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Abstract
A SAT (Boolean Satisfiability) solver is a computer program that determines whether a
given Boolean formula is satisfiable or not. This report shows the implementation and
performance analysis of four different SAT solvers, including Brute Force, DP (Davis-
Putnam), DPLL (Davis-Putnam-Logemann-Loveland), and CDCL (Conflict-Driven Clause
Learning). Each solver was also parallelized using MPI. We tested the solvers on standard
benchmarks, comparing the sequential and parallel versions. Parallelization significantly
improved performance for most of the implemented algorithms. The performance im-
provement is particularly noticeable with large input formulas.
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Statement on the usage of ChatGPT and similar tools
in the context of examinations

In this work, I have used ChatGPT or a similar AI-system as follows:

□ Not at all

✓□ In brainstorming

□ In the creation of the outline

□ To create individual passages, altogether to the extent of 0% of the whole text

□ For proofreading

□ Other, namely: -

I assure you that I have stated all uses in full.
Missing or incorrect information will be considered as an attempt to cheat.
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Parallelisation of different SAT-Solving-Algorithms using MPI

1 Introduction
1.1 Background and Motivation

The Boolean Satisfiability Problem (SAT) is fundamental in computer science. Given a
Boolean formula in conjunctive normal form (CNF), the SAT problem checks whether
an assignment of values exists to the variables that satisfy the formula. Despite its im-
portance, SAT is an NP-complete problem, meaning that the running time of traditional
algorithms increases exponentially with the input size.

The first SAT solvers were developed in the 1960s, namely the Davis-Putnam proce-
dure[DP60]. In the 1980s, more efficient algorithms, such as the DPLL (Davis-Putnam-
Logemann-Loveland) algorithm, were developed.[ML62] In the 1990s, there were multiple
papers[MS][MS99][BS97] about Conflict-Driven Clause Learning (CDCL) solvers, which
are still widely used today.

In this report, we show the design, implementation, and evaluation of four parallel SAT
solver algorithms: brute force, DP, DPLL, and CDCL. Each algorithm is first implemented
sequentially and then parallelized using MPI. The parallel implementations will improve
the runtime of several SAT-solving algorithms. The report describes the algorithms,
implementation, and performance results, showing the benefits of parallel computation.

The project is open-source and can be seen in our Gitlab Repository.

1.2 Objectives

The primary objective of our project is to see how parallelization can improve the per-
formance of SAT solvers. To achieve this, we implemented four different SAT solver
algorithms sequentially. Then, we parallelized all four algorithms using MPI, so we have
eight. We hope to achieve an increase in performance, which is approximately propor-
tional to the number of processes. This means that if we compare a sequential (single
process) algorithm to the parallel version of that algorithm with two processes using the
same test formula in both cases, we want the parallel version, on average, to take roughly
half the amount of time or less to find a solution than the sequential algorithm. This
will not always be possible because the runtime of each algorithm can vary greatly, given
different formulas. Furthermore, using MPI introduces some overhead to the algorithm,
particularly with small test formulas. Additionally, we want to compare the performance
of the four different algorithms to see if the more modern algorithms are faster.

1.3 Structure

This report is organized into the following sections:

• Section 2: Methodology provides an overview of the SAT problem and discusses the
implementation of various solvers, including brute force, DP, DPLL, and CDCL. It
also explains how these algorithms were parallelized using MPI

• Section 3: Implementation Details outlines the technical aspects of the project,
including the tools and libraries used, and the structure of the codebase

• Section 4: Experimental Setup describes the hardware environment, and test cases
used to evaluate the solvers.

Section 1 Frederik Hennecke, Pascal Brockmann 1
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• Section 5: Performance Analysis focuses on the results of the experiments, with a
detailed analysis of the performance of the sequential and parallel solvers.

• Section 6: Conclusion summarizes the key findings and discusses potential areas for
future improvements.

2 Methodology
2.1 SAT Overview

The Boolean Satisfiability Problem (SAT) is one of the most known problems in computer
science and propositional logic. SAT involves determining whether an assignment of truth
values (true or false) exists to a set of Boolean variables that satisfies a given Boolean
formula. A formula is "satisfiable" if such an assignment exists and "unsatisfiable" oth-
erwise.

2.1.1 Problem Definition

Formally, the SAT problem is defined as a Boolean formula expressed in Conjunctive
Normal Form (CNF). A CNF formula consists of a conjunction (AND) of one or more
clauses, where each clause is a disjunction (OR) of literals. A literal is either a Boolean
variable or its negation.

For example, a CNF formula could look like:

(x1 ∨ ¬x2) ∧ (x3 ∨ x2) ∧ (¬x1 ∨ ¬x3)

In this case, the formula consists of three clauses:

1. (x1 ∨ ¬x2)

2. (x3 ∨ x2)

3. (¬x1 ∨ ¬x3)

The task is to find a truth assignment (e.g., x1 = true, x2 = false, x3 = true) that
makes the entire formula evaluate to true.

2.1.2 DIMACS Format Overview

In the DIMACS format, the CNF formula is represented as follows[Bur08]:

• Each variable is assigned a unique positive integer.

• A clause is represented as a sequence of these integers, where a positive integer
indicates a variable and a negative integer indicates its negation.

• The formula is terminated by a zero (‘0‘).

A DIMACS file begins with metadata, followed by the clauses:

1. Header:
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• The header starts with the letter p and is followed by cnf, the number of
variables, and the number of clauses.

• For example, p cnf 3 3 indicates a formula with three variables and three
clauses.

2. Clauses: Each clause is written as a sequence of integers (representing the literals),
ending with a 0.

The CNF formula:

(x1 ∨ ¬x2) ∧ (x3 ∨ x2) ∧ (¬x1 ∨ ¬x3)

would be represented in DIMACS format as:
p cnf 3 3
1 -2 0
3 2 0
-1 -3 0

1. Line 1 (‘p cnf 3 3‘): Specifies that the formula has three variables and three clauses.

2. Line 2 (‘1 -2 0‘): Represents the clause x1 ∨ ¬x2.

3. Line 3 (‘3 2 0‘): Represents the clause x3 ∨ x2.

4. Line 4 (‘-1 -3 0‘): Represents the clause ¬x1 ∨ ¬x3.

This simple and compact format allows SAT solvers to parse and operate on CNF
formulas efficiently.

