
SH

∞

Seminar Report

Continuous Integration For OCR-D In
HPC

Abdallah Abdelnaby

MatrNr: 19334664

Supervisor: Giorgi Mamulashvili

Georg-August-Universität Göttingen
Institute of Computer Science

August 20, 2024

Abstract
The integration of DevOps approaches with High-Performance Computing (HPC) envi-
ronments for Optical Character Recognition Development (OCR-D) workflows provides
considerable improvements in efficiency, repeatability, collaboration, and scalability. This
research shows how using CI/CD pipelines, containerization, and automation may im-
prove traditional manual OCR procedures. Key findings include a significant reduction
in processing times on HPC compared to ordinary PCs, especially for bigger datasets,
demonstrating the efficiency benefits possible with HPC capabilities. Standard PCs, on
the other hand, are more efficient for minor jobs (less than 35 pages) due to HPC systems’
scheduling overhead. Automation using Infrastructure as Code (IaC) enables uniform and
repeatable environments, which improves reliability. The use of centralized version control
and automated workflows promotes cooperation, and containerization using Singularity
allows for scalability across several HPC resources. This research demonstrates the revolu-
tionary power of merging current software development processes with high-performance
computing, while also providing a solid foundation for future scientific computing ad-
vancements.

i

Declaration on the use of ChatGPT and comparable tools
in the context of examinations

In this work I have used ChatGPT or another AI as follows:

□ Not at all

✓□ During brainstorming

□ When creating the outline

□ To write individual passages, altogether to the extent of 0% of the entire text

□ For the development of software source texts

□ For optimizing or restructuring software source texts

□ For proofreading or optimizing

□ Further, namely: -

I hereby declare that I have stated all uses completely.
Missing or incorrect information will be considered as an attempt to cheat.

ii

Contents

List of Tables iv

List of Figures iv

List of Listings iv

List of Abbreviations v

1 Introduction 1
1.1 Motivation and Objectives . 1

1.1.1 Motivation . 1
1.1.2 Objectives . 2

2 Methodology 3
2.1 Project Architecture . 3
2.2 Project Setup . 4

2.2.1 Environment Preparation . 4
2.2.2 GitLab Repository . 4
2.2.3 GitLab Runner . 4

2.3 C (CI/CD) Pipeline Stages . 4
2.3.1 SSH Connection Setup . 5
2.3.2 Upload Data and Workflows to High-Performance Computing (HPC) 5
2.3.3 Singularity Image Creation . 5
2.3.4 Download O (OCR-D) Models . 6
2.3.5 Submit Workflow Job . 6
2.3.6 Fetch Results . 7
2.3.7 Workspace Cleanup . 7

2.4 GitLab Variables . 7
2.5 Nextflow OCR-D Workflow . 8

3 Results 8
3.1 Segmentation . 8
3.2 Line Detection . 9
3.3 Text Recognition . 9
3.4 The Processing Time . 9

4 Discussion 10

5 Conclusion 11

References 12

A Code samples A1

iii

List of Tables
1 Comparison of Processing Times on HPC and PC. 9

List of Figures
1 Project Architecture . 4
2 Segmentation Results . 8
3 Line Detection Results . 9
4 Text Recognition Results . 9
5 Time Comparison Chart . 10

List of Listings
1 "Setup SSH Connection" in YAML . 5
2 "Upload to HPC" in YAML . 5
3 "Create Singularity Image" in YAML . 5
4 "Download OCR-D Models" in YAML . 6
5 "Submit Workflow Job" in YAML . 6
6 "Fetch Results" in YAML . 7

iv

List of Abbreviations
HPC High-Performance Computing

OCR-D Optical Character Recognition Development

DevOps Development Operations

IaC Infrastructure as Code

CI/CD Continuous Integration / Continuous Delivery

CPU Central Processing Unit

GB Gigabyte(s)

XML Extensible Markup Language

GWDG Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen

v

1 Introduction
In recent years, the convergence of D (DevOps) methods with High-Performance Comput-
ing (HPC) has emerged as a viable strategy for improving the efficiency and reliability of
scientific computing. DevOps, a combination of "development" and "operations," refers
to a culture shift and set of practices designed to improve cooperation between software
development and IT operations teams [Nuy23]. DevOps’ main ideas include Continuous
Integration/Continuous Delivery (CI/CD), Infrastructure as Code (I (IaC)), automation,
and monitoring, all of which lead to shorter development cycles, better collaboration, and
greater system stability [SHH18] [RMF20].

