clock time and the potential workload of simula-
tions. As shown, the semantic features of Rust support and promote these aspects in software,
thereby representing valuable contributions to the field of HPC programming with significant
potential. However, these features introduce a certain degree of complexity to the language
and require developers to learn and adopt them. The ownership system, for example, presents
many developers a challenge to learn initially [4]. The additional complexity of Rust’s seman-
tics represent a relevant factor to consider before a possible utilization in HPC programming.

5.1.3 Ecosystem
Dependency management presents a challenge to many programming languages, especially to
traditional languages with vast and diverse ecosystems, such as C [26]. This includes obtain-
ing, configuring and building required libraries. For C, a variety of approaches and tools exist
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that address this issue. These, however, vary significantly across projects utilizing C, creating
challenges regarding compatibility and complexity of dependency management.

To mitigate these issues, Rust provides an unified approach to tooling and dependency man-
agement. Besides an official online registry for Rust libraries, crates.io, Rust offers a custom
build tool with support for dependency management, called cargo. As of August 2024, crates.io
contains approximately 154,000 packages [10]. This approach allows for unified and uncom-
plicated dependency and build management. By decreasing the necessary effort of obtaining,
configuring and building required libraries, the ecosystem of Rust increases the developer
productivity significantly when compared to the ecosystem of C.

In the context of HPC, however, the selection of relevant libraries must also be considered.
Software for HPC commonly benefits from the paradigms of parallel and distributed comput-
ing. For C, various libraries and APIs supporting an implementation of these paradigms exist,
such as OpenMP for parallel computing and MPI for distributed computing [17], [27]. In this
work, the OpenMP API was employed to achieve data parallelism in the C implementation,
a technique commonly utilized in HPC programming. In the Rust ecosystem, the Rayon li-
brary is widely employed for implementing data parallelism [18]. This library offers various
high-level constructs for parallel computing with a strong focus on declarative and reactive
programming patterns. Listing C.1 and Listing C.2 show the parallelization of the parallel im-
plementations’ main loops using OpenMP and Rayon, respectively. By extending the iterator
pattern which represents the common technique for iteration in Rust, Rayon provides an un-
complicated way of parallelizing loops, therefore minimizing the effort for implementing data
parallelism. This enhances the developer productivity and the maintainability of the software,
particularly in comparison to the approach of OpenMP and C, which relies on compiler-level
pragma directives. This results in written code being verbose and intricate when compared to
Rayon, as illustrated by Listings C.1 and C.2.

The distributed programming capabilities of Rust are not covered in this work. Besides
scopes limitations, the selection of libraries for distributed computing in Rust is relatively lim-
ited. Although bindings to external libraries such as MPI exist [28], a native approach imple-
mented in Rust and using its strengths could be a valuable addition to the Rust HPC ecosystem.
Some approaches implemented in Rust exist, but are unmaintained as of August 2024, such as
the Constellation framework [29].

5.1.4 Functional Results
As described in Section 3, the objective of the implementations is to generate a three-dimen-
sional mesh from given input data. Given the same input data, all implementations yield the
same result, indicating their functional correctness. Furthermore, the results can be visualized
to support this assumption. Figure A.1 visualizes exemplary CT data provided by [14] and its
corresponding result. Figure A.2 shows the resulting meshes as produced by the benchmarks.

5.2 Quantitative Results

This section compares and analyzes the results of the benchmarks. These benchmarks aim to
provide a basis for evaluating the performance of Rust, particularly in comparison to C. As
described in Section 4.3, artificially generated data is utilized as input data for the benchmarks.
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5.2.1 Sequential Implementation

Implementation Mean Standard Deviation Range

C 2.009 s 0.009 1.992 s – 2.021 s

Rust 1.748 s 0.001 1.746 s – 1.751 s

Table 1: Measured runtimes of the sequential implementations.
Presented values are approximations.

Table 1 presents the measured wall-clock times of the sequential algorithm implementations.
The difference in runtime demonstrates that the Rust implementation outperforms the C im-
plementation in terms of speed. The minimal standard deviation indicates a high degree of
consistency among the measurements, which supports this conclusion.