2.1.3 NP and SAT

In computational complexity, NP (Nondeterministic Polynomial time) refers to the class
of decision problems for which a given solution can be verified in polynomial time. In
simpler terms, if someone gives you a potential solution to a problem in NP, you can
quickly (in polynomial time) check whether the solution is correct, even if finding that
solution might take much longer.[KT05]

Formally: The complexity class of decision problems for which answers can be checked
for correctness, given a certificate, by an algorithm whose run time is polynomial in the
size of the input (that is, it is NP) and no other NP problem is more than a polynomial
factor harder. Informally, a problem is NP-complete if answers can be verified quickly,
and a quick algorithm to solve this problem can be used to solve all other NP problems
quickly. [Bla21]

For example, given a CNF formula:

(x1 ∨ ¬x2) ∧ (x3 ∨ x2) ∧ (¬x1 ∨ ¬x3)

If we assume that x1 = true, x2 = false, x3 = true, we can quickly verify that this
assignment satisfies the formula by checking each clause:

x1 ∨ ¬x2 = true ∨ true = true

x3 ∨ x2 = true ∨ false = true

¬x1 ∨ ¬x3 = false ∨ false = false

Section 2 Frederik Hennecke, Pascal Brockmann 3
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The formula is not satisfied in this case, but this verification process only took lin-
ear time regarding the number of clauses and variables. NP-Completeness and Cook’s
Theorem

In 1971, Stephen Cook introduced Cook’s Theorem, which proved that the SAT prob-
lem is NP-complete, meaning that:

SAT is in NP (as we can verify solutions in polynomial time). SAT is at least as hard
as any other problem in NP.[Coo71]

Since SAT was the first problem proven NP-complete, it is central to complexity
theory. Many real-world problems, from optimization to scheduling to verification, can
be reduced to SAT, making SAT solvers critical in addressing NP-complete problems.

2.1.4 Applications of SAT

SAT solvers are widely used in various fields, including, but not limited to:

• Formal Equivalence Checking: SAT solvers check whether two circuit representa-
tions (e.g., a specification and its implementation) are functionally equivalent. This
may ensure that the design transformation or optimization process has not intro-
duced any errors.[BGV99]

• Model Checking: SAT solvers help verify whether a given model of a system (e.g.,
a circuit or software system) satisfies certain properties (typically safety or liveness
properties). This is important in the design and verification of complex hardware
systems.[BGV99]

• Formal Verification of Pipelined Microprocessors: Microprocessors often employ
pipelining for efficiency, but this introduces complex interactions between different
stages. SAT-based formal verification methods are used to ensure the correctness
of these designs under various conditions, including instruction reordering and haz-
ards.[BGV99]

• Automatic Test Pattern Generation (ATPG): SAT solvers can help generate test
patterns that detect faults in digital circuits, enabling efficient fault detection during
manufacturing testing.[NSR02]

• Routing of FPGAs: SAT solvers assist in routing Field-Programmable Gate Arrays
(FPGAs) by solving constraint satisfaction problems related to connecting different
components while satisfying the design’s constraints on timing, signal integrity, and
layout.[NSR02]

• Planning and Scheduling Problems: SAT solvers also solve combinatorial problems
such as planning and scheduling. One such application would be the solver in
conda.[24b]

Given its wide-ranging applications, solving SAT problems is crucial in theoretical and
practical domains.

2.2 Brute Force Solver

The basic idea of the brute force algorithm is to check for each possible assignment of
variables to see if it satisfies the formula. This means that if we have n variables, we have
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to check up to 2n possible assignments since each variable can have two different values:
“true” and “false.” The maximum number of necessary checks occurs when the formula
is not satisfiable or when only the last checked assignment of the variables satisfies the
formula (in our case, all variables are set to “true”).

For our implementation, we create a boolean vector of length n (number of variables)
and set every vector entry to “false.” This vector represents the current assignment of
variables, with each vector entry representing a single variable. By doing this, we can
easily represent the different assignments. To go through every possible assignment of
the variables, we treat the assignment vector as an n-bit binary number. This binary
number is increased by one after each satisfiability check if the current assignment of
variables does not satisfy the formula. If an assignment satisfies the formula, “true” will
be returned, and the brute force procedure will stop since a solution was found. To see if
all possible assignments of variables were tested, we check if all entries of the assignment
vector are set to “true.” If that is the case, every possible number from 0 to 2n − 1 and,
therefore, every possible assignment of variables was tested, and “false” can be returned
since the formula is not satisfiable.

Since the clauses of the formula are connected via conjunctions, every clause must be
“true” for the formula to be “true.” To test if a clause is satisfied, we check whether the
clause contains a variable set to “true” or the negation of a variable set to “false.” Since
the clauses only contain disjunctions and no conjunctions, it is enough for a single literal
to be “true.” To check whether the entire formula is “true,” we count how many clauses
satisfy the current assignment of variables. A solution is found if the number of satisfied
clauses equals the number of clauses of the formula.

2.3 Brute Force Parallelization

In order to have multiple processes work on the satisfiability check, we divide the variable
assignments, which have to be tested, into m blocks (partitions), with m being the number
of parallel processes. We return to the binary number vector from the sequential version
to do this. First, we calculate how many different numbers we can depict using an n
(number of variables) bit binary number, which is 2n. Then, we divide this number by
m, the number of parallel processes, so we know how many assignments of variables each
process has to go through (partition size). To make each process work on a different
partition, we give each process a start and stop value for their respective partition. The
start value is the rank of the process(from 0 to the total number of processes) of the
process times the partition size, while the stop value is the start value plus the partition
size. The next step is to calculate those numbers’ binary representation and write that
representation into the binary number vector. The check, whether the formula is "true"
or "false" with the current assignment of variables, works like the sequential algorithm.
If a solution satisfies the formula, the process that found the solution will send a stop
signal to the other processes. Each process uses a nonblocking MPI Receive to check for
this stop signal. The synchronization routine MPI Barrier is used to wait for each process
to synchronize to that specific point. Finally, the solutions of the different processes
are synchronized using a blocking MPI Reduce. Since each process works on a different
partition, each process has to reach the result "false" in order for the formula to be not
satisfiable.