HPC environments are designed to deal with large-scale computations and big datasets,
and are commonly utilized in sectors such as scientific research, engineering, and data
analysis [Nuy23]. Historically, these settings depended on manual procedures and custom
workflows, which were time-consuming and prone to mistakes [Nuy23] [SHH18] [RMF20].
HPC systems that use DevOps approaches might benefit from automated processes, uni-
form infrastructure, and short deployment cycles [Cou23]. This project investigates the
integration of DevOps methods into HPC, with a special focus on operating OCR-D pro-
cesses. OCR-D is an optical character recognition (OCR) software for digitizing historical
documents and manuscripts [OCR24]. The objective is to establish a seamless CI/CD
pipeline that automates the execution of OCR-D workflows on HPC equipment resulting
to a simple and faster document digitization.

The project’s goals are to build a continuous integration system for OCR-D in an
HPC environment and to make it easier to execute OCR-D workflows using an auto-
mated CI/CD pipeline. The pipeline is designed to handle a variety of steps, including
connecting to the HPC environment and fetching OCR-D Docker images, as well as build-
ing Singularity images, uploading data and scripts, sending OCR jobs, getting results, and
executing cleanup chores.

By adopting this DevOps methodology in an HPC environment, the project hopes to
illustrate the benefits of automation, repeatability, and efficiency in scientific computing.
The incorporation of OCR-D processes demonstrates how contemporary software devel-
opment approaches may be used to improve the capabilities and performance of HPC
systems.

1.1 Motivation and Objectives

1.1.1 Motivation

The motivation for this project arises from the need to update and optimize scientific
computing procedures, particularly in the field of Optical Character Recognition (OCR)
in Digital Humanities. Traditional HPC systems, while powerful, sometimes rely on
inefficient and error-prone manual operations. This can result in inefficiencies, uneven
findings, and challenges in cooperation and reproducibility. By incorporating DevOps
methods into HPC, we may overcome these issues and achieve various benefits.

1. Efficiency and speed: DevOps approaches like Continuous Integration/Continuous
Delivery (CI/CD) may greatly accelerate development and deployment cycles, en-
suring that updates and enhancements are quickly integrated and distributed.

2. Reproducibility: Automation and Infrastructure as Code (IaC) make environments
more consistent and repeatable, lowering the chance of errors and making it easier
to duplicate findings across multiple systems.

3. Collaboration: Centralized version control and automated processes improve coop-
eration between researchers, developers, and operators, allowing them to operate
smoothly together.

4. Reliability and Consistency: Automated testing, monitoring, and deployment pipelines
improve software and workflow reliability by assuring consistent performance under
various situations.

5. Scalability: Containerization solutions such as Singularity allow us to efficiently
scale applications across diverse HPC resources, maximizing the most of available
computational power.

1.1.2 Objectives

The major goal of this project is to provide a continuous integration and delivery mech-
anism for executing OCR-D processes on HPC equipment. Specifically, the initiative
intends to:

1. Create a CI/CD Pipeline: Using GitLab and GitLab Runner, automate the various
phases of OCR-D process execution on HPC computers.

2. Implement Containerization: Use Singularity to containerize the OCR-D environ-
ment, ensuring portability and consistency across several HPC nodes.

3. Automate Data and Workflow Management: Automate the process of uploading
data, workflows, and required scripts to the HPC environment, decreasing manual
intervention and error.

4. Streamline Job Submission: Create scripts to automate the submission of OCR jobs
to the HPC scheduler, ensuring that jobs are managed effectively and resources are
used appropriately.

5. Retrieve and Process Results: Automate the retrieval of OCR job results and use
technologies such as LAREX to improve the readability and usability of OCR out-
put.

6. Optimize Resource Utilization: Investigate strategies for increasing processing speed
via parallelization and the usage of proxy servers, as well as optimizing the pipeline
to manage several concurrent operations.

7. Improve cooperation and Reproducibility: Make certain that the whole workflow,
from code and data management to task execution and result processing, is managed
in a way that encourages cooperation and reproducibility among researchers and
developers.

