
SH

∞

Seminar Report

What’s new with PyTorch?

Constantin Dalinghaus

MatrNr: 21969745

Supervisor: Chirag Mandal

Georg-August-Universität Göttingen
Institute of Computer Science

September 20, 2024

Abstract
The efficient training of deep learning models is critical, especially for researchers and
practitioners with limited computational resources. Optimizing model training perfor-
mance remains a significant area of focus in machine learning research. While PyTorch
2.0 introduced the torch.compile() function, promising substantial performance improve-
ments through Just-In-Time (JIT) compilation, independent verification of these claims
is limited. This study aims to assess whether torch.compile() delivers on its performance
promises in academic and business contexts.

Existing compiler optimization tools like Glow, TensorFlow XLA, and Apache TVM offer
performance enhancements but may not integrate seamlessly with dynamic computational
graphs or require significant code modifications. The limitations of these tools highlight
the need for solutions that provide performance gains without sacrificing usability. We
conducted an independent evaluation of PyTorch 2.0’s torch.compile() by benchmarking
training performance on Convolutional Neural Networks and Transformer-based models,
comparing compiled and non-compiled executions across different model sizes and hard-
ware configurations.

Our results demonstrate that model compilation via torch.compile() generally leads to
significant reductions in execution time and improved hardware utilization, particularly
for larger models. However, for smaller models like ResNet18, the performance gains were
less consistent, suggesting that the efficacy of compilation may vary based on model com-
plexity. These findings confirm the performance claims of PyTorch 2.0 and underscore the
importance of considering model characteristics when employing compilation strategies.

i

Declaration on the use of ChatGPT and comparable tools
in the context of examinations

In this work I have used ChatGPT or another AI as follows:

✓□ As a tool in the toolbox of a modern developer, LLMs have been extensively used
throughout the entire process of this work, from information retrieval to writing
code as well as rephrasing and optimizing text for clarity. This makes it hard to
explicitly declare specific usages. The intention of using these models is not to avoid
doing actual work or undermine the scientific method, but rather to optimize the
process to arrive at better results, faster.

I hereby declare that I have stated all uses completely.
Missing or incorrect information will be considered as an attempt to cheat.

ii

Contents

List of Tables v

List of Figures v

List of Listings v

List of Abbreviations vi

1 Introduction 1

2 Background 2
2.1 PyTorch . 2
2.2 PyTorch 2.0 . 2

2.2.1 Torch Dynamo . 2
2.2.2 AOT Autograd . 2
2.2.3 Torch Inductor . 3
2.2.4 PrimTorch . 3

2.3 Neural Network Architectures . 3
2.3.1 Convolutional Neural Networks . 4
2.3.2 Transformer Models . 4

3 Related Research 5
3.1 Compiler Optimization in Deep Learning 5

3.1.1 Glow Compiler . 5
3.1.2 TensorFlow XLA (Accelerated Linear Algebra) 5
3.1.3 Apache TVM . 5
3.1.4 ONNX (Open Neural Network Exchange) 6

4 Methodology 7
4.1 CNN Benchmarking . 7
4.2 LLM benchmarking . 7

5 Results 8
5.1 Results for LLM benchmarking . 8
5.2 Results for Convolutional neural network (CNN) benchmarking 8

6 Discussion 9
6.1 Impact of Compilation on Execution Time 9
6.2 Mean Flop Utilization (MFU) Analysis . 9
6.3 The ResNet18 Anomaly . 9
6.4 Verification of PyTorch Compilation Claims 10
6.5 Business Implications . 10
6.6 Limitations and Future Work . 10

7 Conclusion 11

References 12

iii

A Work sharing A1

B Code samples A1
B.1 Reproducing LLM training . A1
B.2 Reproducing CNN training . A1

iv

List of Tables
1 Execution time in ms, per iteration . 8
2 Mean Flop Utilization (mfu) in percent . 8
3 Execution time in seconds, per iteration 8

List of Figures
1 Pytorch 2.0 backend overview . 3

List of Listings
1 .sbatch configuration file for reproducing the results for LLM benchmarking A1
2 Commands for reproducing the results for LLM benchmarking to be used

in 1 . A1
3 Changes made to karpathy/nanoGPT for benchmarking different compila-

tion methods . A3
4 .sbatch configuration file for reproducing the results for CNN benchmarking A4
5 Commands for reproducing the results for LLM benchmarking to be used

in 4 . A4

v

List of Abbreviations
HPC High-Performance Computing

CNN Convolutional neural network

LLM Large language model

timm Pytorch Image Models

MFU Mean Flop Utilization

DSL Domain Specific Language

ONNX Open Neural Network Exchange

vi

What’s new with PyTorch?

