
SH

∞

Seminar Report

GPU-Accelerated Simulation of
Phytoplankton Convection Using

Oceananigans.jl in Julia

Davide Mattioli

MatrNr: 28350066

Supervisor: Tino Meisel

Georg-August-Universität Göttingen
Institute of Computer Science

September 30, 2024

Abstract
This work aims to explore fluid dynamics simulation in Julia, focusing on an application of
GPU computing on a simulation regarding the mixing of phytoplankton by convection in
the ocean [TF11]. Fluid dynamics models used in oceanography and atmospheric sciences
are computationally intensive, as such GPUs have increasingly replaced CPUs as the main
computing source in this field due to their ability to parallelize complex calculations.
Existing ocean simulation libraries were written for CPU architectures facing limitations
in both speed and scalability when adapted to GPU-based systems.

To address this, the Oceananigans.jl library was developed as a GPU-optimized
tool boasting the Julia’s high-level syntax and Just-In-Time (JIT) compilation to achieve
both computational efficiency and flexibility. This report examines the application of
Oceananigans.jl to a C-Grid [LCL10] ocean circulation of plankton convection by sim-
ulating the interaction and fluid body movement happening in the ocean. It will also
evaluate the library’s performance on different grid sizes [Sil+23].

The proposed solution demonstrates how Oceananigans.jl efficiently simulates com-
plex oceanographic processes using highly customizable grids. making it suitable for large-
scale fluid simulations using Boussinesq equations [Kar12] and WENO schemes [Sil+24].
Performance benchmarks indicate a significant computational advantage of GPU-based
simulations over CPU-based ones, particularly for large grid sizes. The results confirm
that Oceananigans.jl provides an effective and scalable tool for modern fluid dynamics
simulations in scientific computing.

i

Declaration on the use of ChatGPT and comparable tools
in the context of examinations

In this work I have used ChatGPT or another AI as follows:

□ Not at all

✓□ During brainstorming

□ When creating the outline

✓□ To write individual passages, altogether to the extent of 5% of the entire text

□ For the development of software source texts

□ For optimizing or restructuring software source texts

✓□ For proofreading or optimizing

□ Further, namely: -

I hereby declare that I have stated all uses completely.
Missing or incorrect information will be considered as an attempt to cheat.

ii

Contents

List of Tables iv

List of Figures iv

List of Listings iv

List of Abbreviations v

1 Introduction 1

2 Oceananigans Hydrostatic Model 1
2.1 C-grid division . 2
2.2 Adams-Bashforth time-stepping algorithm 2
2.3 Weighted Essentially Non-Oscillatory (WENO) Scheme in Oceananigans . 2

3 Plankton Convection 3
3.1 Grid Setup . 4
3.2 Buoyancy Flux . 4
3.3 Plankton Growth . 5
3.4 Model Overview . 6
3.5 Initial Conditions . 7
3.6 Results . 8

4 Benchmarks 10

5 Conclusions 12

References 13

A Code samples A1

iii

List of Tables
1 CPU Simulation Results . 10
2 GPU Simulation Results . 10

List of Figures
1 Wave simulation with Boussinesq equations 1
2 Example of a C grid from [LCL10] . 2
3 Decay of Buoyancy flux over time . 5
4 Phytoplankton growth rate at different depth 6
5 first 4 simulation time snapshots . 8
6 last 4 simulation time snapshots . 9
7 Plot of the Performance difference between the CPU and GPU 11

List of Listings
1 Grid settings . 4

iv

List of Abbreviations
WENO The Weighted Essentially Non-Oscillatory

GPU Graphical processing unit

CPU Central processing unit

CFL Courant–Friedrichs–Lewy

CUDA Compute Unified Device Architecture

v

GPU-Accelerated Simulation of Phytoplankton Convection Using Oceananigans.jl in Julia

1 Introduction
In fluid dynamics the Boussinesq equations are used to model water waves, this is because
they can account for non-linearity, when waves interact and change shape in complex
ways, and frequency dispersion, when waves of different lengths travel at different speeds,
causing them to spread out over time. Simpler models like the shallow water equations
cannot handle such complexity, this reduces their accuracy in representing real-world wave
behaviours, particularly in more dynamic or variable conditions, as they oversimplify wave
interactions and treat all wave lengths as travelling at the same speed. They’re used in
coastal engineering and oceanography by simulating long waves and their interactions
with underwater landscapes, including wave refraction and shoaling [Fan+22].