Our implementation has a limitation, however. Since we are using 64 bits to save
the number of possible variables assigned, we can only work with up to 64 variables.
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Therefore, we have to check if the number of variables is greater than 64 and throw an
error if that is the case. This, however, is fine since both brute-force algorithms are pretty
slow. Because of that, we limit the maximum number of variables in the performance
analyses for both brute force algorithms.

2.4 DP (Davis-Putnam) Solver

The Davis Putnam (DP) algorithm is based on resolution.[DP60] The resolution rule
states: If we have a formula in conjunctive normal form (CNF), we can create a new
clause, which is implied by two "parent" clauses. If we have two clauses C1 and C2 with
C1 containing a variable A and C2 its negation ¬A, the new clause Cnew can be determined
by C1/A ∨ C2/¬A. In Other words: The new clause Cnew is a disjunction of the clause
C1 without the variable A and the clause C2 without the negation of variable A.[Bec06]

Our implementation of the DP algorithm is recursive. Every recursion step will go
through the following parts in order: three satisfiability checks for clauses and literals, a
check for the satisfiability of the entire formula, and the actual DP procedure.

In order to check for the satisfiability of the entire formula, clauses that are determined
to be "true" will be removed from the formula. By doing this, we can easily test if the
entire formula is "true" by checking if the formula vector is empty since every clause was
determined to be "true." We also remove literals from a clause if that literal is determined
to be "false." This means if we find an empty clause vector, that clause is "false" since all
of its literals are "false." Therefore, the entire formula is "false" because all clauses are
connected via conjunctions. These are the methods used to check for the satisfiability of
the entire formula (stopping conditions for recursion).

There are three satisfiability tests for clauses and literals. The first one is the unit
propagation. This checks for unit clauses. A unit clause is a clause that only contains one
literal. The algorithm does this by simply checking the length of each clause vector. If a
unit clause is found, its single literal must be "true," so the clause is "true" as well. This
means each clause containing that literal can be removed since the literal has to be "true";
therefore, each clause containing that literal is "true." Furthermore, each occurrence of the
negation of that literal is removed as well since the negation of that literal will always be
"false." The next step is to eliminate clauses that are not in proper CNF. This means we
delete every clause containing a variable and its negation since this clause will always be
"true." The last part of the satisfiability tests for clauses and literals is the elimination of
pure literals. This means we check whether or not each variable occurs in both polarities.
Suppose we find a variable that only occurs in one polarity. In that case, that variable can
be set to "true" if its polarity is positive or to "false" if its polarity is negative without
resulting in a literal or clause becoming "false." This means we can simply remove each
clause containing a variable that only occurs in one polarity.

The final step is the actual DP procedure. For simplicity, our implementation chooses
the first literal of the first clause for the resolution. Then, it uses the resolution rule to
create new clauses by combining one clause containing the chosen literal with a clause
containing the negation of the chosen literal and adding them to the formula. This
happens for every possible pair of a clause containing the chosen literal and a clause
containing the negation of the chosen literal. This means that if we have n clauses
containing the chosen literal and m clauses containing the negation of that literal, we will
add n ·m new clauses. The last action before starting the next recursion step is to remove
all clauses containing the chosen literal or its negation. This means n plus m clauses will
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be removed.

2.5 DP Parallelization

In order to parallelize the DP algorithm, each process uses the previously explained DP
algorithm, but each chooses different variables for the DP procedure (resolution). To
choose a variable for the resolution, first, each process compares its process rank with the
current size of the formula vector minus one. The smaller value of the two will be chosen,
and we will call it n as an example. Then, the first variable of the n-th formula will be
chosen as the variable for the resolution. The comparison between process rank and the
actual size of the formula array is necessary. Otherwise, the algorithm might try to work
with an index outside the formula vector’s current index range since the process rank can
be greater than the actual size of the formula array.

If a process reaches a result, whether "true" or "false," it will send a stop signal to
each other process. Each process uses a nonblocking receive to check for this stop signal
and will abort if the stop signal is received. The synchronization routine MPI Barrier is
used to wait for each process to stop its algorithm. Finally, the solutions of the different
processes must be synchronized using a blocking MPI Reduce.

2.6 DPLL (Davis-Putnam-Logemann-Loveland) Solver

The Davis Putnam Logemann Loveland (DPLL) algorithm is a satisfiability check al-
gorithm based on backtracking. Its basic idea is similar to the brute force algorithm.
However, instead of assigning all variables at once, the variables will be assigned a value
one after another with multiple satisfiability checks in between.[ML62] This way, not all
2n (n is the number of variables) possible variable assignments must be tested. If, for
example, setting the first two variables to "true" is enough to determine that the formula
is "false," every variable assignment with the first two variables set to "true" will result
in the formula being "false." Therefore, the algorithm does not need to continue this path
and can reassign one of the first two variables to "false" instead.

The idea is to set one variable to "true" and then run through multiple satisfiability
checks. If these checks’ results are "true," a solution is found, and the algorithm can
stop. If it is not yet possible to tell if the formula is "true" or "false" with the current
assignment of variables, another variable will be set to "true." This way, the number of
assigned variables will increase with each loop until we have to backtrack. If the result
is "false," the algorithm will backtrack to the state in which the last variable, which
is currently "true," was assigned, set it to "false" instead, and then continue with the
satisfiability checks. If the result of the satisfiability checks is "false" and every assigned
variable is already set to "false," the algorithm will stop and return "false" since there is
no assignment of variables, which satisfies the formula. A pictorial representation of this
procedure can be seen in Figure 1.
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Figure 1: DPLL procedure

Our implementation of the DPLL algorithm is recursive and similar in structure to our
implementation of the DP algorithm, but it uses an additional vector of length n (number
of variables). This vector is used to track the current assignment of the variables. Each
variable can have three states: "true" (1), "false" (-1) and undetermined (0). In the
beginning, each variable is set to undetermined. This vector and the formula vector
are the parameters for the DPLL procedure and are given to it via call-by value. This
way, each recursion step works on its own vectors, and we have copies for each step if
backtracking is required. For this reason, the DPLL algorithm takes up a comparatively
large amount of RAM. In order to save some memory, the formula and the assignment
vector are of the type short (16 bits) and not int (32 bits). The entire procedure consists
of multiple satisfiability checks for clauses and literals, a check for the satisfiability of the
entire formula, and finally, the actual DPLL procedure.