1 Introduction
The efficient training of Deep Learning models remains a critical area of research, partic-
ularly for independent academic researchers who often conduct multiple training experi-
ments to examine the impact of hyperparameters. Unlike large-scale foundational models,
which are commonly pretrained on extensive GPU clusters, academic researchers typically
operate under resource constraints and must optimize their workflows accordingly. As a
result, improving the efficiency of model training on shared computational infrastruc-
tures, such as university high-performance computing (HPC) systems, is of significant
importance. Despite recent advancements, inefficiencies in the utilization of computa-
tional resources during model training persist, underscoring the need for techniques that
maximize performance, even on smaller-scale infrastructures.

In 2023, the PyTorch foundation introduced PyTorch 2.0, which includes a significant
overhaul to the backend of PyTorch, most notably the Just In Time (JIT) compilation
functionality enabled by the torch.compile() function. The PyTorch foundation published
alongside benchmarks suggesting considerable performance improvements when compared
to previous versions of the framework.

Independent verification of these claims, especially with respect to reproducibility and
applicability in academic contexts, remains scarce. This study aims to address this gap
in knowledge by investigating the following research questions:

• RQ1: Can the performance claims made by the PyTorch foundation regarding the
torch.compile() functionality in PyTorch 2.0 be independently verified? Specifically,
does it typically (1) work out of the box with no additional overhead, (2) yield
significant performance gains, and (3) result in higher GPU utilization?

• RQ2: Are the performance improvements offered by PyTorch 2.0 significant enough
to meet the requirements of a typical business use case?

Section 1 Constantin Dalinghaus 1

What’s new with PyTorch?

2 Background
2.1 PyTorch

PyTorch is a deep learning framework developed by Meta AI, designed primarily for use
with Python. Derived from the Torch framework, which was originally implemented in
Lua, PyTorch was first released in September 2016. It provides a flexible and intuitive
platform for constructing and training neural networks and has rapidly become a promi-
nent tool in the machine learning community.

A key aspect of PyTorch’s design philosophy is the prioritization of ease of use, which
is reflected in its core design principles [Foub]:

1. Principle: Usability over Performance

2. Principle: Simple Over Easy

3. Principle: Python First with Best In Class Language Interoperability

The clear decision to prefer usability over performance is unusual for a deep learning
framework. Many industry specialists have argued that it is this focus on user experience
that makes PyTorch the dominant player in the deep learning space [Xco17].

2.2 PyTorch 2.0

PyTorch 2.0, released in March 2023, represents a significant upgrade to the PyTorch
framework. This release includes substantial modifications to the underlying architecture,
most notably the introduction of torch.compile, a mechanism primarilly designed to
support ahead-of-time (AOT) compilation. The introduction of torch.compile aims to
enhance computational efficiency by optimizing the execution of neural networks during
runtime.

A primary objective of this release was to maintain backward compatibility, ensuring
that the core PyTorch interface remains consistent with previous versions. This approach
was taken to minimize disruptions for existing users, thereby facilitating a smooth tran-
sition to the new version while leveraging the performance improvements offered by the
updated backend[Foua] 1.

2.2.1 Torch Dynamo

Torch Dynamo is a Python-level Just-In-Time (JIT) compiler introduced in PyTorch 2.0.
Its primary function is to transform user-authored model code into an FX (Function
Transformation) graph representation. This transformation enables subsequent stages
of the compilation process to optimize and execute the model more efficiently. Torch
Dynamo serves as the initial stage of the compilation pipeline, converting high-level model
definitions into a format suitable for further processing by the PyTorch backend.

2.2.2 AOT Autograd

Ahead-of-Time (AOT) Autograd is a novel approach to the compilation of computational
graphs within PyTorch. In contrast to previous methods that required the computational

Section 2 Constantin Dalinghaus 2

What’s new with PyTorch?