Figure 1: Wave simulation with Boussinesq equations

This report will have a look at their application in ocean circulation models where
the Boussinesq equations can be used to simplify the differential equations by assuming
density is constant, except in the vertical buoyancy forces, which helps model ocean
currents.

These equations are computationally heavy due to their non-linear nature and the
need to account for wave frequency dispersion.Oceananigans.jl, an open-source library
written in Julia, unlike traditional ocean models that are ported from CPU-based code,
was built from scratch to run efficiently on GPUs. It leverages Julia’s high-level program-
ming features and Just-In-Time (JIT) compilation to achieve performance similar to C or
Fortran, while allowing for flexibility and ease of use [Sil+23].

2 Oceananigans Hydrostatic Model
Oceananigans.HydrostaticFreeSurfaceModel solves the hydrostatic Boussinesq equations
using the finite volume method, which by splitting the ocean into small grid cells makes
it able to be computed more efficiently by the GPU. It uses kernel fusion to optimizes
performance on GPUs by combining large parts of the calculation into a single, compute-
heavy kernel, reducing memory usage and boosting efficiency. This makes Oceananigans

Section 2 Davide Mattioli 1

GPU-Accelerated Simulation of Phytoplankton Convection Using Oceananigans.jl in Julia

highly memory-efficient, enabling global ocean simulations at high resolutions on a single
Nvidia V100 GPU, while also providing performance portability across CPUs and GPUs.

2.1 C-grid division

This division is called C-grid, which uses a layout that helps accurately compute fluid flow
by storing different types of information (like velocity and pressure) at different points in
the grid cells, this method is mainly used in weather forecasting by dividing the territory
in small volume units. [Sil+24]

Figure 2: Example of a C grid from [LCL10]

2.2 Adams-Bashforth time-stepping algorithm

The model uses a second-order Adams-Bashforth time-stepping algorithm to simulate
water movement over time by incorporating both the current and previous state of the
system. This approach is effective in handling the coexistence of low-frequency advection
and high-frequency wave propagation found in oceanic and atmospheric flows. To en-
sure computational stability the Courant–Friedrichs–Lewy (CFL) condition is applied by
constraining the time step based on the speed of the waves or fluid flow being simulated
and the resolution of the grid (the size of each grid cell). If the time step is too large
and exceeds this threshold, the simulation can become unstable, producing inaccurate
or nonsensical results[Kar12]. So with the Adams-Bashforth scheme we can have larger
and stable time steps without violating this condition. This ensures that the model re-
mains stable even in the presence of rapid wave motions while accurately capturing slower
processes like advection.

2.3 Weighted Essentially Non-Oscillatory (WENO) Scheme in
Oceananigans

The Weighted Essentially Non-Oscillatory (WENO) is a high-order numerical method that
compute hyperbolic partial differential equations, it is made to solve those that involve
sharp gradients or discontinuities like shock waves or steep fluid fronts. WENO uses a
weighted combination of several polynomial reconstructions from neighbouring points to
approximate the solution at each point. These weights are then dynamically adjusted

Section 2 Davide Mattioli 2

GPU-Accelerated Simulation of Phytoplankton Convection Using Oceananigans.jl in Julia

based on the smoothness of the solution, with more accurate reconstructions higher-order
in smooth regions and more stable reconstructions near discontinuities[Sil+24].

In Oceananigans it is used to compute momentum advection, as ocean simulations
often involve sharp features like ocean currents where fluid properties such as velocity,
temperature, or salinity can change over very short distances. These values cannot be
accurately computed without introducing artificial oscillations that can arise from the
steep gradients. Traditional methods like lower-order upwind schemes are more dissipative
and smooth out these sharp transitions, reducing the accuracy of the simulation[Sil+24] .