The formula check (stopping condition) works like in the DP algorithm. This means
we will again remove each clause that is "true" from the formula vector and each literal
that is "false" from the clause vectors. So we can check if the formula vector is empty,
which means the formula is "true," or if a single clause vector is empty, which means the
formula is "false."
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Again, there are three satisfiability checks for clauses and literals. This time, though,
the first is the assignment check. This function checks for the current variable assignment,
which clause is "true" and which literal is "false," and removes them from the formula
vectors or clause vectors, respectively. The other two clause- and literal checks are unit
propagation and pure literal elimination. Both were already explained for the DP algo-
rithm and worked the same in the DPLL algorithm. This time, however, both also change
the state of the corresponding variable in the assignment vector.

For the DPLL procedure, we first have to find the next variable that is still undeter-
mined, set it to "true" (1), and start the next recursion step. The order in which the
variables are assigned is from smallest to highest index of the variable vector. Because the
parameters are given to the recursive function call via a call by value, the current state of
both vectors will be kept for the current recursion step. It can be used, if backtracking is
necessary, by changing the variable we set to "true" (1) in this recursion step to "false"
(-1) instead and stating the next recursion step again. If this also returns 0, the entire
DPLL algorithm will return 0.

2.7 DPLL Parallelization

In order to parallelize the DPLL algorithm, we use the same basic idea that we used
to parallelize the brute force algorithm: Dividing the variable assignments into multiple
partitions. This time, we accomplish this by setting the first few variables to "true" or
"false" in the assignment vector before the actual DPLL algorithm begins. The number
of assigned variables depends on the number of processes. Each process will be given a
different assignment vector. For example, if we have two processes, the first will start
with the first variable set to "true," while the second process will start with the same
variable set to "false." After that, each process will work the same way the sequential
DPLL algorithm did. It is important to note that the variables, which were set before the
actual DPLL algorithm started and which differentiate the partitions from one another,
are not changed by the algorithm.

A nonblocking receive is used to check for a stop signal, which will be sent if a process
finds an assignment of variables that satisfies the formula. The synchronization routine
MPI Barrier waits for each process to finish, and a blocking MPI Reduce synchronizes
the results. If the formula is not satisfiable, each process has to reach the result "false"
since all of them are working on different partitions.

For our implementation of the parallel DPLL algorithm, the number of processes must
be a power of two because the number of variables set before the actual DPLL algorithm
must be equal for each process.

2.8 CDCL (Conflict-Driven Clause Learning) Solver

2.8.1 CDCL Procedure

The CDCL algorithm is based on the core concepts of DPLL but extends it with conflict-
driven techniques. The solver iteratively assigns truth values to variables, performs unit
propagation to simplify the formula, detects conflicts, analyzes the cause of conflicts,
learns new clauses to avoid repeating mistakes, and backtracks. What sets CDCL apart is
its ability to learn from conflicts and optimize future decisions based on previous conflicts,
making it far more efficient in pruning the search space.
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CDCL was the work of many different papers (e.g., [MS][MS99][BS97]) and is still
being improved today.

The CDCL algorithm operates as follows:

1. Initialization and Decision Making: The solver starts by initializing the problem
(e.g., reading input) and setting up data structures like the watchlist, which tracks
two literals from each clause for efficient propagation. CDCL uses decision heuristics
such as Variable State Independent Decaying Sum (VSIDS) to guide the variable
selection process. VSIDS assigns scores to variables based on their occurrences in
conflicts, with each conflict increasing the score. This helps focus the search on
variables more likely to cause a conflict.

2. Unit Propagation: After making a decision (assigning a truth value to a variable),
the solver propagates this assignment through the formula using unit propagation.
This step ensures that any clause with only one unassigned literal force is set to
true, simplifying the formula. CDCL uses the two-literal watching scheme to track
clause satisfaction without revisiting every clause. A conflict is detected if any clause
becomes unsatisfiable (all literals are false).

3. Conflict Detection and Analysis: When a conflict is encountered (a clause becomes
unsatisfiable), the solver starts the conflict analysis. This involves examining the
cause of the conflict and generating a learned clause—a new clause that records the
circumstances leading to the conflict. The learned clause helps prevent the solver
from making the same conflicting assignments in the future, thereby pruning the
search space.

4. Clause Learning and Non-Chronological Backtracking: One of the strengths of
CDCL is its ability to perform non-chronological backtracking, also known as back-
jumping. Unlike DPLL, which backtracks in a fixed order, CDCL can jump back
to a decision level directly responsible for the conflict. This reduces the number
of assignments the solver needs to reconsider. The learned clause is added to the
formula, which can help the solver ensure it avoids repeating the same conflict in
future searches.

5. Heuristics and Restarts: The VSIDS heuristic also undergoes periodic decay, which
reduces the scores of older variables and helps the solver focus on more recent
conflicts. In addition to this decision-making, CDCL solvers use a restart strategy
to prevent the solver from getting stuck in unproductive parts of the search space. In
this case, we decided to use the Luby sequence[LSZ97], which controls when restarts
occur by following a predefined sequence of intervals. Restarts allow the solver to
reconsider earlier decisions with the benefit of newly learned clauses. These restarts
happen after a specified amount of iterations, namely

ti =

{
2k−1 if i = 2k − 1
ti−2k−1+1, if i = 2k − 1 ≤ I < 2k − 1

}
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Figure 2: CDCL procedure

2.8.2 Example

Consider a SAT problem with the formula (x1∨¬x2)∧(¬x1∨x3)∧(¬x3∨x2). The CDCL
solver begins by deciding, assigning x1 = true. This assignment triggers unit propagation:
since x1 satisfies the clause (x1 ∨ ¬x2), no further action is needed there, but the clause
(¬x1 ∨ x3) forces x3 = true. Now, the clause (¬x3 ∨ x2) requires x2 = true, completing
unit propagation.