By attaining these goals, the project hopes to demonstrate the efficacy of incorporat-
ing DevOps methods into HPC systems, hence delivering a solid, efficient, and scalable
solution for OCR-D operations. This connection not only enhances the overall efficiency
and reliability of OCR activities but also paves the way for modernizing other scientific
computing procedures using DevOps approaches.

2 Methodology
The process for incorporating DevOps approaches into High-Performance Computing
(HPC) to perform OCR-D processes consists of many critical phases and components.
This section describes the procedures, technologies, and tools utilized to meet the project’s
goals, resulting in a streamlined and automated workflow for OCR jobs on HPC equip-
ment.

2.1 Project Architecture

Figure 1 shows a CI/CD (Continuous Integration/Continuous Deployment) architecture
that uses GitLab in combination with (G (GWDG)) (HPC) environment. The GitLab
repository is at the center of this system, storing critical components such as batch scripts,
workflows, data, results, and the.gitlab-ci.yml configuration file. This repository is essen-
tial for managing the project’s source code and CI/CD setups.

The GitLab Runner in the GÖNET Nework executes CI/CD jobs described in the.gitlab-
ci.yml file. It connects to the HPC environment via SSH, ensuring that the most recent
code and pipeline definitions are pulled from the GitLab repository. The HPC environ-
ment itself consists of several components. The front end hosts, gwdu101, gwdu102, and
gwdu103, are the principal access points for HPC resources, managing user logins and
task submissions.

The SLURM scheduler is crucial to job management in the HPC environment, since
it distributes resources and assigns jobs to the proper computer nodes where the compu-
tational operations are performed. The HPC configuration has two file systems: HOME,
which stores user files and scripts permanently, and SCRATCH, which stores interme-
diate data and results temporarily. NextFlow, a workflow management system, is used
to create and run sophisticated data processing pipelines, which communicate with the
SLURM scheduler to efficiently manage activities across HPC resources.

A node with the hostname transfer-mdc.hpc.gwdg.de enables efficient data transfer
between the HPC environment and external systems, which is crucial for operations that
need huge datasets. The OCR-D Docker image, which includes the OCR-D (Optical
Character Recognition - D) software environment, is converted into an OCR-D Singularity
SIF (Singularity Image Format) for use in an HPC environment. Singularity is chosen
over Docker in HPC environments because to its compatibility and performance benefits.

In this design, the workflow begins with a developer pushing changes to the GitLab
repository. The GitLab Runner detects these changes and initiates the CI/CD pipeline,
which connects to the HPC front-end hosts via SSH. Batch scripts and workflows from the
repository are then sent to the SLURM scheduler, which assigns resources and runs the
tasks on the computer nodes. NextFlow orchestrates processes, using the OCR-D Singu-
larity SIF for specific tasks, and stores intermediate and final outcomes in the SCRATCH
and HOME filesystems. Large datasets are transported through the data transfer node
when needed, resulting in efficient data handling throughout the process.

Figure 1: Project Architecture.

2.2 Project Setup

2.2.1 Environment Preparation

• Singularity Containerization: Create a Singularity Image File (SIF) from the
OCR-D Docker image using a batch script (batch_create_ocrd_all_maximum_sif.sh).
Singularity is chosen for its compatibility with HPC environments.

• OCR-D Models: Download necessary OCR-D models using a script
(batch_download_ocrd_all_models.sh).

2.2.2 GitLab Repository

• Repository Structure: Organize the repository to include scripts, workflows, and
data directories. This structure ensures that all components required for the OCR-D
workflows are version-controlled and easily accessible.

• CI/CD Configuration: Set up the .gitlab-ci.yml file to define the CI/CD
pipeline stages.

2.2.3 GitLab Runner

• Configuration: The GitLab Runner has to be configured in a network that could
access the HPC data transfer endpoint

2.3 CI/CD Pipeline Stages

2.3.1 SSH Connection Setup

Listing 1 Ensures SSH keys are securely set up and available as environment variables in
GitLab. This stage establishes a connection to the HPC environment.