3 Plankton Convection
Phytoplankton are the primary oxygen producers in marine ecosystems and represent a
big portion of the total biomass in the ocean, to analyse their movement in the water
we can apply the same concepts from oceanic convection which drive the mixing and
distribution of these organisms in the Oceanic water. The phenomenon that drives this
motions and that will be analysed is called spring phytoplankton bloom, a steady increase
in phytoplankton biomass after periods of convective mixing. This process is generally
explained by the "critical turbulence hypothesis," which suggests that as turbulent mixing
subsides, phytoplankton remain in the upper, sunlit layers of the ocean, enabling growth
due to an increased light exposure. In this Report, we simulate the convective mixing of
phytoplankton using the Oceananigans.jl library, replicating the conditions that lead
to a phytoplankton bloom as mixing gradually diminishes. The simulation is designed to
reflect the work of Taylor and Ferrari (2011) [TF11], which showed how the weakening of
convection triggers phytoplankton blooms.

The model simulated several processes that influence phytoplankton concentration
dynamic:

• Advection: Transport of phytoplankton by the flow of water.

• Diffusion: The spreading of phytoplankton due to random motion.

• Growth: Phytoplankton reproduction, dependent on sunlight availability, typically
higher near the surface.

• Mortality: The loss of phytoplankton biomass due to predation by zooplankton
and viral decay.

These processes of diffusion are governed by the following equation for the concentra-
tion of phytoplankton P :

∂tP + v · ∇P − κ∇2P =
[
µ0 exp

(z
λ

)
−m

]
P

where:

• u represents the velocity field of the water,

• κ is the diffusivity,

• µ0 is the growth rate of phytoplankton at the surface,

• λ is the attenuation scale of sunlight with depth, and

Section 3 Davide Mattioli 3

GPU-Accelerated Simulation of Phytoplankton Convection Using Oceananigans.jl in Julia

• m is the mortality rate.

The time-dependent surface buoyancy flux, which drives the convective mixing, is
also included in the model. As the simulation progresses, this flux decays, showing a
seasonal reduction in turbulence that corresponds to the transition from mixed to stratified
conditions.

3.1 Grid Setup

1 grid = RectilinearGrid(GPU(),
2 size=(128, 128),
3 extent=(64, 64),
4 halo=(3, 3),
5 topology=(Periodic, Flat, Bounded))
6

Listing 1: Grid settings

The simulation uses a two-dimensional rectilinear grid defined with 1282 points and
32 halo points to enable high-order advection schemes, such as the previously mentioned
WENO. The grid spacing in both x and z directions is set to 1 meter by default to capture
small-scale processes while maintaining computational efficiency. The grid is periodic in
the x-direction to ensure continuity at the boundaries, the opposite is true for z-direction
is bounded, simulating the ocean surface and seafloor. The periodic boundary in the x-
direction and the bounded condition in the z-direction reflect real oceanic environments,
where currents loop around, but vertical mixing is constrained by natural barriers.

3.2 Buoyancy Flux

In the context of plankton convection, the surface buoyancy flux is the parameter that
regulates the intensity of convective turbulence in the ocean.For instance, during winter
the ocean experiences strong cooling, leading to negative buoyancy fluxes and intense
turbulent mixing distributing nutrients and removing phytoplankton from the upper,
sunlit layers of the ocean, preventing a bloom. The reduction in buoyancy flux, leads to
weaker turbulence allowing phytoplankton to remain in the euphotic zone, where they
can receive enough sunlight for photosynthesis, thus initiating a spring bloom [TF11]. So,
in the model we define the surface buoyancy flux as a time-dependent variable with an
exponential decay with time described by the following equation:

buoyancy_flux(t) = params.initial_buoyancy_flux×exp

(
− t4

24× params.shut_off_time4

)

1 buoyancy_flux_parameters = (initial_buoyancy_flux = 1e-8,
2 shut_off_time = 2hours)

Section 3 Davide Mattioli 4

GPU-Accelerated Simulation of Phytoplankton Convection Using Oceananigans.jl in Julia

The parameters used are an initial buoyancy flux of 1 × 10−8 m2 s−3 and a shut-off
time of 2 hours. This is a scenario where the surface buoyancy flux rapidly diminishes,
causing the subsidence of turbulent surface mixing as cooling weakens.