If a conflict occurs later (e.g., a future assignment contradicts the current set), CDCL
performs conflict analysis, identifying the combination of assignments that led to the
conflict. It then learns a new clause, preventing the same conflict from happening again,
and backtracks to a relevant decision point. After learning, CDCL may restart the process
with the learned clause now part of the formula, refining the search path and improving
efficiency. This decision-making cycle, propagation, conflict learning, and backtracking
continue until the formula is satisfied or proven unsatisfiable.
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2.9 CDCL Parallelization

2.9.1 Portfolio-Based Approach

In our parallel implementation, each MPI instance has its own CDCL solver. These solvers
all operate independently, making separate decisions and applying clause learning locally
within each process. Since the processes do not share information during execution, they
avoid the synchronization overhead. The solvers will send messages to each other to
terminate each process as soon as one finds a satisfying assignment or determines that
the problem is unsatisfiable. Like the other approaches we chose, each solver instance
checks with a non-blocking MPI Receive whether the other solvers are already finished.
Finally, we use MPI Reduce is used to synchronize the results.

2.9.2 Initial Variable Decision and VSIDS Heuristic

Each process chooses its first decision variable differently to introduce variability among
the solvers and improve search space coverage. We use the VSIDS heuristic to rank
variables by their relevance based on conflict activity. However, rather than using the
most important variable across all processes, each process selects a different starting
variable based on rank.

• The VSIDS heuristic ranks the literals according to their importance. In the first
iteration of the solver, it is just the total occurrences of each literal.

• Each process (ranked 0 through n) selects the n-th most important variable accord-
ing to VSIDS for its first decision. For example, the first process chooses the most
frequently occurring, the second process the second most frequently occurring, and
so on.

By distributing the initial variable selection, we ensure that each solver begins exploring a
different search space region, mostly avoiding overlap, except for a few edge cases. As each
process proceeds, it uses the regular CDCL strategy—unit propagation, conflict analysis,
clause learning, and backtracking—guided by the VSIDS heuristic. This variation in
initial decisions improves the likelihood of one solver finding the solution faster than if
all solvers used the same decision sequence. Especially with smaller inputs, some solvers
can process the input the same as the others, but the chance of this happening decreases
with the input size.

3 Implementation Details
3.1 Project Structure and Hosting

The entire project is hosted on GitLab. The source code is written in C++ due to its
performance capabilities and the availability of valuable libraries for parallel processing.

The project is organized into several directories:

• src/ : Contains the main solver implementations and supporting code.

• src/Paral/ : Contains the parallel solver implementations using MPI.
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• src/Sequ/ : Houses the sequential solver implementations.

• test/ : Includes test input files and unit test cases.

3.2 Build System: CMake

CMake is the build system that handles all dependencies and manages the compilation
process. It automates building the project across different environments and platforms.
The script worked in multiple environments. We tested it on Windows 10/11, Ubuntu
20.04, and Scientific Linux 7.9. The MPI implementations we used were OpenMPI, Mi-
crosoft MPI, and Intel MPI.

To build the project, users can run the following commands:
mkdir build
cd build
cmake ..
make

3.3 Testing: Googletest

The test/ folder contains all the test input files and a unit test suite written using
Googletest. This tests all of the solvers to ensure their correctness. The unit tests
check for expected outputs for small SAT instances and help maintain the integrity of
the codebase during development.

For example, running the unit tests involves executing the test suite, which can be
done with the following command after building:

./testWithLibs

3.4 Input and Execution

The solvers are designed to be invoked from the command line. The main file in the src/
folder handles the input and delegates it to the appropriate solver (sequential or parallel)
based on the command-line arguments provided. The program reads the input directly
from a .cnf file or the terminal.

The following is an example of how the program can be executed:
./SATMPI --algorithm cdcl --file ./test/input.cnf

Here, the user specifies the algorithm to use (in this case, CDCL) and provides the
path to the input file. Alternatively, if input is provided via the terminal, the program will
process the data directly from stdin. While the solvers themselves are parallelized, input
reading is not parallelized due to the small size of typical input files, and the overhead of
parallelizing file reading was deemed unnecessary.

3.5 Sequential and Parallel Solvers

The project is divided into two main solver categories:

• Sequential Solvers : Located in the Sequ/ folder, these solvers implement the brute
force, DP, DPLL, and CDCL algorithms without any parallelization.
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• Parallel Solvers : Housed in the Paral/ folder, these solvers use MPI to enable
parallel processing.

As outlined in the methodology section, each process in the parallel solver selects
its initial decision variable differently. MPI handles inter-process communication and
process management, though direct communication between processes is minimized to
avoid overhead, and solvers operate largely independently until one reaches a conclusion.

3.6 Input Handling

As mentioned earlier, input reading is done sequentially, even in the parallel versions.
Since SAT problem files are relatively small, parallelizing input reading would add unnec-
essary complexity and overhead. Thus, each process reads the input independently.

4 Experimental Setup
4.1 Test Cases

The test cases used in this experiment were selected from two main sources to ensure
a diverse set of SAT problems that could effectively demonstrate the capabilities and
limitations of the solvers.

1. Uniform Random-3-SAT Problems:

• We obtained test cases from the SATLIB benchmark suite1, specifically from
the Uniform Random-3-SAT category. These cases are standard in SAT re-
search and are known to be challenging for SAT solvers.

• Uniform Random-3-SAT is a family of SAT problem distributions generated by
randomly constructing 3-CNF formulae with n variables and k clauses. Each
clause is formed by randomly selecting three literals from the 2n possible lit-
erals, with each literal selected with equal probability. The distribution can
be divided into "unforced" and "forced" uniform Random-3-SAT. Unforced
instances are generated without constraints, while forced instances are gener-
ated with a predetermined variable assignment that satisfies the formula. The
distribution exhibits a phase transition phenomenon, where the probability of
generating a satisfiable instance drops sharply at a critical number of clauses
(k′ ≈ 4.26n) for large n. This phase transition region is particularly interesting
for evaluating SAT algorithms, as instances from this region tend to be hard
to solve for current SAT solvers.[CKT91]

• Each test case in this dataset is labeled as either SAT (satisfiable) or UNSAT
(unsatisfiable), allowing for verification of solver accuracy.