1 setup_ssh:
2 stage: setup_ssh
3 script:
4 - mkdir -p ~/.ssh
5 - echo "$SSH_PRIVATE_KEY" | tr -d '\r' > ~/.ssh/id_rsa
6 - chmod 600 ~/.ssh/id_rsa
7 - echo "$SSH_KNOWN_HOSTS" > ~/.ssh/known_hosts

Listing 1: "Setup SSH Connection" in YAML

2.3.2 Upload Data and Workflows to HPC

Listing 2 Uses upload_to_hpc.sh to transfer data, workflows, and batch scripts to the
HPC environment through the HPC transfer endpoint.

1 upload_to_hpc:
2 stage: upload_to_hpc
3 needs:
4 - setup_ssh
5 only:
6 - tags
7 script:
8 - |
9 WORKSPACE_NAME=${CI_COMMIT_REF_NAME}

10 bash scripts/upload_to_hpc.sh $WORKSPACE_NAME $SCRATCH_BASE

Listing 2: "Upload to HPC" in YAML

2.3.3 Singularity Image Creation

Listing 3 Schedules the batch script to create the Singularity SIF from the OCR-D Docker
image using sbatch.

1 create_singularity_image:
2 stage: setup
3 needs:
4 - upload_to_hpc
5 only:
6 - tags
7 script:
8 - sbatch $SCRATCH_BASE/$WORKSPACE_NAME/scripts/batch_create_ocrd_all_maximum_sif.sh

Listing 3: "Create Singularity Image" in YAML

2.3.4 Download OCR-D Models

Listing 4 Schedules the batch script to download the OCR-D models using sbatch.

1 download_ocrd_models:
2 stage: download_models
3 needs:
4 - setup_environment
5 only:
6 - tags
7 script:
8 - sbatch $SCRATCH_BASE/$WORKSPACE_NAME/scripts/batch_download_ocrd_all_models.sh

Listing 4: "Download OCR-D Models" in YAML

2.3.5 Submit Workflow Job

Listing 5 Schedules the batch script to submit the OCR job to the HPC scheduler using
sbatch.

1 submit_ocrd_job:
2 stage: submit_job
3 needs:
4 - download_ocrd_models
5 only:
6 - tags
7 script:
8 - |
9 WORKSPACE_NAME=${CI_COMMIT_REF_NAME}

10 JOB_ID=${CI_COMMIT_REF_NAME}_job
11 sbatch $SCRATCH_BASE/$WORKSPACE_NAME/scripts/submit_workflow_job.sh $SCRATCH_BASE $JOB_ID workflows/default_workflow.nf DEFAULT $WORKSPACE_NAME
12 artifacts:
13 paths:
14 - $SCRATCH_BASE/$JOB_ID/

Listing 5: "Submit Workflow Job" in YAML

2.3.6 Fetch Results

Listing 6 Uses fetch_results.sh to retrieve the job results and store them in the repos-
itory.

1 fetch_results:
2 stage: fetch_results
3 needs:
4 - submit_ocrd_job
5 only:
6 - tags
7 script:
8 - |
9 WORKSPACE_NAME=${CI_COMMIT_REF_NAME}

10 JOB_ID=${CI_COMMIT_REF_NAME}_job
11 bash scripts/fetch_results.sh $SCRATCH_BASE $JOB_ID results/$WORKSPACE_NAME
12 artifacts:
13 paths:
14 - results/

Listing 6: "Fetch Results" in YAML

2.3.7 Workspace Cleanup

Implement cleanup procedures to delete or move data from the HPC scratch space after
job completion to maintain a tidy working environment.

2.4 GitLab Variables

The following variables need to be set in GitLab Settings for CI/CD Pipeline:

• SSH_PRIVATE_KEY: Your private SSH key content

• SCRATCH_BASE: Path to scratch base

• HPC_USER: HPC username

• HPC_HOST: HPC host

• GITLAB_USER: GitLab username

• GITLAB_TOKEN: GitLab Access Token

• WORKSPACE_NAME: Workspace inside the data directory to be processed.

• WORKFLOW_ID: Workflow file name inside the workflows directory to be used in
processing

• C (CPU)_COUNT: Number of CPUs cores

• RAM_SIZE: Number of RAMs Gigabytes

2.5 Nextflow OCR-D Workflow

The OCR-D workflow is parallelized to leverage the computational power of the HPC:

• Data Chunking: The whole amount of pages is broken into smaller chunks, which
are handled individually. The chunking process is controlled by dividing the pages
into ranges, which allows many processors to handle various ranges at the same
time.

