
SAT Solver

Frederik Hennecke, Pascal Brockmann

01.07.2024

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 1 / 22



1 Introduction
Problem Question
Problem Description
Library

2 Algorithms
Overview
Bruteforce
DP
DPLL
CDCL

3 Performance Analysis

4 End

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 2 / 22



Problem Question

How can we use MPI to parallelize SAT solvers?

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 3 / 22



Problem Description

The Boolean Satisfiability Problem (SAT)

Problem: How to determine whether an assignment of truth values
exists in a given boolean formula such that the entire formula
evaluates to true?
Example:

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x4)

Problem is NP-Complete

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 4 / 22



Problem Description

The Boolean Satisfiability Problem (SAT)
Problem: How to determine whether an assignment of truth values
exists in a given boolean formula such that the entire formula
evaluates to true?

Example:
(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x4)

Problem is NP-Complete

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 4 / 22



Problem Description

The Boolean Satisfiability Problem (SAT)
Problem: How to determine whether an assignment of truth values
exists in a given boolean formula such that the entire formula
evaluates to true?
Example:

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x4)

Problem is NP-Complete

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 4 / 22



Problem Description

The Boolean Satisfiability Problem (SAT)
Problem: How to determine whether an assignment of truth values
exists in a given boolean formula such that the entire formula
evaluates to true?
Example:

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x4)

Problem is NP-Complete

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 4 / 22



Library

Can be compiled with CMake and Make
Executed with ./SATMPI -a algorithm -f filepath
Reads in files in DIMACS format:

c t h i s i s a comment
p cn f 4 3
−1 −2 0

−1 2 3 0
−1 4 0

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x4)

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 5 / 22



Overview: Algorithms

Bruteforce
Davis-Putnam algorithm
Davis–Putnam–Logemann–Loveland (DPLL)
Conflict-driven clause learning (CDCL)

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 6 / 22



Algorithms: Bruteforce

1 Assign values to literals

2 Check if the assignment solves the formula
3 Yes: The Formula is solvable, return true
4 No:

1 Assignments left: Go to step two
2 No assignments left: return false

5 Worst case: O(2n)satisfiability checks because we have 2n different
binary numbers

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 7 / 22



Algorithms: Bruteforce

1 Assign values to literals
2 Check if the assignment solves the formula

3 Yes: The Formula is solvable, return true
4 No:

1 Assignments left: Go to step two
2 No assignments left: return false

5 Worst case: O(2n)satisfiability checks because we have 2n different
binary numbers

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 7 / 22



Algorithms: Bruteforce

1 Assign values to literals
2 Check if the assignment solves the formula
3 Yes: The Formula is solvable, return true

4 No:
1 Assignments left: Go to step two
2 No assignments left: return false

5 Worst case: O(2n)satisfiability checks because we have 2n different
binary numbers

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 7 / 22



Algorithms: Bruteforce

1 Assign values to literals
2 Check if the assignment solves the formula
3 Yes: The Formula is solvable, return true
4 No:

1 Assignments left: Go to step two
2 No assignments left: return false

5 Worst case: O(2n)satisfiability checks because we have 2n different
binary numbers

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 7 / 22



Algorithms: Bruteforce

1 Assign values to literals
2 Check if the assignment solves the formula
3 Yes: The Formula is solvable, return true
4 No:

1 Assignments left: Go to step two
2 No assignments left: return false

5 Worst case: O(2n)satisfiability checks because we have 2n different
binary numbers

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 7 / 22



Algorithms: Bruteforce Example

(a ∨ ¬b) ∧ (¬a ∨ b)

a b ((a ∨ (¬ b)) ∧ ((¬ a) ∨ b))

0 0 0 1 1 0 1 1 0 1 0
1 0 1 1 1 0 0 0 1 0 0
0 1 0 0 0 1 0 1 0 1 1
1 1 1 1 0 1 1 0 1 1 1

The assignment can be seen as a binary number, which can be increased by
1 in each step.

