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Problem Question

How can we use MPI to parallelize SAT solvers?
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Problem Description

The Boolean Satisfiability Problem (SAT)

Problem: How to determine whether an assignment of truth values
exists in a given boolean formula such that the entire formula
evaluates to true?
Example:

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x4)

Problem is NP-Complete
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Library

Can be compiled with CMake and Make
Executed with ./SATMPI -a algorithm -f filepath
Reads in files in DIMACS format:

c t h i s i s a comment
p cn f 4 3
−1 −2 0

−1 2 3 0
−1 4 0

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x4)
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Overview: Algorithms

Bruteforce
Davis-Putnam algorithm
Davis–Putnam–Logemann–Loveland (DPLL)
Conflict-driven clause learning (CDCL)
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Algorithms: Bruteforce

1 Assign values to literals

2 Check if the assignment solves the formula
3 Yes: The Formula is solvable, return true
4 No:

1 Assignments left: Go to step two
2 No assignments left: return false

5 Worst case: O(2n)satisfiability checks because we have 2n different
binary numbers
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Algorithms: Bruteforce Example

(a ∨ ¬b) ∧ (¬a ∨ b)

a b ((a ∨ (¬ b)) ∧ ((¬ a) ∨ b))

0 0 0 1 1 0 1 1 0 1 0
1 0 1 1 1 0 0 0 1 0 0
0 1 0 0 0 1 0 1 0 1 1
1 1 1 1 0 1 1 0 1 1 1

The assignment can be seen as a binary number, which can be increased by
1 in each step.
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Algorithms: Bruteforce Parallel

Algorithm: Split the binary numbers into N parts

Worst case: O(2n/N) satisfiability checks because we have 2n different
binary numbers which get split into N parts
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Algorithms: Davis-Putnam

1 Multiple satisfiability-checks

2 Choose literal
3 Create new clauses

Example: chosen literal a

(a ∨ ¬b ∨ c) ∧ (¬a ∨ b ∨ d)w�
(¬b ∨ c ∨ b ∨ d)

4 Remove clauses containing chosen literal
5 Repeat
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Algorithms: DP Parallel

Not implemented yet

How to parallelize:
Parallelize satisfiability-checks for clauses
Choose multiple different literals at the beginning
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Algorithms: Davis-Putnam-Logemann-Loveland

Basic idea similar to bruteforce

But literals will be assigned one after another
Backtracking
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Algorithms: DPLL-procedure
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Algorithms: DPLL Parallel

Already implemented

Each process starts with assigned literals
Example: 2 processes

The First process starts with the first variable set to true
The Second process starts with the first variable set to false
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Algorithms: CDCL

Extends the DPLL algorithm:

Conflict Analysis: When a conflict (i.e., a clause that cannot be
satisfied) is detected, it identifies a set of decisions (variable
assignments) that led to the conflict.
Clause Learning: Derives a new clause that prevents the same conflict
from occurring in the future. This clause is added to the formula,
reducing the search space.
Backjumping: CDCL uses non-chronological backjumping; it jumps
back directly to the most recent decision point that is relevant to the
conflict.
Decision Heuristics: tries to select literals that are more likely to lead
to conflicts.
Restarts: Periodically restarts the search with the learned clauses
retained. This helps to escape from difficult regions of the search
space, and often leads to faster convergence.
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Algorithms: CDCL

Sequential CDCL is implemented but still quite slow. Needs more time.

Idea for parallelization:
Partition the search space into disjoint segments and assign each
segment to a different process.
Share learned clauses among processes
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Performance Analysis
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Performance Analysis
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Next Steps

DP Parallel

improve CDCL
CDCL Parallel
In-depth Performance Analysis
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Conclusion

Several algorithms are already implemented

The parallel algorithms are almost always faster than their sequential
counterparts
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The End

Questions?
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