C is widely regarded as a programming language that enables highly performant software
[30]. Given that the Rust implementation exhibits a faster runtime than the C implementation,
it can be concluded that Rust also enables the development of software with a notable degree
of performance. Furthermore, the difference suggests that Rust may yield even more perfor-
mant software than C. In the context of HPC programming, where performance is a crucial
consideration, this renders Rust a viable alternative to C where runtime is a significant factor.

5.2.2 Parallel Implementation

Figure 3: Runtimes of the parallel implementations depending on processor count.

Figure 3 depicts the wall-clock time of the parallel implementations in relation to the number
of available processors. Both implementations exhibit a high runtime when a single processor
is utilized, which decreases as the number of processors increases. However, the runtime of
the Rust implementation is approximately four times higher than that of C across all processor
configurations.

As detailed in Section 4.3, the speedup of both implementations can be calculated using the
runtimes of the parallel implementations. Figure 4 illustrates the speedup for each implemen-
tation with 𝑡(1) being the runtime of the parallel implementations using one processor.
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Figure 4: Speedup of the parallel implementations.

For C, the implementation approximates a linear speedup. The Rust implementation also
demonstrates a speedup that increases with the number of processors. However, the increase
is overall lower and more unstable, with a decrease observed from ten to eleven processors.

The findings regarding the parallel implementations are inconsistent with those regarding
the sequential implementations. When the sequential versions are considered, the Rust imple-
mentation exhibits higher performance, whereas C demonstrates higher performance in the
parallel versions. Additionally, the sequential Rust implementation is only outperformed by
its parallel implementation from a processor count of six onwards. The runtime difference be-
tween the sequential versions indicates that a parallel Rust implementation may outperform
both the sequential implementation and the parallel C implementation. However, the obser-
vations disprove this hypothesis.

This leads to the assumption that the parallelization of the sequential Rust version results
in a decreased performance, whereas the parallel C version demonstrates the anticipated re-
sults for parallelization. Based on these results, Rust may prove to be less suitable for parallel
computing scenarios in HPC programming when compared to C.

5.2.3 Performance Analysis
The results of the benchmarks indicate that Rust enables performant software in comparison
to C when utilizing a sequential programming approach. However, when considering the pre-
sented observations, parallelizing Rust code may lead to drawbacks in performance, which
also implies a decreased scalability. As performance and scalability represent important as-
pects in the context of HPC programming, Rust may therefore be seen as a suitable alternative
in sequential programming scenarios, but not in parallel scenarios.

This conclusion must be regarded with a certain degree of caution as the performance and
scaling behavior of software are complex and may be influenced by a number of factors. Conse-
quently, an intense analysis of the implemetations is necessary to understand the performance
implications of the programming languages. The inconsistencies and shortcomings observed
in the parallel implementations emphasize the importance of such an analysis. Therefore, both
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implementations and their versions have to be examined to isolate potential causes. Despite
deploying a range of techniques to accomplish this, no concrete evidence for bottlenecks could
be obtained. One employed methodology is the analysis of flame graphs, with illustrative ex-
amples shown in Figure A.3 and Figure A.4. As can be observed, flame graphs can be complex,
which presents a challenge when attempting to analyze them.

Nevertheless, a number of hypotheses can be proposed to explain the observed inconsisten-
cies. One possible explanation for the runtime difference of the parallel versions is that Rayon
and its parallelization logic differ from that of OpenMP fundamentally [17], [18]. Additionally,
the application and introduction of Rayon in the Rust implementation may be inefficient, re-
sulting in the observed runtime overhead. The memory layout of the input data may also be
a significant factor, as they exhibit fundamental differences as described in Section 4.

Without clarification of these hypotheses and identification of concrete reasons for the
benchmark inconsistencies, it is not possible to make an accurate evaluation of Rust’s suit-
ability for use in parallel programming scenarios, and consequently, in HPC. This represents
one of this work’s limitations.

5.3 Limitations

While this work provides insights into the suitability of Rust for HPC programing, it does not
address all relevant aspects of the topic.