Figure 1: Overview over the PyTorch 2.0 backend architecture

graph to be compiled at each execution, AOT Autograd enables the graph to be compiled
once and reused across multiple executions. This approach not only reduces the overhead
associated with repeated graph compilation but also allows for advanced optimizations
to be applied to the graph prior to execution, enhancing overall computational efficiency.
Additionally, AOT Autograd also performs operator lowering.

2.2.3 Torch Inductor

Torch Inductor is the new compilation engine introduced in PyTorch 2.0. It operates
by taking the lowered FX graph generated by AOT Autograd and further compiling it
into hardware-specific kernel code. For GPUs, particularly those built by Nvidia and
AMD, Torch Inductor generates code in the programming language Triton, which is a
Domain Specific Language (DSL) for GPU programming. This component of the PyTorch
2.0 backend is crucial for achieving high-performance execution across diverse hardware
architectures [TKC19].

2.2.4 PrimTorch

PrimTorch addresses the complexity of PyTorch’s extensive operator set by providing a
canonicalization mechanism. It reduces the large set of operators available in PyTorch to
a smaller subset from which all operations can be constructed. The primary motivation
behind PrimTorch is to simplify the development of custom backends, making the PyTorch
ecosystem more modular and extensible. This approach also enhances the consistency and
maintainability of the framework by standardizing the building blocks used across different
components.

2.3 Neural Network Architectures

There exist a large variety of architectores for building Neural Networks. All of these have
specific hardware requirements under which they perform most efficiently. We’ll briefly

Section 2 Constantin Dalinghaus 3

What’s new with PyTorch?

review the architectures relevant for this project.

2.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) were initially proposed by Yann LeCun and col-
leagues at Bell Labs in 1989 [LeC+89]. These networks introduced a structured approach
to integrating convolutional filters within neural networks, with the parameters of these
filters being optimized through backpropagation.

CNNs inherently incorporate (among other inductive biases) the inductive bias of
locality, which assumes that local features are more pertinent than global features. This
bias is particularly advantageous when the available training data is limited. However,
when larger datasets are accessible, models without such inductive biases tend to be more
computationally efficient during training [Dos+21].

2.3.2 Transformer Models

Transformer Neural Networks are used for most modern large scale deep learning appli-
cations. Transformer Neural Networks offer a computational architecture that is very
versatile in the functions it can learn, while being very efficient to train on the hardware
that’s currently available. Transformer models underly Large Language Models, current
SOTA Image classification solutions etc. In this work, Transformer Networks are used
only in their Large Language Model form, the rationale being that outside of input and
output layers, most of the core compute graph is identical among various implementations
of the transformer architectures.

Section 2 Constantin Dalinghaus 4

What’s new with PyTorch?

3 Related Research
3.1 Compiler Optimization in Deep Learning

Compiler optimization plays a crucial role in enhancing the performance of deep learn-
ing models by efficiently translating high-level neural network definitions into hardware-
specific instructions. Various compilers and frameworks have been developed to address
the computational challenges in deep learning, with the goal of maximizing hardware
utilization and minimizing execution time.

3.1.1 Glow Compiler

Glow, an earlier attempt at creating a deep learning compiler, focuses on optimizing neural
network execution through operator lowering. Operator lowering reduces the complexity
of backend implementation by minimizing the number of operators required. This makes
it easier to optimize the performance across different hardware architectures. Glow’s
approach is conceptually similar to PyTorch 2.0’s torch.compile feature, as both aim to
streamline the execution pipeline and improve computational efficiency. However, Glow’s
emphasis on operator lowering specifically addresses the challenge of backend diversity,
ensuring that a wide range of hardware can be effectively utilized with a simplified set of
operators [Rot+18]. PyTorch 2.0 performs operator lowering during the AOT Autograd
stage.

3.1.2 TensorFlow XLA (Accelerated Linear Algebra)

TensorFlow XLA (Accelerated Linear Algebra) is an independent compiler designed to
optimize the execution of machine learning models. Unlike PyTorch 2.0, which was de-
veloped primarily for dynamic computational graphs under a "define-by-run" paradigm,
XLA was originally built to optimize static computational graphs. XLA operates by
transforming high-level operations into highly optimized low-level code, targeting specific
hardware such as CPUs, GPUs, and TPUs. This approach significantly improves execu-
tion efficiency, particularly for models that do not require dynamic graph definition. With
the introduction of OpenXLA, a more framework-agnostic fork of pure XLA, XLA now
supports multiple deep learning frameworks, including TensorFlow, JAX, and PyTorch,
enabling seamless integration and optimization across different platforms [teab].