• Resource Allocation: Each chunk is allocated a portion of the total CPUs and RAM.
For example, if 64 CPUs and 128G (GB) RAM are available and the work is divided
into eight pieces, each chunk can utilize 8 CPUs and 16GB RAM.

• Concurrent Processing: All phases of the OCR workflow (e.g., binarization, crop-
ping, denoising, deskewing, segmentation, dewarping, and text recognition) are car-
ried out simultaneously across many chunks. This guarantees that numerous pages
are handled concurrently, which considerably reduces total processing time.

• Synchronization: The outputs of each stage are synced. After separate page ranges
are analyzed, the data are combined to produce the final output.

3 Results
The OCR-D findings are delivered in Page E (XML) format, which may be difficult to
comprehend immediately. To improve readability, the findings are shown using LAREX,
an open-source Page XML reader. The OCR-D results show three different stages:

3.1 Segmentation

During this stage, the scanned page is divided into different sections such as text blocks,
pictures, and tables. Each area is recognized and defined to assist in distinguishing be-
tween different forms of material. Figure 2 depicts the segmentation results, displaying
how the page content is divided into distinct sections.

Figure 2: Region Segmentation Results.

3.2 Line Detection

After segmentation, line detection is used to identify individual lines of text inside text
blocks. This phase is critical for structuring the text and preparing it for further process-
ing. Figure 3 displays the line detection findings, with highlighted lines within the text
blocks.

Figure 3: Line Detection Results.

3.3 Text Recognition

The last stage involves converting the identified lines of text into machine-readable text.
This entails identifying certain letters and phrases inside each line. Figure 4 displays the
text recognition results, which include the recovered text from the scanned paper.

Figure 4: Text Recognition Results.

3.4 The Processing Time

Due to variations in computing power and parallel processing capabilities, the processing
time and efficiency of HPC and a standard PC might differ dramatically. Table 1 shows
a comparison based on sample data. In Table 1, 128GB of RAM and 64 CPU cores were
allocated in the HPC, and 16GB of RAM and 8 CPU cores were allocated in the PC.

Table 1: Comparison of Processing Times on HPC and PC.
Pages Number HPC Time(min) PC Time(min)
1 15 6
10 16 9
50 21 25
100 33 64
300 60 181

Figure 5 identifies the relation between the number of pages and the processing time
on HPC and PC

Figure 5: Time Comparison Chart.

4 Discussion
The incorporation of DevOps approaches into High-Performance Computing (HPC) sys-
tems, particularly for Optical Character Recognition Development (OCR-D) operations,
displays a number of important advances and tangible advantages. This research clearly
demonstrates the possibility of using CI/CD pipelines, containerization, and automation
to enhance HPC procedures that have previously been manual and error prone.

Efficiency and Speed: The project demonstrates how DevOps methodologies may
significantly speed up development and deployment processes. By automating the OCR-D
procedures, the system shortens the time necessary to digitize historical documents, which
is crucial for projects with huge datasets. The results show that HPC processing times
were much faster than conventional PCs, particularly as the number of pages rose. This
demonstrates the efficiency benefits that may be achieved by combining HPC resources
with DevOps approaches.

Figure 5 illustrates an interesting observation: for a lesser number of pages (less than
35 in the test scenarios), the PC is actually more efficient and quicker than the HPC
setup since it requires less time. This phenomenon is likely to be due to the schedul-
ing overhead on HPC systems, which can cause delays that are more visible with lesser
workloads. For bigger workloads, however, the HPC’s higher processing capacity becomes
clear, dramatically lowering total processing time.

Reproducibility and Reliability: Automation using Infrastructure as Code (IaC) makes
environments consistent and repeatable. This decreases the possibility of human mistake
while increasing the repeatability of outcomes, which is critical in scientific research.
The automated pipeline comprises phases for connecting to HPC, downloading required
pictures, uploading data, submitting tasks, and receiving results, all of which contribute
to a dependable and consistent workflow.