As previously stated, the analysis of the implementations providing the foundation for this
work lacks sufficient depth. This causes the findings and implications of the benchmark results
to be less expressive and universally applicable. Additionally, no evidence for the observed
performance losses of the parallel Rust implementation has been identified, which could pro-
vide valuable insights for parallel and HPC programming using Rust.

A further limitation of this work is the number of factors employed in the comparative
analysis of Rust and C. By considering additional factors beyond those described previously,
a more comprehensive examination of Rust can be conducted, potentially providing more in-
sights regarding Rust in the context of HPC.

The implementations developed in this work only employ parallel computing. As ditributed
computing represents another important paradigm in the field of HPC, an evaluation of Rust’s
distributed computing capabilities could significantly enhance an evaluation of Rust for HPC
programming.
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6 Conclusion

6.1 Summary

In this work, the Rust programming language is examined regarding a potential application
in the field of HPC programming. After implementing the same algorithm both using C and
Rust, a foundation for the identification of Rust’s capabilities, advantages and disadvantages is
established through a comparative analysis with one of the most widely utilized programming
languages in HPC.

The results demonstrate that Rust offers high maintainability and developer productivity,
particularly in comparison to C. Furthermore, it enables the development of software with
optimal performance characteristics. However, when parallel programming is employed, per-
formance drawbacks can be observed, raising concerns about the suitability of Rust in multi-
core environments and therefore in HPC. As the benchmarks and analysis methods employed
in this work have limitations in depth, this aspect may be examined in more detail in the future
to prove this assumption incorrect.

Upon summarizing these aspects of Rust, it can be concluded that while Rust represents a
suitable language for HPC programming, this suitability depends on certain factors, with the
experience of the developers and the necessity of parallel computing representing the deter-
mining aspects in this regard.

Besides this evaluation of Rust’s suitability in the context of HPC, this work presents a code
base for addressing a HPC-centered problem using Rust. The code base may serve as a foun-
dation for solving other problems in HPC using Rust, and may also establish a foundation for
future work in this research area.

6.2 Future Work

To enable a more comprehensive evaluation of Rust in the context of HPC, various aspects
not covered in this work may be examined. These could include a more detailed performance
analysis as well as additional benchmarking methods, such as examining the weak scaling be-
havior exhibited by software utilizing Rust. Furthermore, the suitability of Rust for distributed
computing may be investigated, potentially leading to new applications for Rust and enhanc-
ing its overall suitability in the field of HPC.
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Appendix

A Figures

Figure A.1: Different CT slices and the resulting mesh.
Data from [14]

Figure A.2: Different slices of the benchmark data and the resulting mesh.
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Figure A.3: Flamegraph of the sequential Rust version.
Generated using [31]

Figure A.4: Excerpt from the flamegraph of the parallel Rust version.
Generated using [31]

B Tables

Specification Value

OS Rocky Linux 8

CPUs 2

CPU cores (total) 64

CPU type Zen3 EPYC 7513

RAM 497,810 MB

Table B.1: Specifications of the node utilized for the benchmarks.
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C Code Samples

 1 // [...]
 2 #pragma omp parallel
 3 {
 4
 5   struct triangle_list *process_results
 6     = triangle_list_create();
 7
 8   #pragma omp for nowait
 9   for (size_t k = 0; k < data->header->shape[2] - 1; k++) {
10     // [...]
11     struct triangle_list *new_triangles
12       = triangulate_cube(&cube, iso_value);
13
14     triangle_list_append_list(
15       process_results,
16       new_triangles
17     );
18   }
19
20   #pragma omp critical
21   triangle_list_append_list(
22     mesh->triangles,
23     process_results
24   );
25 }

Listing C.1: Parallel iteration in C using OpenMP.

 1 let triangles: Vec<Triangle>
 2   = Zip::from(indices(indices_shape))
 3       .into_par_iter()
 4       .flat_map(|((i, j, k),)| {
 5         // [...]
 6         triangulate_cube(&cube, iso_value)
 7       })
 8       .collect();

Listing C.2: Parallel iteration in Rust using Rayon.
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