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 8 / 22



Algorithms: Bruteforce Parallel

Algorithm: Split the binary numbers into N parts

Worst case: O(2n/N) satisfiability checks because we have 2n different
binary numbers which get split into N parts

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 9 / 22



Algorithms: Bruteforce Parallel

Algorithm: Split the binary numbers into N parts
Worst case: O(2n/N) satisfiability checks because we have 2n different
binary numbers which get split into N parts

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 9 / 22



Algorithms: Davis-Putnam

1 Multiple satisfiability-checks

2 Choose literal
3 Create new clauses

Example: chosen literal a

(a ∨ ¬b ∨ c) ∧ (¬a ∨ b ∨ d)w�
(¬b ∨ c ∨ b ∨ d)

4 Remove clauses containing chosen literal
5 Repeat

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 10 / 22



Algorithms: Davis-Putnam

1 Multiple satisfiability-checks
2 Choose literal

3 Create new clauses
Example: chosen literal a

(a ∨ ¬b ∨ c) ∧ (¬a ∨ b ∨ d)w�
(¬b ∨ c ∨ b ∨ d)

4 Remove clauses containing chosen literal
5 Repeat

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 10 / 22



Algorithms: Davis-Putnam

1 Multiple satisfiability-checks
2 Choose literal
3 Create new clauses

Example: chosen literal a

(a ∨ ¬b ∨ c) ∧ (¬a ∨ b ∨ d)w�
(¬b ∨ c ∨ b ∨ d)

4 Remove clauses containing chosen literal
5 Repeat

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 10 / 22



Algorithms: Davis-Putnam

1 Multiple satisfiability-checks
2 Choose literal
3 Create new clauses

Example: chosen literal a

(a ∨ ¬b ∨ c) ∧ (¬a ∨ b ∨ d)w�
(¬b ∨ c ∨ b ∨ d)

4 Remove clauses containing chosen literal

5 Repeat

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 10 / 22



Algorithms: Davis-Putnam

1 Multiple satisfiability-checks
2 Choose literal
3 Create new clauses

Example: chosen literal a

(a ∨ ¬b ∨ c) ∧ (¬a ∨ b ∨ d)w�
(¬b ∨ c ∨ b ∨ d)

4 Remove clauses containing chosen literal
5 Repeat

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 10 / 22



Algorithms: DP Parallel

Not implemented yet

How to parallelize:
Parallelize satisfiability-checks for clauses
Choose multiple different literals at the beginning

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 11 / 22



Algorithms: DP Parallel

Not implemented yet
How to parallelize:

Parallelize satisfiability-checks for clauses
Choose multiple different literals at the beginning

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 11 / 22



Algorithms: Davis-Putnam-Logemann-Loveland

Basic idea similar to bruteforce

But literals will be assigned one after another
Backtracking

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 12 / 22



Algorithms: Davis-Putnam-Logemann-Loveland

Basic idea similar to bruteforce
But literals will be assigned one after another

Backtracking

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 12 / 22



Algorithms: Davis-Putnam-Logemann-Loveland

Basic idea similar to bruteforce
But literals will be assigned one after another
Backtracking

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 12 / 22



Algorithms: DPLL-procedure

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 13 / 22



Algorithms: DPLL Parallel

Already implemented

Each process starts with assigned literals
Example: 2 processes

The First process starts with the first variable set to true
The Second process starts with the first variable set to false

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 14 / 22



Algorithms: DPLL Parallel

Already implemented
Each process starts with assigned literals

Example: 2 processes
The First process starts with the first variable set to true
The Second process starts with the first variable set to false

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 14 / 22



Algorithms: DPLL Parallel

Already implemented
Each process starts with assigned literals
Example: 2 processes

The First process starts with the first variable set to true
The Second process starts with the first variable set to false

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 14 / 22



Algorithms: CDCL

Extends the DPLL algorithm:

Conflict Analysis: When a conflict (i.e., a clause that cannot be
satisfied) is detected, it identifies a set of decisions (variable
assignments) that led to the conflict.
Clause Learning: Derives a new clause that prevents the same conflict
from occurring in the future. This clause is added to the formula,
reducing the search space.
Backjumping: CDCL uses non-chronological backjumping; it jumps
back directly to the most recent decision point that is relevant to the
conflict.
Decision Heuristics: tries to select literals that are more likely to lead
to conflicts.
Restarts: Periodically restarts the search with the learned clauses
retained. This helps to escape from difficult regions of the search
space, and often leads to faster convergence.

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 15 / 22



Algorithms: CDCL

Extends the DPLL algorithm:
Conflict Analysis: When a conflict (i.e., a clause that cannot be
satisfied) is detected, it identifies a set of decisions (variable
assignments) that led to the conflict.

Clause Learning: Derives a new clause that prevents the same conflict
from occurring in the future. This clause is added to the formula,
reducing the search space.
Backjumping: CDCL uses non-chronological backjumping; it jumps
back directly to the most recent decision point that is relevant to the
conflict.
Decision Heuristics: tries to select literals that are more likely to lead
to conflicts.
Restarts: Periodically restarts the search with the learned clauses
retained. This helps to escape from difficult regions of the search
space, and often leads to faster convergence.