• Test case sizes (i.e., the number of literals) were selected based on the com-
plexity of the algorithm being tested. For example, the brute force solver was
tested with smaller SAT instances due to its exponential complexity. In con-
trast, CDCL could handle larger instances due to its more advanced solving
strategy.

1SATLIB benchmark suite
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2. Pigeonhole Principle Problems:

• We also generated test cases using cnfgen with the Pigeonhole Principle formula
family2. This class of problems is notoriously difficult for certain types of SAT
solvers, making it a good candidate for performance testing.[Hak85]

These test cases were used across all solvers (brute force, DP, DPLL, and CDCL), adjust-
ing instance sizes depending on the respective solver’s capabilities.

4.2 Hardware Environment

All experiments were executed on the GWDG Supercomputing Center (SCC), using re-
sources provided by the NHR (National High-Performance Computing) infrastructure.
The tests were run on the medium partition, which provided the following specifica-
tions[24a]:

• Nodes: 94

• CPU: 2 × Intel Cascade Lake 9242

• RAM: 364 GB per node

• Cores: 96 per node

• SSD: Yes

The parallel solvers were executed with varying numbers of nodes to analyze the
performance as the solver operates on multiple cores.

2CNFgen Pigeonhole Principle
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5 Performance Analysis
5.1 Brute Force Solver

5.1.1 SAT Cases

Figure 3: Runtime of brute force algorithm with 10 to 25 literals (all formulas satisfiable)

Figure 3 shows the runtime of the brute force algorithm with different numbers of processes
(blue = sequential, orange = parallel with two processes, green = parallel with four
processes, Red = parallel with eight processes) in seconds for satisfiable formulas. Each
formula has twice as many clauses as literals (for example, the formulas with 25 literals
have 50 clauses). Ten different formulas were used for each number of literals. The line
shows the average runtime, while the shadow shows the deviations.

The first thing to note is that the runtime average and deviation increase drastically
when the number of literals exceeds 20. The high deviation is not surprising, though, since
the brute force algorithm can get "lucky" and hit an assignment of variables that satisfies
the formula early or even on the first try. However, hitting that assignment at the 2nth
try is also possible. Furthermore, we can see that adding more processes decreases the
average runtime and also the amount of deviation. This, again, is not surprising. More
processes mean that the algorithm can test the possible variable assignments faster, and
the likelihood of hitting a variable assignment that satisfies the formula early increases as
well.

Interestingly, the runtime for formulas with less than 20 literals barely differs. Figure 4
shows the same data as Figure 3, but we focus on the formulas with 10 to 20 literals.

Section 5 Frederik Hennecke, Pascal Brockmann 16



Parallelisation of different SAT-Solving-Algorithms using MPI

Figure 4: runtime of brute force algorithm with 10 to 20 literals (all formulas satisfiable)

The runtimes here barely differ, and the deviation could be higher. All averages are
below one second, and even the time between the lowest and highest outliers is less than
two seconds. On average, the parallel algorithms are faster than the sequential ones again.
However, the parallel algorithms’ runtime seems to be equal. This can at least partly be
explained by the process of "getting lucky." Moreover, suppose one variable assignment
that satisfies the formula is greater than 2n/2 and simultaneously close to it. In that case,
each parallel algorithm will reach this solution in roughly the same amount of time since
each multi-process algorithm has one process, which starts at 2n/2 because the number
of processes is always a power of 2. So, to better understand the potential performance
increase of the brute force algorithm resulting from parallelization, we will now look at
the worst case for this algorithm: the formulas being not satisfiable.
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5.1.2 UNSAT Cases

Figure 5: Runtime of brute force algorithm (all formulas not satisfiable)

Figure 5 shows the runtime of the brute force algorithm with different numbers of pro-
cesses (red = sequential, green = parallel with two processes, orange = parallel with four
processes, blue = parallel with eight processes) in seconds for not satisfiable formulas.
This is the worst case for the brute force algorithm because it has to go through every
possible variable assignment to reach the result. The chart also shows the size of the test
formulas (for example, 12_22 means a formula of 12 variables and 22 clauses).

The runtime of the algorithm decreases when more processes are added. However, the
performance difference is negligible when the test formulas are small. When the formula
size increases, so does the general runtime and runtime, as well as the speed difference
between the different brute-force algorithms. We can also see that the runtime for not
satisfiable formulas is greater than that for satisfiable formulas of similar size. This is
because the number of necessary variable assignments for each not satisfiable formula is
22n, with n being the number of variables in the formula. At the same time, they usually
do not need to check each possible variable assignment to see if the formula is satisfiable.

When we increase the number of processes by a factor, we roughly divide the runtime
by the same amount (double processes => half runtime). Therefore, the runtime is
roughly inversely proportional to the number of processes. This, however, is not surprising
since the test formulas used are all not satisfiable (worst case). This means that when
the formula has nn variables, each algorithm has to go through 2n variable assignments.
However, for the multi process algorithms, each process only has to go through a fraction
of these. When m is the number of processes, each only has to go through 2n/m variable
assignments. S, and since the m processes work simultaneously, the runtime is also roughly
divided by the number of processes m. The runtime is, however, not precisely divided
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by the number of processes. This is caused by the process of parsing and building the
formula, and assignment vectors are considered to be taken into account when checking
the runtime. MPI also seems to add an overhead, which explains the small to nonexistent
difference in runtime for very small test formulas.

5.2 DP Solver

Figure 6: Runtime of DP algorithm with 1 to 36 variables

Figure 6 shows the average runtime of the DP algorithm with different numbers of pro-
cesses (blue = sequential, orange = parallel with two processes, green = parallel with four
processes, red = parallel with eight processes) in seconds. The number of clauses varied
for each number of variables. Some of these formulas were satisfiable, while others were
not satisfiable.

