GEORG-AUGUST-UNIVERSITAT . .
< =7\ GOTTINGEN 177 Campus-Institut Data Science

CIDAS

Campus-Institut Data Science

Constantin Dalinghaus

What's new with PyTorch?

Supercharging at the compiler level with PyTorch 2.0

13.06.2024 SCAP 2024



What's PyTorch again? What’s new with PyTorch? Benchmarking method Results & Interpretation References
[e]e] 00000000 0000 0000000000

Table of contents

What's PyTorch again?
What's new with PyTorch?
Benchmarking method

Bl Results & Interpretation

Constantin Dalinghaus SCAP 2024 2/26



What’s PyTorch again? What’s new with PyTorch? Benchmarking method Results & Interpretation
L Je]

References

What's PyTorch again?

B Framework for deep learning in python developed at Meta Al
B Based on and named after the Torch framework for lua
B [nitially released in September 2016

O PyTorch
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What makes PyTorch so popular?

B PyTorch design philosophy
» Principle 1: Usability over Performance
» Principle 2: Simple Over Easy
» Principle 3: Python First with Best In Class Language Interoperability
B Low barrier of entry and focus on user experience arguably what makes
PyTorch this popular

& Andrej Karpathy &

‘w @karpathy

I've been using PyTorch a few months now and I've never felt better. |
have more energy. My skin is clearer. My eye sight has improved.

8:56 PM - May 26, 2017

Qe TAsn Q 19k s A

Constantin Dalinghaus SCAP 2024 4/26



What's PyTorch again? What’s new with PyTorch? Benchmarking method Results & Interpretation References
90000000

PyTorch 2.0

B Seminal new release of PyTorch, released in March of 2023 (PyTorch 2.0 —
pytorch.org)

B Major overhaul to the backend of PyTorch, while keeping the frontend
undisturbed

B Added torch.compile(), a mechanism for ahead-of-time compilation

» Allows for optimizations to computations at graph and operator level

» Backend agnostic, introduces a smaller operator set to make backend
development more accessible

» Usually works out of the box with large performance benefits
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Usability over performance?

B PyTorch 2.0 is focused on usability

B Very complex compilation features can be used with a single line of code

model = MyCoolModel( )

torch.cc Lle(model)

for y in train_data_loader:
y_pred = model(X)

Figure: Using torch.compile() is simple!
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PyTorch 2.0: Backend overview

PTa for Backend Integration
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Figure: Source PyTorch 2.0 — pytorch.org
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Torch Dynamo

B Python-level Just-In-Time (JIT)

PT2 for Backend Integration

compiler P
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B Performs operator lowering
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Figure: Source: PyTorch 2.0 — pytorch.org
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AOT Autograd

B Autograd? Automatically determine

the gradient of your model! %
» Model at this stage represented

as graph ll
» Autograd traverses the directed Q % %

acyclic graph starting at the root

node
» Leaf nodes are processed
according to the chain rule / 9

forward

MultBackward

Qads from different paths are added together

o é % o ..

Figure: Source: PyTorch 2.0 — pytorch.org
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AOT Autograd

B With AOT Autograd: Graph is

i i PT2 for Backend Int tion
compiled ahead of time or Backend Integrotio

V User Model Seript

» Only need to build the graph once Pt e [F Loy
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Figure: Source: PyTorch 2.0 — pytorch.org
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Torch Inductor

B Compiles the low level graph to
hardware specific kernel code
B For NVIDIA / AMD GPUs: OpenAl
Triton
» Triton is a DSL (domain specific
language) for cuda kernel
programming
» Python-like, higher level but
powerful cuda abstraction

Constantin Dalinghaus
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PrimTorch

B A canonicalization of all ~2000
PyTorch operators to a small set of
~250 primitive operators

mmmmm

B Makes developing a custom
backend for PyTorch much easier as
only the smaller set of primitives
needs to be implemented

Figure: Source: PyTorch 2.0 — pytorch.org
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Why benchmarking?

B Pytorch 2.0 is about improving performance => Performance benchmarking

» Goal: Verify claims about performance speedups made by the PyTorch
foundation
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What do we compare?

B torch.compile() allows compilation to Inductor and Cudagraphs backends
» Evaluate compiled performance vs performance in eager execution mode
» Use the university HPC system for evaluation

torch.compile(model, disable=True)

torch.compile(model, backend="cudagr

torch.compile(model, backend="inductor")

Figure: Using torch.compile() is simple!
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What do we measure?

M Train model for 1000 iterations

B Track metrics for these 1000 iterations

» Time per iteration
» Mean Flop Utilization (MFU)

* Ratio of FLOPS actually performed and total number of FLOPS that the GPU die
could have performed
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How about model sizes?

B Measure LLM training performance at multiple scales
» Small
* 10.65M parameters
e Trained on Shakespeare corpus
» Medium
e 127M parameters / "GPT2-small"
¢ Trained on OpenWebText [Gokaslan and Cohen, OpenWebText Corpus]
» Large
* At least 175B parameters
¢ Out of reach for us due to hardware constraints!
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Raw results

B Execution time in ms, per iteration

‘MgptZ Ogpt2  Mshakespeare Oshakespeare
Eager execution 3107,334 2,762 16,029 2,666
Compiled (Cudagraphs backend) | 3098,297 0,956 16,828 3,935
Compiled (Inductor backend) 2640,227 5,773 12,191 1,556
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Raw results

B Mean Flop Utilization (mfu) in percent

‘ Hgpt2 Ogpt2  Mshakespeare Oshakespeare

Eager execution 43,337 0,000 22,951 0,853
Compiled (Cudagraphs backend) |43,463 0,000 21,916 0,653
Compiled (Inductor backend) 51,023 0,004 29,920 0,952
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Interpretation: Iteration time

B Execution time per epoch decreases significantly when using compile with
torch inductor

B The difference in iteration time is noticeable in large and small LLMs but
more pronounced in smaller models

Time per step
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Interpretation: Mean Flop Utilization

B Compilation with torch inductor yields improvements in mfu in both training
of both small and medium LLM

Mean Flop Utilization
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Other findings

B Mean Flop Utilization is very stable when training a larger model

» More volatile when training a smaller model
» Could mean there are other inefficiencies in the data preparation pipeline for
small datasets

B Use of cudagraphs did not result in improvements in performance
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Do these results align with claims made by the PyTorch foundation?

B Claims by the PyTorch foundation:
» 51% faster on average
B Our results:

» 16.25% speedup training for a medium sized LLM
» 27.2% speedup when training a small LLM

Ml But:

» Assuming mixed precision (bfloat16)
» Using NVIDIA A100
» PyTorch foundation measurements are across a more diverse set of models!
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Implications for a business use case?

B Save double digit percentage of cost during model training
» Futher efficiency gains by better Mean Flop Utilization on the GPU

B Given how easy it is to implement, there is hardly any reason not to use
torch.compile(), especially when training at scale!

» But: During development stick to eager execution as it creates more verbose
error messages
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Future testing? More architectures!

B Verify that ViTs yield similar results to LLMs
» They share the same underlying architecture as LLMs

B More interestingly: Do testing on architectures which were not covered yet
» Convolutional Neural Networks, LSTMs etc.
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The timeline so far

B My presentation is early, so my personal deadline is set early in KW30

B Timeline formalized using Gantt chart

Presentation Finalize submission Submission Deadline

Toplc presentation
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Questions and Feedback
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