Cooperation and Scalability: The use of centralized version control (GitLab) and
automated workflows fosters better cooperation among researchers, developers, and oper-
ators. This simplified method enables greater cooperation and shared progress tracking.
Furthermore, containerization with Singularity improves scalability, allowing for effective
utilization of processing capacity across several HPC resources.

Processing Time Comparison: A comparison of processing times between HPC and
regular PC systems demonstrates the huge performance gains given by HPC. For example,
processing 300 pages takes 60 minutes on HPC versus 181 minutes on a regular PC. This
significant gap highlights the HPC’s better capacity to handle large-scale OCR operations
effectively.

5 Conclusion
This project successfully incorporates DevOps approaches and HPC settings to optimize
OCR-D procedures, resulting in significant improvements in efficiency, repeatability, co-
operation, and scalability. Implementing a CI/CD pipeline automates and simplifies the
OCR process, greatly lowering processing times and improving result dependability.

The research emphasizes the revolutionary power of merging current software devel-
opment approaches with high-performance computers. By automating the OCR-D pro-
cedure and utilizing HPC resources, the project not only speeds up the digitalization of
historical documents, but also provides reliable and repeatable results.

Future work might look at more improvements, such as parallelizing processes for
quicker processing, leveraging proxy servers for better speed, and including other tools
like LAREX for direct result uploads. This project exemplifies how modern DevOps
principles may be successfully applied to scientific computing, laying the groundwork for
future advancements in the field.

References
[Cou23] Ludovic Courtès. Continuous integration and continuous delivery for HPC.

2023. url: %5Curl%7Bhttps://hpc.guix.info/blog/2023/03/contiguous-
integration-and-continuous-delivery-for-hpc/%7D (visited on 03/06/2023).

[Nuy23] P. Nuyujukian. “Leveraging DevOps for Scientific Computing”. In: Review of
Scientific Instruments (Oct. 2023). url: https://doi.org/10.48550/arXiv.
2310.08247.

[OCR24] OCR-D. OCR-D Documentation. 2024. url: %5Curl%7Bhttps://ocr-d.de/
en/%7D (visited on 07/06/2024).

[RMF20] F. Reghenzani, G. Massari, and W. Fornaciari. “Timing Predictability in High-
Performance Computing With Probabilistic Real-Time”. In: (Nov. 2020). url:
http://dx.doi.org/10.1109/ACCESS.2020.3038559.

[SHH18] Z. R. Sampedro, A. Holt, and T. Hauser. “Continuous Integration and Delivery
for HPC: Using Singularity and Jenkins”. In: (July 2018). url: http://dx.
doi.org/10.1145/3219104.3219147.

%5Curl%7Bhttps://hpc.guix.info/blog/2023/03/contiguous-integration-and-continuous-delivery-for-hpc/%7D
%5Curl%7Bhttps://hpc.guix.info/blog/2023/03/contiguous-integration-and-continuous-delivery-for-hpc/%7D
https://doi.org/10.48550/arXiv.2310.08247
https://doi.org/10.48550/arXiv.2310.08247
%5Curl%7Bhttps://ocr-d.de/en/%7D
%5Curl%7Bhttps://ocr-d.de/en/%7D
http://dx.doi.org/10.1109/ACCESS.2020.3038559
http://dx.doi.org/10.1145/3219104.3219147
http://dx.doi.org/10.1145/3219104.3219147

A Code samples
Nexflow Workflow Example

1 nextflow.enable.dsl=2
2

3 process split_page_ranges {
4 maxForks params.forks
5 cpus params.cpus_per_fork
6 memory params.ram_per_fork
7 debug true
8

9 input:
10 val range_multiplier
11 output:
12 env mets_file_chunk
13 env current_range_pages
14 script:
15 """
16 current_range_pages=\$(${params.singularity_wrapper} /
17 ocrd workspace -d ${params.workspace_dir} list-page /
18 -f comma-separated -D ${params.forks} -C ${range_multiplier})
19 echo "Current range is: \$current_range_pages"
20 mets_file_chunk=\$(echo ${params.workspace_dir}/mets_${range_multiplier}.xml)
21 echo "Mets file chunk path: \$mets_file_chunk"
22 \$(${params.singularity_wrapper} cp -p ${params.mets} \$mets_file_chunk)
23 """
24 }
25