To capture the reduction of surface cooling over time we fix a boundary condition
for the buoyancy flux at the surface of the ocean model using a FluxBoundaryCondition,
allowing the simulation to capture the reduction of surface cooling over time. As the
buoyancy flux approaches zero, turbulent mixing in the simulation diminishes, simulat-
ing the transition from winter to spring conditions where convective mixing ceases and
stratification begins.

The boundary condition is implemented as follows:

1

2 buoyancy_flux_bc = FluxBoundaryCondition(buoyancy_flux,
3 parameters = buoyancy_flux_parameters)

Figure 3: Decay of Buoyancy flux over time

As shown in the Figure 3, during the first few hours, the buoyancy flux is relatively
high, reflecting strong mixing. However, around the 3-hour mark, the surface buoyancy
flux drops sharply, indicating a reduction in turbulent mixing. The nearly flat section of
the curve after hour 7 represents a state where the buoyancy flux has decayed to zero,
indicating that convective turbulence has "shut down" triggering the bloom according to
the authors’ hypothesis. The research done by Taylor [TF11] in particular emphasizes
that the reduction in surface buoyancy flux provides a better indicator for the onset of
phytoplankton blooms than the mixed-layer depth alone.

3.3 Plankton Growth

To model the plankton population dynamics, we introduce a function that computes net
growth of phytoplankton is defined by the biological growth and mortality. The growth
rate, µ0, represents the surface growth rate of phytoplankton under ideal conditions where
light is plentiful. However, as depth increases, the availability of light diminishes exponen-
tially, so a decay factor, λ, will model how phytoplankton’s access to sunlight decreases
with depth. The mortality rate m, will balance the population to a reasonable amount
by taking into account viral infections and grazing by zooplankton.

Section 3 Davide Mattioli 5

GPU-Accelerated Simulation of Phytoplankton Convection Using Oceananigans.jl in Julia

The function for net phytoplankton growth is represented as:

∂P

∂t
=

(
µ0 · exp

(
−z

λ

)
−m

)
· P

Where P is the phytoplankton concentration at depth z. The net rate of change in
phytoplankton concentration depends on the balance between growth and mortality. At
shallow depths, where sunlight is abundant, growth dominates, but as depth increases,
growth slows and mortality becomes more significant.

Figure 4: Phytoplankton growth rate at different depth

3.4 Model Overview

The final model of the simulation is then based on all the characteristics described above,
in essence: a rectilinear grid with periodic boundary conditions in the horizontal direction,
and bounded conditions in the vertical direction. The non-hydrostatic assumption holds
in this simulation to account for vertical accelerations of the biomass movement. The
model will also include a momentum advection using a fifth-order WENO scheme; this
ensures that sharp gradients in velocity fields are resolved without introducing numerical
oscillations. The goal of this model is to simulate the dynamics of the phytoplankton
concentration and of the buoyancy.

The specific configuration of the NonhydrostaticModel used in this study is as follows:

1 model = NonhydrostaticModel(; grid,
2 advection = WENO(),
3 timestepper = :RungeKutta3,
4 closure = ScalarDiffusivity(=1e-4, =1e-4),
5 coriolis = FPlane(f=1e-4),
6 tracers = (:b, :P),

Section 3 Davide Mattioli 6

GPU-Accelerated Simulation of Phytoplankton Convection Using Oceananigans.jl in Julia

7 buoyancy = BuoyancyTracer(),
8 forcing = (; P=plankton_dynamics),
9 boundary_conditions = (; b=buoyancy_bcs))

• Grid: We pass the 128×1×128 rectilinear grid in the GPU

• Advection Scheme: The advection of momentum is computed using a 5th-order
WENO.

• Time Stepping: The Runge-Kutta time-stepping function is used to approxi-
mate solutions to ordinary differential equations (ODEs).A third-order Runge-Kutta
specifically refers to methods that achieve third-order accuracy having a local trun-
cation error per time step is proportional to h4, and the global error over an interval
proportional to h3, where h is the time step size.