The average runtimes shown in Figure 6 are still relatively short (under 3 seconds), and
most of the time, all four algorithms reached similar runtimes. However, the multi-process
algorithms have some runtime spikes at random formula sizes. Furthermore, these spikes
become more pronounced when the number of processes increases. Moreover, adding more
processes increases the average runtime.
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5.3 DPLL Solver

5.3.1 SAT Cases

Figure 7: Runtime of DPLL algorithm with 20 to 100 variables (all formulas satisfiable)

Figure 7 shows the runtime of the DPLL algorithm with different numbers of processes
(blue = sequential, orange = parallel with two processes, green = parallel with four
processes, Red = parallel with eight processes) in seconds for satisfiable formulas. Each
formula with 20 literals has 91 clauses, each with 50 literals has 218 clauses, each with 75
literals has 325 clauses, and each with 100 literals has 430 clauses. 25 formulas were used
for each of their formula sizes. The line shows the average runtime, while the shadow
shows the deviation.

It is not surprising that the average runtime and the amount of deviation both increase
with the formulas getting more complex. Increasing the number of processes drastically
decreases the runtime and the amount of deviation. This happens for the reason that the
likelihood of quickly finding a variable assignment that satisfies the formula increases with
each process added. Furthermore, increasing the number of processes also decreases the
variable assignment space each process has to go through, reducing the runtime. Another
observation we can make is that the runtime is roughly inversely proportional to the
number of processes.
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5.3.2 UNSAT Cases

Figure 8: Runtime of DPLL algorithm with 50 to 100 variables (all formulas not satisfi-
able)

Figure 8 shows the runtime of the DPLL algorithm with different numbers of processes
(blue = sequential, orange = parallel with two processes, green = parallel with four
processes, Red = parallel with eight processes) in seconds for not satisfiable formulas.
The number of clauses and the number of test formulas per number of variables is equal
to those of Figure 7, except we did not use formulas with 20 variables for this test.

We can make the same observations as before: The runtime increases with bigger
formulas, and the runtime and the deviation both decrease with more processes. Fur-
thermore, we can see that not satisfiable formulas, on average, take more time to solve
than satisfiable formulas of the same size. This is because the algorithm has to check
more variable assignments when the formula is not satisfiable since, in this case, it has
to cover all possible variable assignments. The performance increase of parallelization
is even more significant than that of greater than inversely proportional. For example,
the average runtime of the sequential (blue) algorithm for formulas with 100 variables is
roughly 2600 seconds, while the parallel version with two processes only needed approx-
imately 900 seconds on average. This is about a third of the original runtime, while the
number of processes only increased by a factor of 2.
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5.4 CDCL Solver

5.4.1 SAT Cases

Figure 9: Runtime of CDCL algorithm with 20 to 150 variables (all formulas satisfiable)

Figure 10: Runtime (in log scale) of CDCL algorithm with 20 to 150 variables (all formulas
satisfiable)

Section 5 Frederik Hennecke, Pascal Brockmann 22



Parallelisation of different SAT-Solving-Algorithms using MPI

In the first set of tests, we evaluated the CDCL solver on satisfiable (SAT) cases, with
literals ranging from 20 to 150. We measured the performance of the sequential solver
and the parallel versions, which were run with two, four, and eight processes.

Small Instances (20-70 literals): The sequential solver consistently outperformed the
parallel versions for problem instances with fewer than 70 literals. This is likely due to
the overhead introduced by MPI. Since these smaller instances were solved quickly, the
parallel solvers did not have enough work to outweigh the overhead, leading to slower
overall performance.

Larger Instances (70-150 literals): Beyond 70 literals, the parallel solvers became
increasingly faster than the sequential solver. As the complexity of the SAT instances
grew, the benefits of dividing the problem space among multiple processes outweighed the
MPI overhead. Notably, the sequential solver took up to 6000 seconds to solve the largest
problem with 150 literals, whereas the parallel solvers performed significantly better.

All solvers solved instances with 80 literals or fewer in under seven seconds, but the
time difference became substantial for larger problems. As the number of literals ap-
proached 150, more processes resulted in faster solving times. The effect of this scaling
is best visualized in two graphs: one using a logarithmic scale (Figure 10) to handle the
wide range of times and one using a linear scale (Figure 9) to show the time differences
in the less complex cases.

5.4.2 UNSAT Cases

Figure 11: Runtime of CDCL algorithm with 20 to 125 variables (all formulas unsatisfi-
able)
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Figure 12: Runtime (in log scale) of CDCL algorithm with 20 to 125 variables (all formulas
unsatisfiable)

For the second set of tests, we ran the CDCL solver on unsatisfiable (UNSAT) cases, with
a range of literals from 50 to 125. These instances are generally more difficult for SAT
solvers, as the entire search space needs to be explored to prove that no solution exists
conclusively. The result can be seen in Figure 11 and Figure 12.

Across almost all UNSAT test cases, the parallel solvers were faster than the sequential
solver, even for smaller instances. This is interesting because, despite the MPI overhead,
the parallel solvers still benefited from multiple processes. This suggests that the search
space reduction provided by independent solver decisions in the portfolio-based approach
was enough to offset inter-process communication costs.

Unlike the SAT cases, we did not run tests with 150 literals for UNSAT cases, as the
sequential solver took too long to complete. This highlights a limitation of our current
CDCL implementation, which struggles with large UNSAT instances. Even with paral-
lelization, the solver’s performance degrades significantly as the problem size increases for
these particularly hard cases.

5.5 Discussion

5.5.1 Brute Force

For the brute force algorithm, we have achieved our goal of reaching a performance in-
crease, which is approximately inversely proportional to the number of processes only
for not satisfiable formulas, which is the worst case for the brute force algorithm. The
decrease in average runtime for satisfiable formulas is, especially for very simple formulas,
barely noticeable. Reaching a decrease in runtime, which would satisfy our objective, is
unrealistic for the brute force algorithm because of how it works and is parallelized. For
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the runtime to be divided by the number of processes, the algorithm must go through
each possible variable assignment. This only happens if the formula is not satisfiable.