26 process ocrd_cis_ocropy_binarize {
27 maxForks params.forks
28 cpus params.cpus_per_fork
29 memory params.ram_per_fork
30 debug true
31

32 input:
33 val mets_file_chunk
34 val page_range
35 val input_group
36 val output_group
37 output:
38 val mets_file_chunk
39 val page_range
40

41 script:
42 """
43 ${params.singularity_wrapper} ocrd-cis-ocropy-binarize /
44 -w ${params.workspace_dir} -m ${mets_file_chunk} --page-id ${page_range} /

45 -I ${input_group} -O ${output_group}
46 """
47 }
48

49 process ocrd_anybaseocr_crop {
50 maxForks params.forks
51 cpus params.cpus_per_fork
52 memory params.ram_per_fork
53 debug true
54

55 input:
56 val mets_file_chunk
57 val page_range
58 val input_group
59 val output_group
60 output:
61 val mets_file_chunk
62 val page_range
63

64 script:
65 """
66 ${params.singularity_wrapper} ocrd-anybaseocr-crop /
67 -w ${params.workspace_dir} -m ${mets_file_chunk} --page-id ${page_range} /
68 -I ${input_group} -O ${output_group}
69 """
70 }
71

72 process ocrd_skimage_binarize {
73 maxForks params.forks
74 cpus params.cpus_per_fork
75 memory params.ram_per_fork
76 debug true
77

78 input:
79 val mets_file_chunk
80 val page_range
81 val input_group
82 val output_group
83 output:
84 val mets_file_chunk
85 val page_range
86

87 script:
88 """
89 ${params.singularity_wrapper} ocrd-skimage-binarize /
90 -w ${params.workspace_dir} -m ${mets_file_chunk} --page-id ${page_range} /
91 -I ${input_group} -O ${output_group} -p '{"method": "li"}'
92 """

93 }
94

95 process ocrd_skimage_denoise {
96 maxForks params.forks
97 cpus params.cpus_per_fork
98 memory params.ram_per_fork
99 debug true

100

101 input:
102 val mets_file_chunk
103 val page_range
104 val input_group
105 val output_group
106 output:
107 val mets_file_chunk
108 val page_range
109

110 script:
111 """
112 ${params.singularity_wrapper} ocrd-skimage-denoise /
113 -w ${params.workspace_dir} -m ${mets_file_chunk} --page-id ${page_range} /
114 -I ${input_group} -O ${output_group} -p '{"level-of-operation": "page"}'
115 """
116 }
117

118 process ocrd_tesserocr_deskew {
119 maxForks params.forks
120 cpus params.cpus_per_fork
121 memory params.ram_per_fork
122 debug true
123

124 input:
125 val mets_file_chunk
126 val page_range
127 val input_group
128 val output_group
129 output:
130 val mets_file_chunk
131 val page_range
132

133 script:
134 """
135 ${params.singularity_wrapper} ocrd-tesserocr-deskew /
136 -w ${params.workspace_dir} -m ${mets_file_chunk} --page-id ${page_range} /
137 -I ${input_group} -O ${output_group} -p '{"operation_level": "page"}'
138 """
139 }
140

141 process ocrd_cis_ocropy_segment {
142 maxForks params.forks
143 cpus params.cpus_per_fork
144 memory params.ram_per_fork
145 debug true
146

147 input:
148 val mets_file_chunk
149 val page_range
150 val input_group
151 val output_group
152 output:
153 val mets_file_chunk
154 val page_range
155

156 script:
157 """
158 ${params.singularity_wrapper} ocrd-cis-ocropy-segment /
159 -w ${params.workspace_dir} -m ${mets_file_chunk} --page-id ${page_range} /
160 -I ${input_group} -O ${output_group} -p '{"level-of-operation": "page"}'
161 """
162 }
163

164 process ocrd_cis_ocropy_dewarp {
165 maxForks params.forks
166 cpus params.cpus_per_fork
167 memory params.ram_per_fork
168 debug true
169

170 input:
171 val mets_file_chunk
172 val page_range
173 val input_group
174 val output_group
175 output:
176 val mets_file_chunk
177 val page_range
178