• Tracers: Two tracers are included in the model, B for buoyancy and P for phyto-
plankton concentration.

• Closure: A scalar diffusivity model is used for closure, it specifies the rate of
phytoplankton diffusion in a fluid, due to molecular motion or turbulence. with
diffusivities set to ν = 0.0001m2 s−1 for momentum and κ = 0.0001m2 s−1 for the
tracers, representing small-scale turbulent mixing.

• Buoyancy and Coriolis: The model incorporates a buoyancy tracer to simulate
the effects of buoyant forcing in the vertical direction, and an ff-plane approximation
is used to model the Coriolis effect, which is important in large-scale geophysical
flows.

3.5 Initial Conditions

The initial conditions are defined to try to replicate a stratified ocean column. The upper
layer of the ocean, where water is relatively uniform in temperature, salinity, and density,
is called mixed-layer, and it is set to be at 32 meters of depth in order to separate the
well-mixed surface waters from the stratified layers below. This stratification is needed
to check how buoyancy varies with depth, as it will influence the vertical distribution of
energy and matter in the ocean.

The stratification profile function operates in this way: if the depth z is below the
mixed layer depth, the buoyancy increases N linearly with depth, otherwise it will remain
constant with a value of N2 times the maximum depth:

stratification(z) =

{
N2 · z if z < −mixed_layer_depth
−N2 · mixed_layer_depth otherwise

To make the simulation more realistic, noise is added to the stratification. These
perturbations will simulate the inhomogeneous environment present in the ocean and it
is computed as:

noise(z) = 1× 10−4 ·N2 · grid.Lz · randn() · ez/4

Section 3 Davide Mattioli 7

GPU-Accelerated Simulation of Phytoplankton Convection Using Oceananigans.jl in Julia

This will also induct random fluctuations in the buoyancy, ensuring an initial state
not perfectly smooth.

The initial buoyancy, which combines both the stratification and the noise, is set by:

initial_buoyancy(x, z) = stratification(z) + noise(z)

Lastly, the concentration of phytoplankton (P) is initialized with a uniform distribu-
tion, uniformly with a value of 1 across the grid.

1 set!(model, b = initial_buoyancy, P = 1)

3.6 Results

The results are from a simulation of 24 hours and the output variable are vertical velocity
and plankton "concentration" as a heatmap. The buoyancy flux over time is also and the
plankton concentration over different level of different z are also diplayed.

Figure 5: first 4 simulation time snapshots

In the first frame (t = 0 seconds), we see a calm ocean with no turbulence, this uniform
phytoplankton concentration represent the early winter stage where strong atmospheric

Section 3 Davide Mattioli 8

GPU-Accelerated Simulation of Phytoplankton Convection Using Oceananigans.jl in Julia

cooling prevents a bloom by continuously mixing plankton out of the Euphotic zone, where
the bloom is common to happen as more light pass through the water. In the second frame
(t = 3 hours) turbulence starts to develop, small eddies redistribute phytoplankton on the
vertical axis (z). However, as buoyancy flux decreases, surface cooling weakens, setting
the stage for a shutdown of turbulent mixing.

By the third frame (t = 6 hours) and the fourth frame (t = 9 hours), turbulent
mixing has intensified, but the weakening buoyancy flux signals the eventual subsidence
of convection. According to Taylor and Ferrari [TF11], blooms are still unlikely at this
stage because strong turbulence prevents phytoplankton from remaining near the surface.

Figure 6: last 4 simulation time snapshots

The progression of frames from 5 to 8 shows the gradual shutdown of turbulent con-
vection and its direct impact on phytoplankton concentration, aligning with Taylor and
Ferrari’s hypothesis on bloom initiation. The buoyancy flux steadily declines causing a
slow-down of the velocity, this allows the phytoplankton to accumulate near the surface.
In the earlier frames (5 and 6), small eddies still persist, but not enough to push the
phytoplankton downward, this leads to a more stratified concentration in the euphotic
zone. In the last two frames (7 and 8), the turbulence has essentially ceased marking the
final stage of bloom initiation, where phytoplankton will stay in the upper layers prolif-
erating from the constant exposure from sunlight and thus resulting in a environmental
stagnation.