3.1.3 Apache TVM

Apache TVM is an open-source deep learning compiler stack that provides end-to-end op-
timization for machine learning models across diverse hardware backends. Unlike PyTorch
2.0, TVM’s primary focus is optimizing performance during inference. TVM facilitates
the automatic generation of optimized code for various hardware targets, including CPUs,
GPUs, and specialized accelerators. It employs techniques such as tensorization, operator
fusion, and auto-tuning to maximize performance. TVM’s modular design also allows
developers to extend and customize the compiler for specific use cases, making it highly
adaptable to new hardware and emerging technologies [].

Section 3 Constantin Dalinghaus 5

What’s new with PyTorch?

3.1.4 ONNX (Open Neural Network Exchange)

ONNX (Open Neural Network Exchange) is an open-source format designed to represent
deep learning models in a platform-independent manner, allowing them to be transferred
between different frameworks such as PyTorch, TensorFlow, and MXNet. ONNX serves
as a bridge between different deep learning environments, enabling models trained in
one framework to be deployed in another without requiring extensive reconfiguration.
Additionally, ONNX provides a standardized interface for applying various compiler op-
timizations, ensuring that models are executed efficiently regardless of the underlying
hardware [teaa].

Section 3 Constantin Dalinghaus 6

What’s new with PyTorch?

4 Methodology
To answer the research questions, we benchmark model training for Convolutional Neu-
ral Networks and Transformer Neural Networks. CNN benchmarking was performed by
training an image classification model, Transformer benchmarking was done by training a
Large Language Model. For both architectures, we train small and medium scale models
to observe any possible impact of model size on training performance. We were unable to
train a large variant of each models due to hardware constraints.

Please note that for benchmarking LLMs and CNNs, different hardware configurations
were used, both of which are documented in the following paragraphs.

4.1 CNN Benchmarking

For CNN benchmarking, we perform one epoch of training a Resnet34 and Resnet18
model [He+16] on the full ILSVRC train dataset [Rus+15]. We evaluate three different
szenarios:

1. No model compilation

2. Torch inductor model compilation

3. Torchscript model tracing

We use the train.py script in an unmodified version of Pytorch Image Models (timm)
[Wig]. CNN benchmarking was run on a single Nvidia H100 GPU, 12 cores of Intel Xeon
Platinum 8468 processors as well as 64GB of memory. For reproduction, see the full slurm
config used in appendix 4.

4.2 LLM benchmarking

For LLM benchmarking we use a modified version of nanoGPT, an LLM training frame-
work by Andrew Karpathy [Kar] which is a pure minimal PyTorch implementation of
Large Language Models. To enable comparison of different compilation strategies, we
made modifications to the code which are documented in appendix 3.

LLM Benchmarking was performed on a single compute node using one Nvidia A100
80GB GPU, 6 cores of AMD Zen3 EPYC 7513 and using 32GB of memory. For repro-
duction, see the full slurm config used in appendix 1.

Please note that slurm partition names etc. have to be adapted to fit the compute
environment.

Section 4 Constantin Dalinghaus 7

What’s new with PyTorch?

5 Results
5.1 Results for LLM benchmarking

Table 1: Execution time in ms, per iteration
µgpt2 σgpt2 µshakespeare σshakespeare

Eager execution 3107.334 2.762 16.029 2.666
Compiled (Cudagraphs backend) 3098.297 0.956 16.828 3.935
Compiled (Inductor backend) 2640.227 5.773 12.191 1.556

Table 2: Mean Flop Utilization (mfu) in percent
µgpt2 σgpt2 µshakespeare σshakespeare

Eager execution 43.337 0.000 22.951 0.853
Compiled (Cudagraphs backend) 43.463 0.000 21.916 0.653
Compiled (Inductor backend) 51.023 0.004 29.920 0.952

Our experimental data shows a drop in mean execution time for our gpt2 training,
as well as for our shakespeare model. Notably, while the mean execution time decreases,
the variance seems to increase on the gpt2 training, while it actually decreases on the
shakespeare training (Table 1).

The mean flop utilization also showed an increase for the compiled versions of both
gpt2 and shakespeare models. In both gpt2 and shakespeare models, the variance of the
MFU increased when the model was compiled. What’s further noteworthy is that the
variance of the variance is multiple orders of magnitude lower for the gpt2 model than it
is for the smaller shakespeare model (Table 2).

