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What’s PyTorch again?

■ Framework for deep learning in python developed at Meta AI

■ Based on and named after the Torch framework for lua

■ Initially released in September 2016
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What makes PyTorch so popular?

■ PyTorch design philosophy

▶ Principle 1: Usability over Performance
▶ Principle 2: Simple Over Easy
▶ Principle 3: Python First with Best In Class Language Interoperability

■ Low barrier of entry and focus on user experience arguably what makes
PyTorch this popular
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PyTorch 2.0

■ Seminal new release of PyTorch, released in March of 2023 (PyTorch 2.0 —
pytorch.org)

■ Major overhaul to the backend of PyTorch, while keeping the frontend
undisturbed

■ Added torch.compile(), a mechanism for ahead-of-time compilation

▶ Allows for optimizations to computations at graph and operator level
▶ Backend agnostic, introduces a smaller operator set to make backend

development more accessible
▶ Usually works out of the box with large performance benefits

Constantin Dalinghaus SCAP 2024 5 / 26



What’s PyTorch again? What’s new with PyTorch? Benchmarking method Results & Interpretation References

Usability over performance?

■ PyTorch 2.0 is focused on usability
■ Very complex compilation features can be used with a single line of code

Figure: Using torch.compile() is simple!
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PyTorch 2.0: Backend overview

Figure: Source PyTorch 2.0 — pytorch.org

Constantin Dalinghaus SCAP 2024 7 / 26



What’s PyTorch again? What’s new with PyTorch? Benchmarking method Results & Interpretation References

Torch Dynamo

■ Python-level Just-In-Time (JIT)
compiler

■ Extracts an FX Graph, which can
then be optimized with a custom
backend

■ Performs operator lowering

Figure: Source: PyTorch 2.0 — pytorch.org
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AOT Autograd

■ Autograd? Automatically determine
the gradient of your model!

▶ Model at this stage represented
as graph

▶ Autograd traverses the directed
acyclic graph starting at the root
node

▶ Leaf nodes are processed
according to the chain rule

Figure: Source: PyTorch 2.0 — pytorch.org
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AOT Autograd

■ With AOT Autograd: Graph is
compiled ahead of time

▶ Only need to build the graph once
▶ Graph structure and operations

can be optimized

Figure: Source: PyTorch 2.0 — pytorch.org
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Torch Inductor

■ Compiles the low level graph to
hardware specific kernel code

■ For NVIDIA / AMD GPUs: OpenAI
Triton

▶ Triton is a DSL (domain specific
language) for cuda kernel
programming

▶ Python-like, higher level but
powerful cuda abstraction

Figure: Source: PyTorch 2.0 — pytorch.org
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PrimTorch

■ A canonicalization of all ∼2000
PyTorch operators to a small set of
∼250 primitive operators

■ Makes developing a custom
backend for PyTorch much easier as
only the smaller set of primitives
needs to be implemented

Figure: Source: PyTorch 2.0 — pytorch.org
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Why benchmarking?

■ Pytorch 2.0 is about improving performance => Performance benchmarking

▶ Goal: Verify claims about performance speedups made by the PyTorch
foundation
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What do we compare?

■ torch.compile() allows compilation to Inductor and Cudagraphs backends
▶ Evaluate compiled performance vs performance in eager execution mode
▶ Use the university HPC system for evaluation

Figure: Using torch.compile() is simple!
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What do we measure?

■ Train model for 1000 iterations

■ Track metrics for these 1000 iterations

▶ Time per iteration
▶ Mean Flop Utilization (MFU)

• Ratio of FLOPS actually performed and total number of FLOPS that the GPU die
could have performed
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How about model sizes?

■ Measure LLM training performance at multiple scales
▶ Small

• 10.65M parameters
• Trained on Shakespeare corpus

▶ Medium

• 127M parameters / "GPT2-small"
• Trained on OpenWebText [Gokaslan and Cohen, OpenWebText Corpus]

▶ Large

• At least 175B parameters
• Out of reach for us due to hardware constraints!
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Raw results

■ Execution time in ms, per iteration

µgpt2 σgpt2 µshakespeare σshakespeare
Eager execution 3107,334 2,762 16,029 2,666
Compiled (Cudagraphs backend) 3098,297 0,956 16,828 3,935
Compiled (Inductor backend) 2640,227 5,773 12,191 1,556
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Raw results

■ Mean Flop Utilization (mfu) in percent

µgpt2 σgpt2 µshakespeare σshakespeare
Eager execution 43,337 0,000 22,951 0,853
Compiled (Cudagraphs backend) 43,463 0,000 21,916 0,653
Compiled (Inductor backend) 51,023 0,004 29,920 0,952
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Interpretation: Iteration time

■ Execution time per epoch decreases significantly when using compile with
torch inductor

■ The difference in iteration time is noticeable in large and small LLMs but
more pronounced in smaller models

Torch eager Cudagraphs Torch inductor
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Interpretation: Mean Flop Utilization

■ Compilation with torch inductor yields improvements in mfu in both training
of both small and medium LLM

Torch eager Cudagraphs Torch inductor
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Other findings

■ Mean Flop Utilization is very stable when training a larger model

▶ More volatile when training a smaller model
▶ Could mean there are other inefficiencies in the data preparation pipeline for

small datasets

■ Use of cudagraphs did not result in improvements in performance
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Do these results align with claims made by the PyTorch foundation?

■ Claims by the PyTorch foundation:

▶ 51% faster on average

■ Our results:

▶ 16.25% speedup training for a medium sized LLM
▶ 27.2% speedup when training a small LLM

■ But:

▶ Assuming mixed precision (bfloat16)
▶ Using NVIDIA A100
▶ PyTorch foundation measurements are across a more diverse set of models!
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Implications for a business use case?

■ Save double digit percentage of cost during model training

▶ Futher efficiency gains by better Mean Flop Utilization on the GPU

■ Given how easy it is to implement, there is hardly any reason not to use
torch.compile(), especially when training at scale!

▶ But: During development stick to eager execution as it creates more verbose
error messages
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Future testing? More architectures!

■ Verify that ViTs yield similar results to LLMs

▶ They share the same underlying architecture as LLMs

■ More interestingly: Do testing on architectures which were not covered yet

▶ Convolutional Neural Networks, LSTMs etc.
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The timeline so far

■ My presentation is early, so my personal deadline is set early in KW30

■ Timeline formalized using Gantt chart
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Questions and Feedback
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