Section 3 Davide Mattioli 9

GPU-Accelerated Simulation of Phytoplankton Convection Using Oceananigans.jl in Julia

4 Benchmarks
Several benchmarks of the simulation have been computed on a machine with:

• CPU: Intel Core i7-13700HX, 8 cores, 2.1 GHz with 3.1Ghz as Boosting

• GPU: RTX 4070 8 GB VRAM 15.6 TFLOPS FP16, 15.6 TFLOPS FP32

• RAM: 32 GB DDR5 6400 Mhz

Table 1: CPU Simulation Results
Grid Size Initialization Time (ms) Initial Step Time (s) Total Simulation Time (s)

16x16 95.893 8.406 10.668
32x32 124.825 8.659 11.550
64x64 79.410 4.659 10.464
128x128 119.257 5.575 25.143
256x256 212.983 8.641 108.300
512x512 211.162 5.382 378.660
1024x1024 690.176 7.909 1583.580
2048x2048 NaN NaN NaN
4096x4096 NaN NaN NaN

Table 2: GPU Simulation Results
Grid Size Initialization Time (ms) Initial Step Time (s) Total Simulation Time (s)

16x16 1.211 5.066 7.599
32x32 1.016 5.070 8.001
64x64 1.098 5.019 8.226
128x128 1.794 4.896 7.663
256x256 4.922 4.610 8.600
512x512 11.405 4.757 12.623
1024x1024 19.833 4.458 30.980
2048x2048 71.825 228.210 112.860
4096x4096 166.034 5.099 463.440

For smaller grid sizes (16x16 to 128x128), both the CPU and GPU perform similarly
in terms of total simulation time. However, with bigger grid size from 256 onwards the
GPU outperform the CPU by a large margin. For instance, on a 1024x1024 grid, the
GPU completes the simulation in approximately 31 seconds, whereas the CPU takes over
26 minutes (1583.58 seconds).

The implementation of CUDA kernels in Oceananigans make the machine to fully
leverage the parallel processing power of the GPU, allowing for faster computation and
handling of large-scale simulation. This is explained by the fact that differential equations
employed in the simulation really benefit from the parallelisation of the computation,
allowing a better performance on hardware with more cores.

Section 4 Davide Mattioli 10

GPU-Accelerated Simulation of Phytoplankton Convection Using Oceananigans.jl in Julia

Figure 7: Plot of the Performance difference between the CPU and GPU

From the figure, we can see how much the GPU outperforms the CPU in this simu-
lation, by a factor of up to 25 in the best-case scenario. However, we observe a decrease
in the performance ratio as the grid size increases because the GPU utilization eventu-
ally maxes out its available VRAM, leading to a bottleneck in processing power. In the
Oceananigans.jl paper, this phenomenon is also noted, where large-scale simulations
approach the GPU’s memory limits, impacting overall performance.

Section 4 Davide Mattioli 11

GPU-Accelerated Simulation of Phytoplankton Convection Using Oceananigans.jl in Julia

5 Conclusions
This report explored fluid dynamics simulations using Oceananigans.jl, focusing on its
GPU-accelerated capabilities for computationally intensive models like the Boussinesq
equations. The study highlighted the model’s effectiveness in simulating phytoplankton
convection and fluid simulations. By capturing the conditions leading to spring phyto-
plankton blooms, the model demonstrated the critical role of buoyancy flux reduction in
triggering bloom initiation, aligning with the critical turbulence hypothesis by Taylor and
Ferrari (2011) [TF11].

The use of GPU computing significantly enhanced performance, especially for large-
scale simulations, outperforming CPU-based methods. The results show that Oceananigans.jl
is a powerful tool for high-resolution oceanographic simulations, providing both accuracy
and efficiency in modeling complex processes like phytoplankton dynamics.