5.2 Results for CNN benchmarking

For CNN benchmarking, we only measure mean execution time per training step.

Table 3: Execution time in seconds, per iteration
µresnet34 σresnet34 µresnet18 σresnet18

Eager execution 0.243 0.101 0.299 0.132
Compiled (Using torchscript) 0.229 0.097 0.144 0.049
Compiled (Inductor backend) 0.205 0.099 0.403 0.161

Our experimental data shows a negative correlation between level of compilation and
execution time per seconds for training the resnet34. Notably, this compilation is not
observed when training the smaller resnet18. The standard deviation of execution time
per iteration appears steady for the resnet34 variant. The standard deviation of execution
time per iteration for the resnet18 model is measured to be more variable.

Section 5 Constantin Dalinghaus 8

What’s new with PyTorch?

6 Discussion
6.1 Impact of Compilation on Execution Time

Our experimental data supports the hypothesis that model compilation generally improves
execution time. This was particularly evident for the GPT-2 model and the Shakespeare
model, where compiled versions (using the Inductor backend) consistently showed reduced
execution time compared to the eager execution mode. Notably, the Inductor backend
achieved a 15% decrease in execution time for GPT-2 and a 24% decrease for the Shake-
speare model (Table 1). This indicates that, at least for LLMs, compilation via the
Inductor backend offers significant performance gains.

In contrast, the CNN benchmarking results reveal a more complex relationship between
model compilation and execution time. For the ResNet34 model, execution time per
iteration decreased with increasing levels of compilation, which aligns with the expected
behavior. However, for the smaller ResNet18 model, the opposite trend was observed,
with compiled execution times being slightly higher than those in the eager execution
mode (Table 3). This discrepancy suggests that model size and complexity may influence
the efficacy of compilation optimizations, especially for smaller models.

6.2 MFU Analysis

The analysis of MFU further supports the observed trends in execution time. Compiled
versions of both the GPT-2 and Shakespeare models demonstrated improved MFU relative
to eager execution, with a notable increase in utilization for the Inductor backend (51.0%
for GPT-2 and 29.9% for the Shakespeare model, compared to 43.3% and 22.9% in eager
mode, respectively) (Table 2). These results indicate that model compilation not only
reduces execution time but also enhances GPU utilization, allowing for more efficient
hardware usage.

Interestingly, while MFU improved for the compiled models, the variance in MFU in-
creased. This suggests that compilation introduces some degree of instability in hardware
utilization, which could be a consequence of how computations are reordered or optimized
by the compiler. Despite this, the variance of MFU was significantly lower for the larger
GPT-2 model compared to the smaller Shakespeare model, indicating that larger models
may benefit more from the optimizations offered by compilation.

6.3 The ResNet18 Anomaly

The anomaly observed in the ResNet18 benchmarking results warrants further investiga-
tion. Unlike the ResNet34 model, which exhibited improved performance with compila-
tion, the ResNet18 model demonstrated an unexpected increase in execution time during
compilation with the Inductor backend. One possible explanation is that PyTorch may
apply internal optimizations during the eager execution of smaller models, which could
be disabled or made less effective when using compilation. This suggests that the ad-
vantages of compilation might not be fully realized for smaller models, potentially due
to heuristics or thresholds employed by the framework. More detailed profiling of the
PyTorch internals during model training would be necessary to identify the root cause of
this behavior.

Section 6 Constantin Dalinghaus 9

What’s new with PyTorch?

6.4 Verification of PyTorch Compilation Claims

Our findings generally validate the claims made by the PyTorch Foundation regarding the
benefits of using torch.compile(). Across multiple models and hardware configurations,
we observed that (1) torch.compile() works as expected without requiring significant
changes to the codebase, (2) it frequently provides notable performance improvements,
particularly in terms of execution time and GPU utilization, and (3) it increases hardware
efficiency as evidenced by the enhanced MFU values. These results are in line with
PyTorch’s documentation, which emphasizes the ease of use and automatic optimization
features of torch.compile().

6.5 Business Implications

The implications of these findings extend beyond academic research and can be directly
applied in industry, particularly for businesses looking to optimize training time and
resource utilization. For larger models such as GPT-2, where compilation provides a clear
reduction in execution time and improved GPU utilization, adopting torch.compile()
can result in substantial cost savings, especially in environments where model training is
computationally expensive.