5.5.2 DP

Our implementation of the DP algorithm resulted in the opposite of what we planned.
The average runtime increases when more processes are added. While this can partly
be explained by the overhead added by MPI (especially for very simple formulas), this
does not explain the runtime spikes at random variable numbers. Another problem we
encountered with the DP algorithm is memory consumption. While testing, the algorithm
was aborted multiple times when we used bigger test formulas.

Both problems can be traced to how our implementation chooses a variable for the
resolution. The sequential algorithm chooses the first variable of the first clause, while the
different processes of the parallel version either take the first variable of the last clause
or the first variable of the x-th clause, where x is the respective process rank of the
process. This way, both versions of the algorithm will sometimes choose a variable whose
resolution will lead to many new clauses, while few or even none can be declared "true"
and, therefore, removed. This can cascade into an enormous formula vector (thousands of
clauses), leading to memory problems and poor runtimes since the algorithm still has to
go through this massive formula vector multiple times per recursion step. This also means
that the different processes do not stop immediately when one process finds a solution
since each process only checks once per recursion step for a stop signal, explaining the
random spikes in runtime. The likelihood of this happening also increases when more
processes are added.

To fix this, we have to change the way the algorithms choose variables for resolution.
It should depend on the formula, the number of occurrences of each variable, and the size
of the clauses a variable occurs in. It is also possible that additional checks for clause
satisfiability besides unit propagation, pure literal elimination, and the elimination of
clauses containing a variable and its negation can remedy this problem.

5.5.3 DPLL

We have seen that the parallelization of the DPLL algorithm results in significantly faster
runtimes when the number of variables exceeds 75. Furthermore, we achieved our objec-
tive of the average runtime being approximately inversely proportional to the number of
processes for the DPLL algorithm if the formulas are satisfiable. If we only look at not
satisfiable formulas, the performance increase is even greater than that. However, the
performance increase seems to get smaller as the number of processes increases. Taking
the not satisfiable formulas with 100 variables as an example, The average runtime for
the sequential algorithm is roughly 2600 seconds. Using the parallel version of the DPLL
algorithm with two processes, we reduce the average runtime to approximately 900 sec-
onds. So, we managed to reduce the runtime to about a third by doubling the number
of processes. When we double the number of processes again (four processes), we get an
average runtime in the neighborhood of 300 seconds. This is, again, 3/4 of the previous
runtime. However, if we double the number of processes again (eight processes), we get
a runtime of roughly 200 seconds. This is more than a third; therefore, we have reached
diminishing returns. The reason for this is probably the overhead added by MPI.

Overall, we achieved our objective of an average runtime for the DPLL algorithm that
was approximately inversely proportional to the number of processes.
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5.5.4 CDCL

Our tests have shown that the parallel CDCL solver came close to our ideal performance
scaling with enough literals in the test cases. In tests with inputs with over 70 literals,
the time taken by the parallel solver significantly decreased the more processes we used.

In smaller test samples with less literals, the overhead of MPI’s often outweighed the
benefits of parallelization. This lead to slower performance compared to the sequential
solver. This was more noticeable for instances with fewer than 70 literals, where the
parallel solver performed worse than the sequential one.

For UNSAT samples, the parallel solver showed near-ideal scaling across most test
cases. This shows its efficiency in exploring multiple search paths in parallel and resolving
conflicts more quickly across multiple processes.

5.5.5 Comparison of the different algorithms

In this subsubsection, we will only compare the performance of the brute force, DPLL, and
CDCL algorithms since we encountered problems with implementing the DP algorithm.

First, the more advanced algorithms are, on average, faster than the simpler algo-
rithms. The sequential brute force algorithm already needs approximately 34 seconds to
solve a not satisfiable formula with 21 variables. On the other hand, the DPLL and CDCL
algorithms find a solution for a formula like this in less than a second. We will focus on
more complex formulas to compare the performance of the CDCL and DPLL algorithms.
When we take a look at satisfiable formulas with 100 variables, for example, the sequential
CDCL algorithm only needs roughly one second on average, while the CDCL algorithm
needs approximately 350 seconds. The trend of the CDCL algorithm being, on average,
the fastest can be observed, no matter how complex the formula is or if it is satisfiable or
not.

We can also see that the average runtime of each algorithm is shorter when the formula
is satisfiable. If we look again at formulas with 100 variables, the average runtime of the
sequential DPLL algorithm is roughly 350 seconds when the formula is satisfiable. The
average runtime for not satisfiable formulas of the same complexity is approximately 2600
seconds. The sequential CDCL algorithm has an average runtime of about 1 second
for satisfiable formulas with 100 variables, while the average runtime for not satisfiable
formulas of similar complexity is a little under 10 seconds.

6 Conclusion
6.1 Summary of Findings

In this project, we developed multiple SAT-solver algorithms. We demonstrated how
parallelizing each algorithm can improve runtime performance in SAT problems by im-
plementing and testing sequential and parallel versions. The results of our tests have
shown that for smaller input formulas, the overhead of parallelization often outweighs the
benefits, causing the sequential solvers to perform faster. However, the parallel solvers
perform significantly better as the input size increases. Sometimes, it is even inversely
proportional to the number of processes. In the end, with bigger problem sizes, the run-
time is inversely proportional to the number of processes. For UNSAT cases, the parallel
solvers showed an even more consistent improvement.
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In Summary, this project showed the effectiveness of parallelization. Again, the project
is open-source and can be seen in our Gitlab Repository.

6.2 Future Work

While all solvers can be further optimized, the CDCL solver will be the most important
one. Some improvements can be made:

• Learned Clause Deletion: Learned clause deletion would allow the solver to remove
less useful clauses, retaining only the most valuable ones. This could reduce memory
usage and improve runtime.

• Clause Sharing: An improvement for the parallel CDCL solver could be the im-
plementation of clause sharing between processes. Sharing learned clauses between
solvers may help in pruning the search space.

• Dynamic Process Assignment: Instead of assigning variables based on VSIDS rank-
ing for the parallel solver, implementing dynamic process assignment could allow
processes to adaptively change their focus based on the progress of other processes.
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