Section 5 Davide Mattioli 12

GPU-Accelerated Simulation of Phytoplankton Convection Using Oceananigans.jl in Julia

References
[Fan+22] Kezhao Fang et al. “Boussinesq Simulation of Coastal Wave Interaction with

Bottom-Mounted Porous Structures”. In: Journal of Marine Science and En-
gineering 10.10 (2022). issn: 2077-1312. doi: 10.3390/jmse10101367. url:
https://www.mdpi.com/2077-1312/10/10/1367.

[Kar12] Sajal K. Kar. “An Explicit Time-Difference Scheme with an Adams–Bashforth
Predictor and a Trapezoidal Corrector”. In: Monthly Weather Review 140.1
(2012), pp. 307–322. doi: 10.1175/MWR-D-10-05066.1. url: https://
journals.ametsoc.org/view/journals/mwre/140/1/mwr-d-10-05066.1.
xml.

[LCL10] Katherine Lundquist, Fotini Chow, and Julie Lundquist. “An Immersed Bound-
ary Method for the Weather Research and Forecasting Model”. In: Monthly
Weather Review 138 (Mar. 2010), pp. 796–817. doi: 10.1175/2009MWR2990.1.

[Sil+23] Simone Silvestri et al. Oceananigans.jl: A model that achieves breakthrough
resolution, memory and energy efficiency in global ocean simulations. 2023.
arXiv: 2309.06662 [physics.ao-ph]. url: https://arxiv.org/abs/2309.
06662.

[Sil+24] Simone Silvestri et al. “A New WENO-Based Momentum Advection Scheme
for Simulations of Ocean Mesoscale Turbulence”. In: Journal of Advances in
Modeling Earth Systems 16.7 (2024). e2023MS004130 2023MS004130, e2023MS004130.
doi: https://doi.org/10.1029/2023MS004130. eprint: https://agupubs.
onlinelibrary.wiley.com/doi/pdf/10.1029/2023MS004130. url: https:
//agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2023MS004130.

[TF11] John R. Taylor and Raffaele Ferrari. “Shutdown of turbulent convection as a
new criterion for the onset of spring phytoplankton blooms”. In: Limnology and
Oceanography 56.6 (2011), pp. 2293–2307. doi: https://doi.org/10.4319/
lo.2011.56.6.2293. eprint: https://aslopubs.onlinelibrary.wiley.
com/doi/pdf/10.4319/lo.2011.56.6.2293. url: https://aslopubs.
onlinelibrary.wiley.com/doi/abs/10.4319/lo.2011.56.6.2293.

Section Davide Mattioli 13

https://doi.org/10.3390/jmse10101367
https://www.mdpi.com/2077-1312/10/10/1367
https://doi.org/10.1175/MWR-D-10-05066.1
https://journals.ametsoc.org/view/journals/mwre/140/1/mwr-d-10-05066.1.xml
https://journals.ametsoc.org/view/journals/mwre/140/1/mwr-d-10-05066.1.xml
https://journals.ametsoc.org/view/journals/mwre/140/1/mwr-d-10-05066.1.xml
https://doi.org/10.1175/2009MWR2990.1
https://arxiv.org/abs/2309.06662
https://arxiv.org/abs/2309.06662
https://arxiv.org/abs/2309.06662
https://doi.org/https://doi.org/10.1029/2023MS004130
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2023MS004130
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2023MS004130
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2023MS004130
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2023MS004130
https://doi.org/https://doi.org/10.4319/lo.2011.56.6.2293
https://doi.org/https://doi.org/10.4319/lo.2011.56.6.2293
https://aslopubs.onlinelibrary.wiley.com/doi/pdf/10.4319/lo.2011.56.6.2293
https://aslopubs.onlinelibrary.wiley.com/doi/pdf/10.4319/lo.2011.56.6.2293
https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.4319/lo.2011.56.6.2293
https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.4319/lo.2011.56.6.2293

GPU-Accelerated Simulation of Phytoplankton Convection Using Oceananigans.jl in Julia

A Code samples

1 grid = RectilinearGrid(GPU(), size=(64, 64), extent=(64, 64), halo=(3, 3), topology=(Periodic, Flat, Bounded))
2