However, caution is advised for smaller models like ResNet18, where compilation did
not provide the expected performance gains. In such cases, alternative compilation strate-
gies, such as using TorchScript, might offer better performance without introducing the
overhead seen with the Inductor backend. This highlights the need for businesses to tailor
their model optimization strategies based on the specific characteristics of their models
and workloads.

6.6 Limitations and Future Work

Although our benchmarking results are comprehensive, they are constrained by the hard-
ware limitations that prevented the evaluation of larger models. Future work should focus
on extending the benchmarks to larger CNN and LLM models to better understand how
scaling affects compilation performance. Additionally, further investigation into the in-
ternal optimizations employed by PyTorch during eager execution could shed light on the
observed anomalies with smaller models, such as ResNet18. Profiling tools could also be
employed to provide more detailed insights into how compilation affects memory manage-
ment and computational efficiency, particularly in mixed-precision training scenarios.

Overall, this study demonstrates the potential benefits of model compilation but also
highlights the importance of considering model size and hardware constraints when op-
timizing training workflows. The general applicability of torch.compile() to a range
of models suggests that it can be a valuable tool in improving training efficiency, but
the presence of edge cases like the ResNet18 anomaly underscores the need for further
research.

Section 6 Constantin Dalinghaus 10

What’s new with PyTorch?

7 Conclusion
This study has evaluated the impact of model compilation on the training performance of
Convolutional Neural Networks (CNNs) and Transformer-based models (Large Language
Models, LLMs). Our findings demonstrate that model compilation, particularly with
the Inductor backend, generally leads to significant reductions in execution time and
improvements in hardware utilization, as evidenced by increased Mean Flop Utilization
(MFU). These effects were particularly prominent in larger models, such as GPT-2 and
Shakespeare, where compilation led to performance gains of up to 24% in execution time
and increased GPU efficiency.

However, the results for smaller models, such as ResNet18, present a more complex pic-
ture. In some cases, compiled models exhibited slower execution times compared to eager
execution, suggesting that model size and complexity play a critical role in determining
the efficacy of compilation. This observation points to potential internal optimizations in
PyTorch that may be more favorable for smaller models under eager execution.

Overall, this study confirms the advantages of utilizing PyTorch’s torch.compile() for
model training, especially for large-scale models. Nevertheless, the observed discrepancies
in smaller models, such as the ResNet18 anomaly, highlight the need for further investi-
gation into the conditions under which model compilation may be less effective. Future
research should explore larger models and additional optimization strategies to refine the
use of compilation techniques, particularly in varied hardware environments.

In conclusion, while model compilation offers significant benefits in terms of execution
speed and hardware utilization, practitioners must consider model size and underlying
optimizations when implementing these techniques in production environments. This
study provides valuable insights into the trade-offs involved in model compilation and
underscores the need for continued exploration in this area to fully unlock its potential
across a broader range of applications.

Section 7 Constantin Dalinghaus 11

What’s new with PyTorch?

References
[] Apache TVM — tvm.apache.org. https://tvm.apache.org/. [Accessed 19-

09-2024].

[Dos+21] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale. 2021. arXiv: 2010.11929 [cs.CV]. url: https:
//arxiv.org/abs/2010.11929.

[Foua] PyTorch Foundation. PyTorch 2.0: Our next generation release that is faster,
more Pythonic and Dynamic as ever — pytorch.org. https://pytorch.org/
blog/pytorch-2.0-release/. [Accessed 10-08-2024].

[Foub] The PyTorch Foundation. PyTorch Design Philosophy 2014; PyTorch 2.4 doc-
umentation — pytorch.org. https://pytorch.org/docs/stable/community/
design.html. [Accessed 12-09-2024].

[He+16] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: June
2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[Kar] Andrew Karpathy. GitHub - karpathy/nanoGPT: The simplest, fastest repos-
itory for training/finetuning medium-sized GPTs. — github.com. https://
github.com/karpathy/nanoGPT. [Accessed 21-08-2024].

[LeC+89] Y. LeCun et al. “Backpropagation Applied to Handwritten Zip Code Recogni-
tion”. In: Neural Computation 1.4 (Dec. 1989), pp. 541–551. issn: 0899-7667.
doi: 10.1162/neco.1989.1.4.541. eprint: https://direct.mit.edu/
neco/article- pdf/1/4/541/811941/neco.1989.1.4.541.pdf. url:
https://doi.org/10.1162/neco.1989.1.4.541.