179 script:
180 """
181 ${params.singularity_wrapper} ocrd-cis-ocropy-dewarp /
182 -w ${params.workspace_dir} -m ${mets_file_chunk} --page-id ${page_range} /
183 -I ${input_group} -O ${output_group}
184 """
185 }
186

187 process ocrd_calamari_recognize {
188 maxForks params.forks

189 cpus params.cpus_per_fork
190 memory params.ram_per_fork
191 debug true
192

193 input:
194 val mets_file_chunk
195 val page_range
196 val input_group
197 val output_group
198 output:
199 val mets_file_chunk
200 val page_range
201

202 script:
203 """
204 ${params.singularity_wrapper} ocrd-calamari-recognize /
205 -w ${params.workspace_dir} -m ${mets_file_chunk} --page-id ${page_range} /
206 -I ${input_group} -O ${output_group} -p '{"checkpoint_dir": "qurator-gt4histocr-1.0"}'
207 """
208 }
209

210 process merging_mets {
211 // Must be a single instance - modifying the main mets file
212 maxForks 1
213

214 input:
215 val mets_file_chunk
216 val page_range
217 script:
218 """
219 ${params.singularity_wrapper} ocrd workspace -d ${params.workspace_dir} /
220 merge --force --no-copy-files ${mets_file_chunk} --page-id ${page_range}
221

222 ${params.singularity_wrapper} rm ${mets_file_chunk}
223 """
224 }
225

226 workflow {
227 main:
228 ch_range_multipliers = Channel.of(0..params.forks.intValue()-1)
229 split_page_ranges(ch_range_multipliers)
230

231 ocrd_cis_ocropy_binarize(split_page_ranges.out[0], /
232 split_page_ranges.out[1], params.input_file_group, "OCR-D-BIN")
233

234 ocrd_anybaseocr_crop(ocrd_cis_ocropy_binarize.out[0], /
235 ocrd_cis_ocropy_binarize.out[1], "OCR-D-BIN", "OCR-D-CROP")
236

237 ocrd_skimage_binarize(ocrd_anybaseocr_crop.out[0], /
238 ocrd_anybaseocr_crop.out[1], "OCR-D-CROP", "OCR-D-BIN2")
239

240 ocrd_skimage_denoise(ocrd_skimage_binarize.out[0], /
241 ocrd_skimage_binarize.out[1], "OCR-D-BIN2", "OCR-D-BIN-DENOISE")
242

243 ocrd_tesserocr_deskew(ocrd_skimage_denoise.out[0], /
244 ocrd_skimage_denoise.out[1], "OCR-D-BIN-DENOISE", "OCR-D-BIN-DENOISE-DESKEW")
245

246 ocrd_cis_ocropy_segment(ocrd_tesserocr_deskew.out[0], /
247 ocrd_tesserocr_deskew.out[1], "OCR-D-BIN-DENOISE-DESKEW", "OCR-D-SEG")
248

249 ocrd_cis_ocropy_dewarp(ocrd_cis_ocropy_segment.out[0], /
250 ocrd_cis_ocropy_segment.out[1], "OCR-D-SEG", "OCR-D-SEG-LINE-RESEG-DEWARP")
251

252 ocrd_calamari_recognize(ocrd_cis_ocropy_dewarp.out[0], /
253 ocrd_cis_ocropy_dewarp.out[1], "OCR-D-SEG-LINE-RESEG-DEWARP", "OCR-D-OCR")
254

255 merging_mets(ocrd_calamari_recognize.out[0], /
256 ocrd_calamari_recognize.out[1])
257 }

	Contents
	List of Tables
	List of Figures
	List of Listings
	List of Abbreviations
	Introduction
	Motivation and Objectives
	Motivation
	Objectives

	Methodology
	Project Architecture
	Project Setup
	Environment Preparation
	GitLab Repository
	GitLab Runner

	CI/CD Pipeline Stages
	SSH Connection Setup
	Upload Data and Workflows to HPC
	Singularity Image Creation
	Download OCR-D Models
	Submit Workflow Job
	Fetch Results
	Workspace Cleanup

	GitLab Variables
	Nextflow OCR-D Workflow

	Results
	Segmentation
	Line Detection
	Text Recognition
	The Processing Time

	Discussion
	Conclusion
	References
	Code samples