3 # Boundary conditions
4 buoyancy_flux(x, t, params) = params.initial_buoyancy_flux * exp(-t^4 / (24 * params.shut_off_time^4))
5 buoyancy_flux_parameters = (initial_buoyancy_flux = 1e-8, shut_off_time = 2hours)
6 buoyancy_flux_bc = FluxBoundaryCondition(buoyancy_flux, parameters = buoyancy_flux_parameters)
7

8 # Plot buoyancy flux over time
9 times = range(0, 12hours, length=100)

10 fig = Figure(size = (800, 300))
11 ax = Axis(fig[1, 1]; xlabel = "Time (hours)", ylabel = "Surface buoyancy flux (m² s³)")
12 flux_time_series = [buoyancy_flux(0, t, buoyancy_flux_parameters) for t in times]
13 lines!(ax, times ./ hour, flux_time_series)
14 fig
15

16 # Define boundary conditions
17 N² = 1e-4 # s²
18 buoyancy_gradient_bc = GradientBoundaryCondition(N²)
19 buoyancy_bcs = FieldBoundaryConditions(top = buoyancy_flux_bc, bottom = buoyancy_gradient_bc)
20

21 # Phytoplankton dynamics
22 growing_and_grazing(x, z, t, P, params) = (params. * exp(z / params.) - params.m) * P
23 plankton_dynamics_parameters = (= 1/day, = 5, m = 0.1/day)
24 plankton_dynamics = Forcing(growing_and_grazing, field_dependencies = :P, parameters = plankton_dynamics_parameters)
25

26 # Set up the model
27 model = NonhydrostaticModel(
28 grid = grid,
29 advection = UpwindBiasedFifthOrder(),
30 timestepper = :RungeKutta3,
31 closure = ScalarDiffusivity(=1e-4, =1e-4),
32 coriolis = FPlane(f=1e-4),
33 tracers = (:b, :P),
34 buoyancy = BuoyancyTracer(),
35 forcing = (; P = plankton_dynamics),
36 boundary_conditions = (; b = buoyancy_bcs)
37)
38

39 # Initial conditions
40 mixed_layer_depth = 32 # m
41 stratification(z) = z < -mixed_layer_depth ? N² * z : -N² * mixed_layer_depth
42 noise(z) = 1e-4 * N² * grid.Lz * randn() * exp(z / 4)
43 initial_buoyancy(x, z) = stratification(z) + noise(z)
44 set!(model, b = initial_buoyancy, P = 1)
45

Section A Davide Mattioli A1

GPU-Accelerated Simulation of Phytoplankton Convection Using Oceananigans.jl in Julia

46 # Set up the simulation
47 simulation = Simulation(model, t = 2minutes, stop_time = 24hours)
48

49 # Adaptive time stepping
50 conjure_time_step_wizard!(simulation, cfl = 1.0, max_t = 2minutes)
51

52 # Progress callback
53 function progress(sim)
54 @printf("Iteration: %d, time: %s, t: %s\n", iteration(sim), prettytime(sim), prettytime(sim.t))
55 end
56 add_callback!(simulation, progress, IterationInterval(100))
57

58 # Output writer
59 outputs = (w = model.velocities.w, P = model.tracers.P, avg_P = Average(model.tracers.P, dims=(1, 2)))
60 simulation.output_writers[:simple_output] = JLD2OutputWriter(model, outputs, schedule = TimeInterval(20minutes), filename = "convecting_plankton.jld2", overwrite_existing = true)
61

62 # Run the simulation
63 run!(simulation)

Section A Davide Mattioli A2

	Contents
	List of Tables
	List of Figures
	List of Listings
	List of Abbreviations
	Introduction
	Oceananigans Hydrostatic Model
	C-grid division
	Adams-Bashforth time-stepping algorithm
	Weighted Essentially Non-Oscillatory (WENO) Scheme in Oceananigans

	Plankton Convection
	Grid Setup
	Buoyancy Flux
	Plankton Growth
	Model Overview
	Initial Conditions
	Results

	Benchmarks
	Conclusions
	References
	Code samples