[Rot+18] Nadav Rotem et al. Glow: Graph Lowering Compiler Techniques for Neural
Networks. May 2018.

[Rus+15] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”.
In: International Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–
252. doi: 10.1007/s11263-015-0816-y.

[teaa] ONNX dev team. ONNX | Home — onnx.ai. https://onnx.ai/. [Accessed
19-09-2024].

[teab] OpenXLA dev team. OpenXLA Project — openxla.org. https://openxla.
org/. [Accessed 19-09-2024].

[TKC19] Philippe Tillet, H. T. Kung, and David Cox. “Triton: an intermediate lan-
guage and compiler for tiled neural network computations”. In: Proceedings
of the 3rd ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages. MAPL 2019. Phoenix, AZ, USA: Association for
Computing Machinery, 2019, pp. 10–19. isbn: 9781450367196. doi: 10.1145/
3315508.3329973. url: https://doi.org/10.1145/3315508.3329973.

Section 7 Constantin Dalinghaus 12

https://tvm.apache.org/
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://pytorch.org/blog/pytorch-2.0-release/
https://pytorch.org/blog/pytorch-2.0-release/
https://pytorch.org/docs/stable/community/design.html
https://pytorch.org/docs/stable/community/design.html
https://doi.org/10.1109/CVPR.2016.90
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://doi.org/10.1162/neco.1989.1.4.541
https://direct.mit.edu/neco/article-pdf/1/4/541/811941/neco.1989.1.4.541.pdf
https://direct.mit.edu/neco/article-pdf/1/4/541/811941/neco.1989.1.4.541.pdf
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1007/s11263-015-0816-y
https://onnx.ai/
https://openxla.org/
https://openxla.org/
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973

What’s new with PyTorch?

[Wig] Ross Wightman. GitHub - huggingface/pytorch-image-models: The largest col-
lection of PyTorch image encoders / backbones. Including train, eval, infer-
ence, export scripts, and pretrained weights – ResNet, ResNeXT, EfficientNet,
NFNet, Vision Transformer (ViT), MobileNetV4, MobileNet-V3 & V2, Reg-
Net, DPN, CSPNet, Swin Transformer, MaxViT, CoAtNet, ConvNeXt, and
more — github.com. https://github.com/huggingface/pytorch-image-
models. [Accessed 10-08-2024].

[Xco17] X.com. X (formerly Twitter). https://x.com/karpathy/status/868178954032513024.
May 2017.

Section Constantin Dalinghaus 13

https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models
https://x.com/karpathy/status/868178954032513024

What’s new with PyTorch?

A Work sharing
There was no work sharing during this project.

B Code samples
B.1 Reproducing LLM training

Find below config and diff files to reproduce our results for LLM training. For more
information, see Method section.

1 #! /bin/bash
2 #SBATCH -c 6
3 #SBATCH --mem 32G
4 #SBATCH -p grete:shared
5 #SBATCH -t 720
6 #SBATCH -G A100:1
7 source ~/.bashrc
8 mamba activate scap
9 [REPLACE THIS WITH TRAIN COMMAND]

Listing 1: .sbatch configuration file for reproducing the results for LLM benchmarking

1 Train commands for training shakespeare LLM:
2 python train.py config/train_shakespeare_char.py --compile=True \
3 --compile_inductor=True
4 python train.py config/train_shakespeare_char.py --compile=True \
5 --compile_cudagraphs=True
6 python train.py config/train_shakespeare_char.py --compile=False
7

8 Train commands for training GPT-2:
9 python train.py config/train_gpt2.py --compile=True \

10 --compile_inductor=True
11 python train.py config/train_gpt2.py --compile=True \
12 --compile_cudagraps=True
13 python train.py config/train_gpt2.py --compile=False

Listing 2: Commands for reproducing the results for LLM benchmarking to be used in 1

B.2 Reproducing CNN training

Find below config and diff files to reproduce our results for CNN training. Please note that
no modification of timm source code is required. To exactly reproduce our experiments,

Section B Constantin Dalinghaus A1

What’s new with PyTorch?

use timm version 1.0.3. For more information, see Method section.