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 15 / 22



Algorithms: CDCL

Extends the DPLL algorithm:
Conflict Analysis: When a conflict (i.e., a clause that cannot be
satisfied) is detected, it identifies a set of decisions (variable
assignments) that led to the conflict.
Clause Learning: Derives a new clause that prevents the same conflict
from occurring in the future. This clause is added to the formula,
reducing the search space.

Backjumping: CDCL uses non-chronological backjumping; it jumps
back directly to the most recent decision point that is relevant to the
conflict.
Decision Heuristics: tries to select literals that are more likely to lead
to conflicts.
Restarts: Periodically restarts the search with the learned clauses
retained. This helps to escape from difficult regions of the search
space, and often leads to faster convergence.

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 15 / 22



Algorithms: CDCL

Extends the DPLL algorithm:
Conflict Analysis: When a conflict (i.e., a clause that cannot be
satisfied) is detected, it identifies a set of decisions (variable
assignments) that led to the conflict.
Clause Learning: Derives a new clause that prevents the same conflict
from occurring in the future. This clause is added to the formula,
reducing the search space.
Backjumping: CDCL uses non-chronological backjumping; it jumps
back directly to the most recent decision point that is relevant to the
conflict.

Decision Heuristics: tries to select literals that are more likely to lead
to conflicts.
Restarts: Periodically restarts the search with the learned clauses
retained. This helps to escape from difficult regions of the search
space, and often leads to faster convergence.

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 15 / 22



Algorithms: CDCL

Extends the DPLL algorithm:
Conflict Analysis: When a conflict (i.e., a clause that cannot be
satisfied) is detected, it identifies a set of decisions (variable
assignments) that led to the conflict.
Clause Learning: Derives a new clause that prevents the same conflict
from occurring in the future. This clause is added to the formula,
reducing the search space.
Backjumping: CDCL uses non-chronological backjumping; it jumps
back directly to the most recent decision point that is relevant to the
conflict.
Decision Heuristics: tries to select literals that are more likely to lead
to conflicts.

Restarts: Periodically restarts the search with the learned clauses
retained. This helps to escape from difficult regions of the search
space, and often leads to faster convergence.

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 15 / 22



Algorithms: CDCL

Extends the DPLL algorithm:
Conflict Analysis: When a conflict (i.e., a clause that cannot be
satisfied) is detected, it identifies a set of decisions (variable
assignments) that led to the conflict.
Clause Learning: Derives a new clause that prevents the same conflict
from occurring in the future. This clause is added to the formula,
reducing the search space.
Backjumping: CDCL uses non-chronological backjumping; it jumps
back directly to the most recent decision point that is relevant to the
conflict.
Decision Heuristics: tries to select literals that are more likely to lead
to conflicts.
Restarts: Periodically restarts the search with the learned clauses
retained. This helps to escape from difficult regions of the search
space, and often leads to faster convergence.

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 15 / 22



Algorithms: CDCL

Sequential CDCL is implemented but still quite slow. Needs more time.

Idea for parallelization:
Partition the search space into disjoint segments and assign each
segment to a different process.
Share learned clauses among processes

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 16 / 22



Algorithms: CDCL

Sequential CDCL is implemented but still quite slow. Needs more time.
Idea for parallelization:

Partition the search space into disjoint segments and assign each
segment to a different process.
Share learned clauses among processes

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 16 / 22



Performance Analysis

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 17 / 22



Performance Analysis

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 18 / 22



Performance Analysis

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 19 / 22



Next Steps

DP Parallel

improve CDCL
CDCL Parallel
In-depth Performance Analysis

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 20 / 22



Next Steps

DP Parallel
improve CDCL

CDCL Parallel
In-depth Performance Analysis

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 20 / 22



Next Steps

DP Parallel
improve CDCL
CDCL Parallel

In-depth Performance Analysis

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 20 / 22



Next Steps

DP Parallel
improve CDCL
CDCL Parallel
In-depth Performance Analysis

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 20 / 22



Conclusion

Several algorithms are already implemented

The parallel algorithms are almost always faster than their sequential
counterparts

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 21 / 22



Conclusion

Several algorithms are already implemented
The parallel algorithms are almost always faster than their sequential
counterparts

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 21 / 22



The End

Questions?

Frederik Hennecke, Pascal Brockmann SAT Solver 01.07.2024 22 / 22


	Introduction
	Problem Question
	Problem Description
	Library

	Algorithms
	Performance Analysis
	End