Section B Constantin Dalinghaus A2

What’s new with PyTorch?

1 diff --git a/train.py b/train.py
2 index 951bda9..63c579a 100644
3 --- a/train.py
4 +++ b/train.py
5 @@ -72,6 +72,8 @@ backend = 'nccl' # 'nccl', 'gloo', etc.
6 device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1' etc., \
7 or try 'mps' on macbooks
8 dtype = 'bfloat16' if torch.cuda.is_available() and \
9 torch.cuda.is_bf16_supported() else 'float16' # 'float32', 'bfloat16',\

10 or 'float16', the latter will auto implement a GradScaler
11 compile = True # use PyTorch 2.0 to compile the model to be faster
12 +compile_inductor = False
13 +compile_cudagraphs = False
14 # --\
15 ---------
16 config_keys = [k for k,v in globals().items() if not k.startswith('_') \
17 and isinstance(v, (int, float, bool, str))]
18 exec(open('configurator.py').read()) # overrides from command line or \
19 config file
20 @@ -205,7 +207,21 @@ checkpoint = None # free up memory
21 if compile:
22 print("compiling the model... (takes a ~minute)")
23 unoptimized_model = model
24 - model = torch.compile(model) # requires PyTorch 2.0
25 +
26 + if compile_inductor:
27 + print("Compiling with inductor")
28 + model = torch.compile(model, backend="inductor")
29 + elif compile_cudagraphs:
30 + print("Compiling with cudagraphs")
31 + torch.compile(model, backend="cudagraphs")
32 + else:
33 + print("compiling with default settings")
34 + model = torch.compile(model) # requires PyTorch 2.0
35 +else:
36 + print("Not compiling the model")
37 +
38 +
39 +
40

41 # wrap model into DDP container
42 if ddp:
43

Listing 3: Changes made to karpathy/nanoGPT for benchmarking different compilation
methods

Section B Constantin Dalinghaus A3

What’s new with PyTorch?

1 #! /bin/bash
2 #SBATCH -c 12
3 #SBATCH --mem 64G
4 #SBATCH -p grete-h100
5 #SBATCH -t 2880
6 #SBATCH -G H100:1
7 source ~/.bashrc
8 mamba activate scap_timm
9 [REPLACE THIS WITH TRAIN COMMAND]

Listing 4: .sbatch configuration file for reproducing the results for CNN benchmarking

1 Train commands for training resnet 18
2 python train.py /scratch/usr/nimdalin/scap_timm/imagenet-1k/data \
3 --model resnet18
4 python train.py /scratch/usr/nimdalin/scap_timm/imagenet-1k/data \
5 --model resnet18 --torchcompile inductor
6 python train.py /scratch/usr/nimdalin/scap_timm/imagenet-1k/data \
7 --model resnet18 --torchscript
8

9 Train commands for training resnet 34
10 python train.py /scratch/usr/nimdalin/scap_timm/imagenet-1k/data \
11 --model resnet34
12 python train.py /scratch/usr/nimdalin/scap_timm/imagenet-1k/data \
13 --model resnet34 --torchcompile inductor
14 python train.py /scratch/usr/nimdalin/scap_timm/imagenet-1k/data \
15 --model resnet34 --torchscript

Listing 5: Commands for reproducing the results for LLM benchmarking to be used in 4

Section B Constantin Dalinghaus A4

	Contents
	List of Tables
	List of Figures
	List of Listings
	List of Abbreviations
	Introduction
	Background
	PyTorch
	PyTorch 2.0
	Torch Dynamo
	AOT Autograd
	Torch Inductor
	PrimTorch

	Neural Network Architectures
	Convolutional Neural Networks
	Transformer Models

	Related Research
	Compiler Optimization in Deep Learning
	Glow Compiler
	TensorFlow XLA (Accelerated Linear Algebra)
	Apache TVM
	ONNX (Open Neural Network Exchange)

	Methodology
	CNN Benchmarking
	LLM benchmarking

	Results
	Results for LLM benchmarking
	Results for CNN benchmarking

	Discussion
	Impact of Compilation on Execution Time
	MFU Analysis
	The ResNet18 Anomaly
	Verification of PyTorch Compilation Claims
	Business Implications
	Limitations and Future Work

	Conclusion
	References
	Work sharing
	Code samples
	Reproducing LLM training
	Reproducing CNN training

